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Abstract: This paper focuses on the asymptotic stability properties of omega limit sets for complex hybrid dynamical
systems, which are commonly found in systems and engineering. It spells out specific stability results that follow when
a hybrid dynamical system has certain structure, e.g., whenit admits a decomposition resembling a cascade of hybrid
dynamical systems.
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1 HYBRID SYSTEMS

Hybrid systems are dynamical systems the state of which
can both change continuously (flow) and change discontin-
uously (jump). The state may contain logic variables, coun-
ters, timers, and physical variables, among other things.
Hybrid dynamical systems subsume many useful and im-
portant systems such as hybrid automata, switched con-
trol systems, rigid mechanical systems with impacts, reset
control systems, sampled-data control systems, networked
control systems, networked of biological oscillators, etc.,
(see [16], [10], [6], [5, Section 2.2], [8], [12], [11]).
Usually, a hybrid system can be modeled using four ob-
jects: a differential inclusioṅx ∈ F (x) describing the
flows, a setC constraining the flow, a difference inclusion
x+ ∈ G(x) describing the jumps, and a setD stating from
where the jumps can happen. Thus, four objects comprise
the data of a hybrid system: the flow mapF , the flow set
C, the jump mapG, and the jump setD. Symbolically, the
hybrid system can be written as

H

{
ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D .
(1)

The statex, as already noted, may include logic variables,
etc. Solutions toH require a generalized concept of a time
domain. Acompact hybrid time domainis a setS ⊂ R≥0×
Z≥0 of the form

S =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of nonnegative numbers0 = t0 ≤
t1 ≤ t2 ... ≤ tJ . The setS is ahybrid time domainif for
all (T, J) ∈ S,

S ∩ ([0, T ]× {0, 1, ...J})
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is a compact hybrid time domain. Ahybrid arcis a function
φ : S → R

n such thatS is a hybrid time domain and
t 7→ φ(t, j) is locally absolutely continuous for fixedj and
(t, j) ∈ domφ. The hybrid time domain associated with a
hybrid arcφ will be denoted by domφ.
A hybrid arc φ : dom φ → R

n is a solution toH if
φ(0, 0) ∈ C ∪ D and:

(S1) for all j ∈ Z≥0 and almost allt such that(t, j) ∈
domφ,

φ(t, j) ∈ C, φ̇(t, j) ∈ F (φ(t, j));

(S2) for all(t, j) ∈ domφ such that(t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) ∈ G(φ(t, j)).

A solution is said to bemaximalif it is not a truncation of
another solutionφ′ to some proper subset of domφ′. The
notationSH(X ) indicates the set of maximal solutions toH
from the set of initial conditionsX . Note that if (and only
if) x0 6∈ C ∪ D thenSH(x0) = ∅. The setX ⊂ R

n is said
to be forward pre-invariantif eachφ ∈ SH(X ) satisfies
φ(t, j) ∈ X for all (t, j) ∈ domφ.

Standing Assumption 1 (Hybrid Basic Conditions) The
setsC andD are closed; the mappingsF andG are outer
semicontinuous and locally bounded1 ; F (x) is nonempty
and convex for allx ∈ C; G(x) is nonempty for allx ∈ D.

These regularity conditions on the data ofH are needed to
guarantee that the set of solutions is sequentially compact
and upper semicontinuous with respect to initial conditions

1. A set-valued mappingG defined isouter semicontinuousif for
each sequencexi converging to a pointx and each sequenceyi ∈ G(xi)
converging to a pointy, it holds thaty ∈ G(x); equivalently, if the graph
of G is closed. It islocally boundedif, for each compact setK there exists
µ > 0 such thatG(K) := ∪x∈KG(x) ⊂ µB, whereB is the open unit
ball in R

n. For more details, see [14, Chapter 5].



and system perturbations; see the exposition and motiva-
tion in [4] and the results in [5]. Such properties of the set
of solutions are important for establishing (LaSalle-like)
invariance principles (see [15]), converse Lyapunov theo-
rems for (pre-)asymptotic stability (see [3] and [2]), and
robustness of hybrid feedbacks for general asymptotically
controllable nonlinear systems (see [13]), etc.

2 STABLE OMEGA LIMIT SETS

2.1 Overview

In the recent paper [1], we have developed results on omega
limit sets for hybrid dynamical systems satisfying Standing
Assumption 1. These results parallel those for continuous-
time dynamical systems, as summarized in [7] for example.
In this paper, we focus on characterizingasymptotically
stableomega limit sets. Moreover, we emphasize results
where a decomposition of the state into a pseudo-cascade
structure can be used to facilitate the analysis. Henceforth,
we use “Ω-limit set” in place of “omega-limit set”.

2.2 Ω-limit sets

Consider the hybrid systemH. For a given setX ⊂ R
n,

theΩ-limit set ofX for H is defined as:

ΩH(X ) :=
{
y ∈ R

n : y= lim
i→∞

φi(ti, ji), φi∈SH(X ),

(ti, ji) ∈ domφi , ti + ji → ∞
}
.

