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Abstract— The problem of distributed networked sensor
agents jointly estimating the state of a plant given by a linear
time-invariant system is studied. Each agent can only measure
the output of the plant at intermittent time instances, at which
times the agent also sends the received plant measurement and
its estimate to its neighbors. At each agent, a decentralized
observer is attached which utilizes the asynchronous incoming
information being sent from its neighbors to drive its own esti-
mate to the state of the plant. We provide sufficient conditions
that guarantee global exponential stability of the zero estimation
error set. Numerical illustrations are provided.

I. INTRODUCTION

Distributed state estimation in networked systems has seen

increased attention recently. A typical challenge in such

system occurs when information is only intermittently avail-

able; namely, when information is transmitted to neighboring

agents asynchronously and only at isolated time instances

which are not known a priori. Furthermore, the amount of

ordinary time elapsed between communication events for

each agent can be different. For instance, an agent can receive

information at a much faster rate than others.

Several observer architectures and design methods have

been proposed in the literature. Results for when information

is available periodically, discrete-time observers can be used

[1], [2], [3]. Algorithms that treat the communication as

impulsive events along the continuous dynamics of the plant

have also been developed; see, e.g., [4], [5]. In [6], a

distributed observer with undirected fixed communication

topology and switching communication topology for peri-

odic sampling time/communication events is presented. Dis-

tributed Kalman filtering is employed for achieving spatially-

distributed estimation tasks in [7]. In [8], a continuous-

discrete distributed observer design was presented for linear

systems with discrete communication.

A distributed observer design that addresses the challenge

of robustly reconstructing the state of the plant, at each

agent, when information is arriving at intermittent (aperi-

odic) and asynchronous (between agents) time instants is

considered. Namely, we construct a distributed observer,

assigned to each agent, that uses available information it
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receives about the plant by way of direct measurements

and communication from neighboring agents. We model the

closed-loop system using the hybrid systems framework in

[9]. With an appropriate change of coordinates, we show

global exponential stability of the zero estimation error set.

The main contribution of this work lay on the establishment

of sufficient conditions for nominal and robust estimation

over networks where information at each agent arrives at

time instances triggered by each agent locally. Different from

our previous work in [10], [11], this work assumes that

information arrives to each agent asynchronously. Numerical

examples that validate the results are presented throughout

the paper.

The remainder of this paper is organized as follows.

Notation along with a brief overview of hybrid systems and

graph theory is given in Section II. In Section III, the problem

description, modeling, and main results are presented.

II. PRELIMINARIES

A. Notation

Given a matrix A, eig(A) is the set of all eigenvalues of

A and |A| := max{|λ| 12 : λ ∈ eig(A⊤A)}. Given two

vectors u, v ∈ R
n, |u| :=

√
u⊤u and notation [u⊤ v⊤]⊤

is equivalent to (u, v). Given a function m : R≥0 → R
n,

|m|∞ := supt≥0 |m(t)|. The symbol N denotes the set of

natural numbers including zero. Given a vector x ∈ R
n and

a closed set A ⊂ R
n, the distance from x to A is defined

as |x|A = infz∈A |x − z|. Given a symmetric matrix P ,

λ(P ) := max{λ : λ ∈ eig(P )} and λ(P ) := min{λ :
λ ∈ eig(P )}. Given matrices A,B with proper dimensions,

we define the operator He(A,B) := A⊤B + B⊤A; A ⊗ B

defines the Kronecker product; diag(A,B) denotes a 2 ×
2 block matrix with A and B being the diagonal entries;

and A ∗ B defines the Khatri-Rao product1 between A and

B. Denote ⋆ as the symmetric block in a block-partitioned

matrix. Given N ∈ Z≥1, IN ∈ R
N×N defines the identity

matrix and 1N is the vector of N ones. A function α :
R≥0 → R≥0 is a class-K function, also written α ∈ K, if α

is zero at zero, continuous, strictly increasing; it is said to

belong to class-K∞, also written α ∈ K∞, if α ∈ K and is

unbounded; α is positive definite, also written α ∈ PD, if

α(s) > 0 for all s > 0 and α(0) = 0. A function β : R≥0 ×
R≥0 → R≥0 is a class-KL function, also written β ∈ KL,

if it is nondecreasing in its first argument, nonincreasing in

its second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,

and lims→∞ β(r, s) = 0 for each r ∈ R≥0. Given a function

1For more information on Kronecker and Khatri-Rao products, see [12].



