Complex hybrid systems: stability analysis for omega limit sets
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Abstract: This paper focuses on the asymptotic stability propertfemtega limit sets for complex hybrid dynamical
systems, which are commonly found in systems and engirgeltispells out specific stability results that follow when
a hybrid dynamical system has certain structure, e.g., vith@simits a decomposition resembling a cascade of hybrid
dynamical systems.
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1 HYBRID SYSTEMS is a compact hybrid time domain. Wybrid arcis a function

Hybrid systems are dynamical systems the state of whic ¢'_:) 5( t_T)IiR; Iosclgl:lh ;Zasgu:tsela Bgr?'{ilr?utolrlj]:fgrofri?(;?ar?gd
can both change continuously (flow) and change discontin-(t ) e 7djomq§ Theyh brid tim{e domain associated with a
uously (jump). The state may contain logic variables, coun- +J | y

ters, timers, and physical variables, among other things.hybrIOI ‘?‘rc‘b will be denoted by dor_ns. . .

. . ~~A hybrid arc¢ : dom¢ — R™ is a solution toH if
Hybrid dynamical systems subsume many useful and |m-¢(O 0) € C'U D and:
portant systems such as hybrid automata, switched con*™’ '

trol systems, rigid mechanical systems with impacts, rese{s1) for allj ¢ Z> and almost alk such that(t, j) €
control systems, sampled-data control systems, networked  dom¢,

control systems, networked of biological oscillators,. etc .

(see [16], [10], [6], [5, Section 2.2], [8], [12], [11]). o(t,j) € C, o(t,j5) € F(é(t,4));
Usually, a hybrid system can be modeled using four ob-

jects: a differential inclusion: € F'(x) describing the (S2) for all(t, j) € dom¢ such tha(t, j + 1) € dome,
flows, a setC constraining the flow, a difference inclusion

zt € G(x) describing the jumps, and a setstating from o(t,5) € D, &(t,j+1)e G(o(t,7)).
where the jumps can happen. Thus, four objects comprise

the data of a hybrid system: the flow map the flow set A solution is said to benaximalif it is not a truncation of
C, the jump mag, and the jump seb. Symbolically, the  another solutiony’ to some proper subset of dogh. The

hybrid system can be written as notationSy (X') indicates the set of maximal solutionsio
. from the set of initial conditiong’. Note that if (and only

r € F(x zeC . . .

H{ o c GEIE; weD. (1) if) 2° ¢ C U D thenSy(2°) = (. The sett C R” is said

to beforward pre-invariantif each¢ € Sy (X) satisfies
The stater, as already noted, may include logic variables, o(t,§) € X forall (t,j) € domé.
etc. Solutions td+ require a generalized concept of a time
domain. Acompact hybrid time domais a setS C Rxq x Standing Assumption 1 (Hybrid Basic Conditions) The

Z>( of the form setsC and D are closed; the mappings andG are outer
J1 semicontinuous and locally boundéed F(x) is nonempty
g — U ([tst541), ) and convex for allk: € C; G(x) is nonempty for alk € D.
7=0

These regularity conditions on the dataréfare needed to
for some finite sequence of nonnegative numbetst, < guarantee that the set of solutions is sequentially compact
t1 <tz ... < t;. The setS is ahybrid time domainf for  and upper semicontinuous with respect to initial condiion
all (T, ) € 8,

1. A set-valued mapping- defined isouter semicontinuous for
S N ([0, T] X {07 1, J}) each sequence; converging to a point and each sequengg € G(z;)
converging to a poing, it holds thaty € G(z); equivalently, if the graph
This work was supported by the Air Force Office of Scientific Re of G is closed. Itidocally boundedf, for each compact set there exists
search under grant number F9550-06-1-0134 and the Natfsriehce p > 0 such thatZ(K) := Uze k G(x) C uB, whereB is the open unit
Foundation under grant numbers ECS-0622253 & CCR-0311084. ball in R™. For more details, see [14, Chapter 5].




and system perturbations; see the exposition and motiva- e A is pre-asymptotically stablé it is both pre-stable
tion in [4] and the results in [5]. Such properties of the set and pre-attractive;

of solutions are important for establishing (LaSalle-Jike ] ] ] o
invariance principles (see [15]), converse Lyapunov theo- ® A is uniformly pre-asymptotically stabiéit is both
rems for (pre-)asymptotic stability (see [3] and [2]), and pre-stable and uniformly pre-attractive.

robustness of hy_brid feedbacks for general asymptotically.l.he subset of’ U D from which all solutions are bounded
controllable nonlinear systems (see [13]), etc. and the ones with unbounded domain convergedtis