We also define, for eachi ∈ Z≥0,

Ri
H(X ) :=

{
y ∈ R

n : y = φ(t, j), φ ∈ SH(X )
(t, j) ∈ domφ , t + j ≥ i

}
.

It was noted in [1], as a simple consequence of the results
in [14], that

ΩH(X ) = lim
i→∞

Ri
H(X ) =

⋂

i

Ri
H(X ) . (2)

It is possible for this limit to be empty.

2.3 Pre-asymptotic stability

Pre-asymptotic stability (pre-AS) is a generalization of
standard notion of asymptotic stability to the setting where
completeness or even existence of solutions is not required.
Pre-AS was introduced in [2] as an equivalent characteri-
zation of the existence of a smooth Lyapunov function for
a hybrid system.
Consider the hybrid systemH. Let A ⊂ R

n be compact.
We say that

• A is pre-stablefor H if for eachε > 0 there exists
δ > 0 such that any solution toH with |φ(0, 0)|A ≤ δ

satisfies|φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• A is pre-attractivefor H if there existsδ > 0 such that
any solutionφ to H with |φ(0, 0)|A ≤ δ is bounded
and if it has unbounded domain thenφ(t, j) → A as
t + j → ∞;

• A is uniformly pre-attractiveif there existsδ > 0
and for eachε > 0 there existsT > 0 such that
any solutionφ to H with |φ(0, 0)|A ≤ δ is bounded
and |φ(t, j)|A ≤ ε for all (t, j) ∈ dom φ satisfying
t + j ≥ T ;

• A is pre-asymptotically stableif it is both pre-stable
and pre-attractive;

• A is uniformly pre-asymptotically stableif it is both
pre-stable and uniformly pre-attractive.

The subset ofC ∪D from which all solutions are bounded
and the ones with unbounded domain converge toA is
called thebasin of pre-attractionof A.
Some interesting facts about pre-asymptotic stability,
shown in [2], are that

1. it implies uniform pre-asymptotic stability and thus a
KL-estimate on the size of solutions,

2. it implies the existence of a smooth Lyapunov func-
tion that establishes pre-asymptotic stability,

3. it is robust to sufficiently small perturbations.

3 MAIN RESULTS

Most of the first result given here was reported in [1].

Theorem 1 Let X be compact. Suppose that, for the hy-
brid systemH, the setR0

H(X ) is bounded andΩH(X ) ⊂
int(X ). ThenΩH(X ) is compact and pre-asymptotically
stable with basin of pre-attraction containingX ∩(C∪D).
Moreover, it is the smallest such set contained inint(X ).

The next result is a corollary of the results in [1], but was
not made explicit there.
First we need the following bit of notation: given a hybrid
systemH and a closed setY, we define the hybrid system
H|Y as

H|Y

{
ẋ ∈ F (x) x ∈ C ∩ Y
x+ ∈ G(x) x ∈ D ∩ Y .

(3)

Theorem 2 Let X andY be compact. Suppose, forH =
(F, G, C, D) that

G(D ∩ Y) ⊂ Y ,

R0
H(X ) is bounded,ΩH(X ) ⊂ Y andA := ΩH|Y

(Y) ⊂

int(X ). Then, forH, the setA is compact and pre-
asymptotically stable with basin of pre-attraction contain-
ingX ∩ (C ∪ D).

Proof: First, the assumption thatR0
H(X ) is bounded veri-

fies [1, Assumption 1]. Using the compactness ofY and the
assumptionG(D∩Y) ⊂ Y, we infer thatA = ΩH|Y

(Y) ⊂

R0
H|Y

(Y)∪Y. Then [1, Theorem 2] says thatA is compact

and forward pre-invariant forH.
Second, combining the assumptionΩH(X ) ⊂ Y and [1,
Corollary 1] givesΩH(X ) ⊂ A. This, as well as the
assumptionA ⊂ int(X ), implies ΩH(X ) ⊂ int(X ).
Then [1, Theorem 5] says thatΩH(X ) is a compact pre-
asymptotically stable set with basin of pre-attraction con-
taining X ∩ (C ∪ D). SinceA containsΩH(X ), we
conclude thatA is uniformly attractive with basin of pre-
attraction containingX ∩ (C ∪ D).



In summary, the setA is compact and forward pre-invariant
for H andA is also uniformly attractive with basin of pre-
attraction containingX ∩ (C ∪ D) for H. By [2, Propo-
sition 3.2], we conclude that forH, the setA is compact
and pre-asymptotically stable with basin of pre-attraction
containingX ∩ (C ∪ D). �

The examples in the next section will illustrate Theorem 2
in settings that are very similar to cascade interconnections
of differential equations.