f : Rn → R
m, the domain of f is denoted by dom f . Given

a closed set S, TS(x) denotes its tangent cone S at x; see,

e.g., [9, Definition 5.12].

B. Preliminaries on graph theory

A directed graph (digraph) is defined as Γ = (V , E ,G).
The set of nodes of the digraph are indexed by the elements

of V = {1, 2, . . . , N} and the edges are the pairs in the set

E ⊂ V × V . Each edge directly links two nodes, i.e., an

edge from i to k, denoted by (i, k), implies that agent i can

receive information from agent k. The adjacency matrix of

the digraph Γ is denoted by G ∈ R
N×N , where its (i, k)-th

entry gik is equal to one if (i, k) ∈ E and zero otherwise.

Without loss of generality, we assume that an agent may be

connected to itself; i.e., the edge (i, i) is contained in the

edge set E and the corresponding element in the adjacency

matrix G is gii = 1. Let the cardinality of the edge set E
be defined as Ē . The in-degree and out-degree of agent i are

defined by dini =
∑N

k=1 gik and douti =
∑N

k=1 gki. The in-

degree matrix D is the diagonal matrix with entries Dii =
dini for all i ∈ V . Each element ℓik ∈ R in the Laplacian

matrix of the graph Γ, denoted by L ∈ R
N×N , is defined

as ℓik = −gik for each i, k ∈ V such that i 6= k and ℓii =
dini for each diagonal element i ∈ V . The set of indices

corresponding to the neighbors that can send information to

the i-th agent is denoted by N (i) := {k ∈ V : (i, k) ∈ E}.

C. Preliminary on Hybrid Systems

This section introduces the main notions and definitions on

hybrid systems used throughout this work. More information

on such systems can be found in [9]. A hybrid system H has

data (C, f,D,G) and can be represented in the compact form

H :

{

ξ̇ = f(ξ) ξ ∈ C,

ξ+ ∈ G(ξ) ξ ∈ D,
(1)

where ξ ∈ R
n is the state. The data of the hybrid system

is given by (C, f,D,G). The flow map, defined as f :
R

n → R
n, is a single-valued map capturing the continuous

dynamics, which are allowed to occur in the flow set C ⊂
R

n. The set-valued mapping G : Rn ⇒ R
n defines the jump

map and determines the value of ξ after jumps, which is

denoted by ξ+. Jumps are allowed to occurs in the jump

set, defined as D ⊂ R
n. Solutions φ to H are parameterized

by (t, j), where t ∈ R≥0 counts ordinary time and j ∈ N

counts the number of jumps. The domain dom φ ⊂ R≥0×N

is a hybrid time domain if for every (T, J) ∈ dom φ, the set

dom φ∩ ([0, T ]×{0, 1, . . . , J}) can be written as the union

of sets ∪J
j=0(Ij × {j}), where Ij := [tj , tj+1] for a time

sequence 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj’s with

j > 0 define the time instants when the state of the hybrid

system jumps and j counts the number of jumps.

A hybrid system H = (C, f,D,G) with data in (1) is

said to satisfy the hybrid basic conditions if it satisfies the

conditions in [9, Assumption 6.5].