2 STABLE OMEGA LIMIT SETS called thebasin of pre-attractiorlDf A.
_ Some interesting facts about pre-asymptotic stability,
2.1 Overview shown in [2], are that

Inthe recent paper [1], we have developed results on omega
limit sets for hybrid dynamical systems satisfying Stagdin
Assumption 1. These results parallel those for continuous-

time dynamical systems, as summarized in [7] forexample. 5 implies the existence of a smooth Lyapunov func-

In this paper, we focus on characteriziagymptotically tion that establishes pre-asymptotic stability,
stableomega limit sets. Moreover, we emphasize results

where a decomposition of the state into a pseudo-cascade3. it is robust to sufficiently small perturbations.
structure can be used to facilitate the analysis. Hendgfort

1. it implies uniform pre-asymptotic stability and thus a
K L-estimate on the size of solutions,

we use 02-limit set” in place of “omega-limit set”. 3 MAINRESULTS
22  (O-limit sts Most of the first result given here was reported in [1].
Chor;)silqer. the h¥bri? syst.em;(. fFor(ja g.iven seR’ C R, Theorem 1 Let X be compact. Suppose that, for the hy-
the2-limit set of X" for 7 is defined as: brid systen?+, the setRY, (X) is bounded andy(X) C
Qp(X) = {y € R : y=lim ¢;(ts, i), i €Sn(X), int(X). ThenQx(X) is compact and pre-asymptotically
(ti,ji)z anomqsl- ,ti+ji — oob, stable with basin of pre-attraction containidgn (C'U D).

i Moreover, it is the smallest such set containethif.x’).
We also define, for eache Z>,

RL(X) = {y ER" :y = ¢t ), ¢ € Sp(X) The next resu!t is a corollary of the results in [1], but was
. Ny not made explicit there.

(t,j) € domg, t +j > i}. ; - o _
. . First we need the following bit of notation: given a hybrid

It was noted in [1], as a simple consequence of the resultsystem} and a closed se¥, we define the hybrid system

in [14], that H‘y as
(&) = lim Ri () = [R5, (X) ) i € Flo) eecCny o
’ bzt e Ga) reDnN)y.

Itis possible for this limit to be empty.
Theorem 2 Let X and) be compact. Suppose, fof =

2.3 Pre-asymptotic stability (F,G,C, D) that
) ) a

Pre-asymptotic stability (pre-AS) is a generalization of
standard notion of asymptotic stability to the setting veher GDNY)Cy,

completeness or even existence of solutions is not required

Pre-AS was introduced in [2] as an equivalent characteri-ROH()() is bounded25(X) Cc Y and A := QHW (V) C
zation of the existence of a smooth Lyapunov function forint(x'). Then, for, the setA is compact and pre-

a hyb.rid system. asymptotically stable with basin of pre-attraction comtai
Consider the hybrid systeff. Let.A C R" be compact. jngxn (CUD).
We say that

o A s pre-stablefor 7{ if for eache > 0 there exists Proof: First, the assumption tha, (X) is bounded veri-
§ > 0 such that any solution & with |$(0, 0)| 4 < & fies[1, A_ssumpt|on 1]. Usmgt_he compactnes®’'afnd the
satisfiesé(t, j)|a < ¢ for all (¢, 5) € dome; assumptiorZ(DNY) C Y, weinferthatd = Q3 (V) C

R%‘y (Y)u). Then[1, Theorem 2] says thdtis compact

and forward pre-invariant fok.

Second, combining the assumptifa, (X) C Y and [1,

Corollary 1] givesQx(X) C A. This, as well as the

assumption4d C int(X), implies Q4 (X) C int(X).

e A is uniformly pre-attractiveif there existso > 0 Then [1, Theorem 5] says th&t,(X) is a compact pre-
and for eache > 0 there existsI" > 0 such that asymptotically stable set with basin of pre-attraction-con
any solutiong to H with |¢(0,0)|4 < J is bounded taining X N (C' U D). Since A containsQy(X), we
and|o(t, j)|a < e forall (¢,5) € dom¢ satisfying  conclude that4 is uniformly attractive with basin of pre-
t+5>T, attraction containingd N (C' U D).

o Aispre-attractivefor H if there exists) > 0 such that
any solutiong to H with |¢(0,0)|4 < § is bounded
and if it has unbounded domain thé(t, j) — A as
t+j — oo,