4 EXAMPLES

4.1 State reset

The nonlinear control system

F (x) :=

[
−x1 + x2

1x2

u

]
,

where x = (x1, x2) ∈ X = R
2, cannot be globally

stabilized with the control lawu = −kx2 with k > 0.
Only semiglobal stabilization is possible (see [9, Example
13.16]). The control lawu = −kx2 − x3

1 with k > 0 (via
backstepping design) can achieve global stabilization (see
[9, Example 14.11]).
Theorem 2 can be used to show how the state reset (discrete
dynamics) can help achieve global stabilization with the
control law isu = −kx2 with k > 0. Consider a hybrid
system (1) with the data

F (x) :=

[
−x1 + x2

1x2

−kx2

]
,

G(x) :=

[
x1

λx2

]
,

C := {x : |x1x2| ≤ 0.5} ,

D := {x : |x1x2| ≥ 0.5} ,

whereλ ∈ [0, 1). It is not difficult to check that, with
V (x) = xT x, we have〈∇V (x), F (x)〉 ≤ 0 for all x ∈ C

andV (G(x)) ≤ V (x) for all x ∈ D. It follows that, for
each compactX ⊂ R

2, R0
H(X ) is bounded. (Moreover,

sinceC ∪ D = R
2, each solution is complete.) LetX be

an arbitrary compact set containing the origin. Define

Y := R0
H(X ) ∩ {x : x2 = 0} .

Sinceẋ2 = −kx2 andx+

2
= λx2, we inferΩH(X ) ⊂ Y.

Sinceẋ1 = −x1 + x2
1 · 0 for x ∈ Y ∩ C, we verify that

ΩH|Y
(Y) equals the origin. Theorem 2 says that the ori-

gin is pre-asymptotically stable (in fact, asymptoticallysta-
ble) with basin of pre-attraction (in fact, basin of attraction)
containingX . This is true for anyX , and so the origin is
globally asymptotically stable.

4.2 A cart and a spring

Consider a hybrid system (1) with the system data defined
as follows

F (x) :=

[
x2

−x1 + u

]
,

G(x) :=

[
−λx1

−λx2

]
,

C := {x : x1 ≥ 0} ,

D := {x : x1 = 0, x2 ≤ 0} ,

whereu is the control input andλ ∈ [0, 1) is a parameter.

Note thatG(x) =

[
0

−λx2

]
for all x ∈ D. This model

describes the control of a cart that is located to the right of
the equilibrium and where every time the cart tries to move
left past the equilibrium, it collides with a rigid obstacleat
the equilibrium resulting in the sign of the cart’s velocity
being toggled and the absolute value of the cart’s veloc-
ity decreasing. The control goal is to steer the cart to the
equilibrium via the information of the cart’s position. In
particular, we associate the outputy = x1 to the above hy-
brid system, and we are interested in stabilization by output
feedback. We observe that the origin is pre-asymptotically
stable whenu = 0, but the convergence could be extremely
slow whenλ ↗ 1. We verify that the state feedback control
law u = −x2 can “quickly” stabilize the hybrid system to
the origin, but the information ofx2 is not contained in the
outputy. So we have to design an observer, and then we
use Theorem 2 to analyze the closed-loop system behavior.
In order to design an observer, we use the fact that the value
of the outputx1 can be used to detect jumps. In particular,
we assume we can take the following observer:

Ho






[
ż1

ż2

]
=

[
z2 + y − z1

−z1 − z2

]
x ∈ C

[
z+

1

z+

2

]
=

[
−λz1

−λz2

]
x ∈ D

and we make the control choiceu = −z2. The hybrid
systemH, with this u, combines easily with the observer
Ho to form a new hybrid system̂H with stateξ = (x, z),
flow mapF̂ , flow setĈ := {(x, z) : x ∈ C}, jump mapĜ,
and jump set̂D := {(x, z) : x ∈ D}.
Taking

V (ξ) := (x1 − z1)
2 + (x2 − z2)

2 − (x1 − z1)(x2 − z2),

it can be verified that

〈∇V (ξ), F̂ (ξ)〉 = −V (ξ) ∀ξ ∈ Ĉ ,

V (Ĝ(ξ)) = λ2V (ξ) ∀ξ ∈ D̂ .
(4)

It also can be established that thex component ofξ re-
mains uniformly bounded ifx − z is uniformly bounded.
In turn, the properties ofV given in (4) establish that, for
each compact setX , the setR0

Ĥ
(X ) is bounded.

Let X be an arbitrary compact set containing the origin.
Define

Y = R0

Ĥ
(X ) ∩ {ξ : x = z} .

It follows from the properties ofV in (4) thatΩĤ(X ) ⊂ Y.
Since the state feedback control lawu = −x2 stabilizes
the original hybrid systemH to the origin, it follows that
ΩĤ|Y

(Y) is equal to the origin. Using thatX was arbitrary

and using Theorem 2 we conclude that the origin ofĤ is
asymptotically stable with the basin of pre-attractionĈ∪D̂.
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