Definition 2.1: (global exponential stability) Let a hybrid

system H be defined on R
n. Let A ⊂ R

n be closed. The set

A is said to be globally exponentially stable (GES) for H if

ẋ = Ax

yi = Hix

x̂1, η1k

x̂4, η4k
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Fig. 1. Decentralized network architecture under consideration. When the
timer state resets (i.e., τi = 0), the i-th agent receives the output of the
plant yi and transmits it, along with its current estimate x̂i, to its neighbors,
which, in turn, updates the corresponding information state ηik for each
k ∈ N (i).

there exist κ, α > 0 such that every maximal solution φ to

H is complete and satisfies

|φ(t, j)|A ≤ κ exp(−α(t+ j))|φ(0, 0)|A
for each (t, j) ∈ domφ. �

III. DISTRIBUTED HYBRID ESTIMATION PROTOCOL AND

NOMINAL PROPERTIES

A. Problem Formulation and Proposed Solution

In this paper, we consider the problem of designing a

distributed observer to estimate the state of a plant over a

network of N agents. Wherein each agent may have a local

heterogeneous sensor and memory. The plant has continuous-

time dynamics

ẋ = Ax (2)

where x is the state and A ∈ R
nx×nx is the state matrix.

The N agents are connected via a directed graph and each

agent runs a local observer estimating the state x of (2). Each

agent in the network can measure the output of the plant and

can transmit this measurement and estimate to its neighbors

at time instances given by the sequence {tis}∞s=1. Namely, at

each such time instant t ∈ {tis}∞s=1, the i-th agent receives

a measurement of the output of the plant and transmits it to

its neighbors. The measurement is given by

yi(t) = Hix(t) (3)

where Hi ∈ R
npi

×nx is a local output matrix of the plant

for agent i.

The event times in the sequence {tis}∞s=0 are independently

defined for each agent. Given positive scalars T i
2 ≥ T i

1 for

each i ∈ V , the only restriction imposed on such times is

that they must satisfy

tis+1 − tis ∈ [T i
1, T

i
2] ∀s ∈ {1, 2, . . .},

ti1 ≤ T i
2 .

(4)



The scalars T i
1 and T i

2 are the nominal parameters that define

the lower and upper bounds, respectively, of the time allowed

to elapse between consecutive events. The parameters T i
1 and

T i
2 are assumed to be known, but are not necessarily the same

for each agent.

Due to the impulsive nature of the communication and

measurement events {tis}∞s=0 satisfying (4), for each i ∈ V ,

we define a decreasing timer to trigger such events. Inspired

by [13], the timer at the i-th agent, denoted by τi ∈ [0, T i
2],

decreases with ordinary time and upon reaching zero is reset

to a point in the interval [T i
1, T

i
2]. Namely, the dynamics of

τi are given by

{

τ̇i = −1 τi ∈ [0, T i
2],

τ+i ∈ [T i
1, T

i
2] τi = 0.

(5)

Note that the domain of solutions to this system, denoted φτi ,

are such that the jump times tj satisfy tj+1 − tj ∈ [T i
1, T

i
2]

for each j ≥ 1 and t1 ≤ T i
2; i.e., the sequence of times

satisfy (4).

We propose a distributed hybrid observer that is capable

of asymptotically reconstructing the state of the plant x

locally at each agent, with stability and by only exchanging

information from the plant and its neighbors at commu-

nication events {tis}∞s=1 satisfying (4). Each observer runs

an algorithm at the i-th agent that generates an estimate

of the state x, which is denoted x̂i ∈ R
nx , and utilizes

dini information states, denoted by ηik for each k ∈ N (i),
stored locally at the i-th agent. Let τ = (τ1, τ2, . . . , τN ) ∈
[0, T 1

2 ]× [0, T 2
2 ]× · · · × [0, TN

2 ] =: T . When no timer state

has expired, i.e., when τ ∈ T \ {0}, no new information

has arrived and the observer states x̂i are each continuously

updated by the following general differential equations:

˙̂xi = Ax̂i +
∑

k∈N (i)

ηik

η̇ik = fik(x̂i, ηik) ∀k ∈ N (i)