In summary, the setl is compact and forward pre-invariant G(x) [ —Azy ]

for H and.A is also uniformly attractive with basin of pre- —Azg |7

attraction containingt’ N (C U D) for H. By [2, Propo- C {x:z, >0},

sition 3.2], we coqclude that fdﬂ_, the sgtA is compact_ D = {z:21=0,z <0},

and pre-asymptotically stable with basin of pre-attractio

containingX N (C' U D). [ whereuw is the control input and € [0, 1) is a parameter.
) ) o Note thatG(z) = [ 0 } for all z € D. This model

The examples in the next section will illustrate Theorem 2 — Az

in settings that are very similar to cascade interconnestio describes the control of a cart that is located to the right of

of differential equations. the equilibrium and where every time the cart tries to move
left past the equilibrium, it collides with a rigid obstaele
4 EXAMPLES the equilibrium resulting in the sign of the cart’s velocity
being toggled and the absolute value of the cart's veloc-
41 Statereset ity decreasing. The control goal is to steer the cart to the
The nonlinear control system equilibrium via the information of the cart’s position. In
particular, we associate the output x; to the above hy-
Fz) = [ —x1 + 2370 } brid system, and we are interested in stabilization by dutpu
' U ' feedback. We observe that the origin is pre-asymptotically

stable when, = 0, but the convergence could be extremely
wherez = (z1,22) € X = R?, cannot be globally slowwhen\ ~ 1. We verify that the state feedback control
stabilized with the control law, = —kzo with & > 0. law u = —z5 can “quickly” stabilize the hybrid system to
Only semiglobal stabilization is possible (see [9, Examplethe origin, but the information of; is not contained in the
13.16]). The control laws = —kxo — 23 with k > 0 (via outputy. So we have to design an observer, and then we
backstepping design) can achieve global stabilizatioa (se use Theorem 2 to analyze the closed-loop system behavior.
[9, Example 14.11)). In order to design an observer, we use the fact that the value
Theorem 2 can be used to show how the state reset (discretsf the outputr; can be used to detect jumps. In particular,
dynamics) can help achieve global stabilization with the we assume we can take the following observer:

control law isu = —kxo with £ > 0. Consider a hybrid B oty — 2
system (1) with the data [ - } = [ 2rvy— A } reC
z9 —Z1 — %9
—1 + 2320 Ho
F(z) := [ o ! } 2y —Az
—kx ’ 1 - !
2 g I vy I
z1
G(z) = [ ALy ] , and we make the control choiee = —z,. The hybrid
C = {o:|eiws| <05}, systemH, with this u, combines easily with the observer

H, to form a new hybrid systerf{ with state¢ = (z, z),
D = {z:|nz| 205}, flow mapF, flow setC := {(z,z) : = € C}, jump mapG,

where € [0,1). It is not difficult to check that, with ~2ndjumpseD := {(z,2) : z € D}.

V(z) = 2Tz, we have(VV (z), F(z)) < Oforallz € ¢ 1aKing

andV(G(x)) < V(x) forall z € D. It follows that, for V(€)= (z1 — 21)? + (z2 — 22)% — (21 — 21)(22 — 20),

each compack’ C R?, RY,(X) is bounded. (Moreover,

sinceC U D = R?, each solution is complete.) L&t be it can be verified that

an arbitrary compact set containing the origin. Define (VV(&),F (&) ==V (¢) véel, @)
Y R M i s 2y = 0 V(G(8) = AV (¢) V¢eD.
= Ry (X) {2 = 0} - It also can be established that thecomponent of¢ re-
Sinceidy = —kay anda] = Aa, we inferQy(X) C V. mains uniformly bounded it — z is uniformly bounded.
Sinced; = —ay + a2 -0 forz € Y N C, we verify that I turn, the properties of” given in (4) establish that, for

O, (V) equals the origin. Theorem 2 says that the ori- €ch compact set, the setR’; (') is bounded. N
gin is pre-asymptotically stable (in fact, asymptoticalig- Lt X be an arbitrary compact set containing the origin.
ble) with basin of pre-attraction (in fact, basin of attian) ~ Define

containingX’. This is true for anyY, and so the origin is V=RL(X)N{¢:zx=2z}.

globally asymptotically stable. H

It follows from the properties oF in (4) that2 (X) C V.
Since the state feedback control law= —z4 stabilizes
Consider a hybrid system (1) with the system data definedhe original hybrid systerf{ to the origin, it follows that
as follows Qﬁ‘y () is equal to the origin. Using that was arbitrary

42 Acartandaspring

. 2o and using Theorem 2 we conclude that the origiAﬂ;bAfs
F(z) = ’ asymptotically stable with the basin of pre-attractianD.
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