(6)

for each i ∈ V , where fik : R
nx × R

nx → R
nx defines

the continuous evolution of the information state. When data

arrives from measurements of the plant or from neighboring

agents, the estimation state and corresponding information

state ηik are updated. For example, when τk = 0 and i ∈
N (k) (where agent i is a neighbor of agent k) which triggers

agent k to transmit information to agent i and the rest of

its neighbors, the estimation and corresponding information

states are updated by

x̂+
i = x̂i

η+ik = Gik(x̂i, x̂k, yk) ∀i ∈ N (k).
(7)

where Gik : Rnx ×R
nx ×R

npk → R
nx defines the function

which combines the received information. The continuous

and discrete dynamics in (6) and (7), respectively, along with

(5). The interconnection of these systems leads to a hybrid

dynamical system H as in (1) capturing the dynamics of

modeling the entire networked system.

B. Distributed Estimation Protocol and Hybrid Modeling

In this section, we define the particular form of the

information states under consideration. In particular, the

continuous evolution of the states ηik in (6) is governed by

the following data:

η̇ik = hikηik =: fik(x̂i, ηik) (8)

where hik ∈ R. When the k-th agent takes a measurement

of the output of the plant given by (3), which is when τk =
0, the k-th agent transmits yk and the current value of the

estimation state x̂k to its neighbors updating ηik impulsively

by

η+ik=Kik(Hkx̂k−yk)+γ(x̂i− x̂k) =:Gik(x̂i, x̂k, yk) (9)

for each i ∈ N (k), where γ ∈ R, Kik ∈ R
nx×npk define the

parameters of the observer. In this way, we can easily use

the properties of Kronecker products, bidirectional graphs

and Laplacian matrices to model the system.

1) Change of Coordinates: Inspired by [13], for each i ∈
V and each k ∈ N (i), consider the change of coordinates

ei = x̂i − x,

θik = KikHkek + γ(ei − ek)− ηik.
(10)

Then, the continuous dynamics of ei are given by

ėi = Aei +
∑

k∈N (i)

(KikHkek + γ(ei − ek)− θik) (11)

and, with e = (e1, e2, . . . , eN ) and θ = (θ1, θ2, . . . , θN ),
implies that

ė = (I ⊗A+KG + γL⊗ I)e −Dθ (12)

where D = diag(I ⊗ 1
⊤
d1
in

, . . . , I ⊗ 1
⊤
dN
in

) with the in-degree

of the i-th agent diin, KG = (KH)∗G, and K ∈ R
nxN×npN

is an N ×N block matrix where the (i, k)-th entry is given

by Kik ∈ R
nx×npk for each i, k ∈ V such that (i, k) ∈ E

and a matrix full of zeros elsewhere with np =
∑

i∈V npi
,

and H = diag(H1, H2, . . . , HN ).
Let η = (η1, η2, . . . , ηN ) and, for each i ∈ V , θi (likewise,

ηi) contains the states θik (ηik, respectively) states for each

(i, k) ∈ E in ascending order of the index k. Then. we have

θ = Kθe− η (13)

where Kθ = K̄H + γΠ, and K̄ =
(K̄11, K̄12, . . . , K̄ik, . . . , K̄NN) where, for each (i, k) ∈ E ,

K̄ik = vk ⊗ Kik, Π is a stack of matrices (vi − vk) ⊗ I

for each i, k ∈ V such that (i, k) ∈ E corresponds to the

ordering of the θ states, and vi is the ith canonical vector.

During jumps, namely, if there exists k ∈ V such that

τk = 0, then a jump occurs. At such points, the dynamics of

ei are given by

e+i = ei (14)

and, for each i ∈ N (k), the definition of θik in (10) with

(9) lead to

θ+ik = 0, (15)



otherwise, θ+ik = θik.

In this following example, we consider the case of N = 3
and construct many of the matrices in (12) and (13).

Example 3.1: Consider the case N = 3, and

G =





1 1 0
0 1 1
1 1 1



 ,

through the change in coordinates, we have that θ =
(θ1, θ2, θ3), and θ1 = (θ11, θ12), θ2 = (θ22, θ23), θ3 =
(θ31, θ32, θ33). The matrix K in (12) is given by

K =





K11 K12 0
0 K22 K23

K31 K32 K33



 . (16)

Noting from G, the in-degree of each agent is given by d1in =
2, d2in = 2, d1in = 3, which leads to

D =





I I 0 0 0 0 0
0 0 I I 0 0 0
0 0 0 0 I I I



 .

From (13), the matrices K̄ is given by

(K̄11, K̄12, K̄22, K̄23, K̄31, K̄32, K̄33) and the elements

of Π are defined (vi − vk) ⊗ I , namely, the matrices are

given by

K̄ =





















K11 0 0
0 K12 0
0 K22 0
0 0 K23

K31 0 0
0 K32 0
0 0 K33





















, Π =





















0 0 0
I −I 0
0 0 0
0 I −I

−I 0 I

0 −I I

0 0 0





















.

2) Closed-loop Hybrid System: We define the hybrid

system H = (C, f,D,G) with state ξ = (χ, τ) ∈ X :=
R

nxN ×R
nxd ×T resulting from the change of coordinates

in (10) where d =
∑N

i=1 d
i
in, and χ = (e, θ). Recall that

τ = (τ1, τ2, . . . , τN ) ∈ T = [0, T 1
2 ]× [0, T 2

2 ]×· · ·× [0, TN
2 ].

Then, the hybrid system H has data given by

f(ξ) = (Afχ,−1N) ξ ∈ C := X (17)

and

G(ξ) :={Gi(ξ) :ξ ∈ Di, i ∈ V} ξ∈D =
⋃

i∈V

Di (18)

where Di := {ξ ∈ X : τi = 0} and

Gi(ξ) := {(e, θ′, τ ′) : ξ = (e, θ, τ), τ ′i ∈ [T i
1, T

i
2],

θ′ki = 0 ∀k ∈ N (i)}
Using the change of coordinates in (10) along with the

continuous-time dynamics in (12) and (8), the matrix Af

in (17) is given by

Af =

[

Aθ −D
KθAθ − hKθ h−KθD

]

, (19)

Aθ = (I ⊗ A) + KG + γ(L ⊗ I), Kθ = K̄H + γΠ and

h = diag(h11In, h12In, . . . , hNNIn), where the subscripts

of hik are for each i, k ∈ V such that (i, k) ∈ E .

Remark 3.2: Note that C and D are closed and that f

is continuous and G is outer semicontinuous and locally

bounded on D. Therefore, the hybrid system H satisfies the

hybrid basic conditions given in [9, Definition 6.5]. Note that

satisfying the hybrid basic conditions imply that the hybrid

system H is well-posed and with asymptotic stability of a

compact set is robust to small enough perturbations.

The objective of each agent in the hybrid system is to

estimate the state of the plant, i.e., to drive the difference

between the estimates and the plant to zero asymptotically.

The definition of η and θ also imply that these states will

converge to zero as the error e converges to zero. Therefore,

in the (e, θ, τ) coordinates, the set to asymptotically stabilize

is given by

A = {0nxN} × {0nxd} × T . (20)

In the following sections, we provide conditions guaranteeing

that this set is exponentially stable for the hybrid system H
with data in (17) and (18).

From the definition of this hybrid system, solutions to H
jump when there exist i ∈ V such that τi = 0 as defined

below (18). Moreover, for each such point, τi is updated to

a point within the interval [T i
1, T

i
2],

Lemma 3.3: ([11, Lemma 3.5]) Given positive scalars T i
1

and T i
2 such that T i

1 ≤ T i
2 for each i ∈ V , every solution φ

to H with data in (17) and (18) satisfies the following

1) every maximal solution is complete, i.e., the domain of

every maximal solution is unbounded.

2) for each (t, j) ∈ domφ,
(

j
N

− 1
)

Tmin
1 ≤ t ≤ j

N
Tmax
2

where Tmin
1 := mini∈V T i

1 and Tmax
2 := maxi∈V T i

2

3) for all j ∈ Z≥1 such that (t(j+1)N , (j +
1)N), (tjN , jN) ∈ domφ, t(j+1)N − tjN ∈
[Tmin

1 , Tmax
2 ].

We use this result to establish global exponential stability

of A for the hybrid system H in Theorem 3.4.

C. Main Results

With the change of coordinates in (10), we use the

Lyapunov function candidate

V (ξ) = e⊤Pe+ θ⊤R(τ)θ (21)

for all ξ ∈ X , where P = P⊤ > 0 and τ 7→ R(τ)
is continuously differentiable and positive definite for all

τ ∈ T ; see [14] for a similar construction. This choice

of V satisfies V (ξ) = 0 for each ξ ∈ A, and V (ξ) > 0
for every ξ ∈ X \ A and is continuously differentiable.

Therefore, V is an appropriate Lyapunov function candidate,

as defined in [15, Definition 3.16]. Moreover, due to the

choice of the change of coordinates in (10), this function

satisfies, regardless of which timer τk expires, the property

that V (ξ+) − V (ξ) is nonpositive for each ξ ∈ D. The

injection of ηik in the flows of the local estimate in (6),

and the continuous dynamics of ηik with flow map (8)

further permit a decrease of V during flows. By virtue of

the aforementioned Lyapunov function candidate, we arrive

to the following result.



Theorem 3.4: Let 0 < T i
1 ≤ T i

2 for each i ∈ V and a

directed graph Γ be given. The hybrid system H with data

in (17) and (18) has the set A in (20) globally exponentially

stable if there exists scalars σ > 0, γ ∈ R, hik ∈ R and

matrices Kik ∈ R
nx×npi for each i, k ∈ V such that (i, k) ∈

E , and positive definite symmetric matrices P ∈ R
nxN×nxN ,

Rik ∈ R
nx×nx such that M(ν) < 0 for each ν ∈ T , where2

M(ν) :=

[

He(PAθ) −PD + (KθAθ − hKθ)
⊤R(ν)

⋆ He(R(ν)(h −KθD))− σR(ν)

]

(22)

R(ν) = diag(R1(ν), R2(ν), . . . , RN (ν)), Ri(ν) =
diag(exp(σν1)R11, exp(σν2)R12 . . . , exp(σνN )R1N ).

Proof Sketch The property that A is globally exponentially

stable under condition (22) can be established by using the

Lyapunov function V in (21). Due to the definition of A in

(20) there exist positive scalars α1, α2 satisfying α1|ξ|2A ≤
V (ξ) ≤ α2|ξ|2A. Moreover, in light of the strict inequality of

M in (22), there exists β > 0 such that, for each ξ ∈ C,

〈∇V (ξ), f(ξ)〉 ≤ − β
α2

V (ξ). For each ξ ∈ D, g ∈ G(ξ), it

can be seen that V (g) − V (ξ) ≤ 0. Direct integration of V

over a solution φ along with the properties in Lemma 3.3

lead to M(ν) < 0 for all ν ∈ T . Moreover, by Lemma 3.3,

every maximal solution is complete implying that the set A
is globally exponentially stable for the hybrid system H. �

Due to the fact that M(ν) < 0 needs to be checked over an

infinite number of points in the compact set T , the following

result provides relaxed conditions which ensure M(ν) < 0
is satisfied for every ν ∈ T .

Proposition 3.5: Let T i
2 > 0 for each i ∈ V be given. The

inequality M(ν) < 0 in (22) with M defined in (22) holds

for each ν ∈ T if there exist σ > 0 and positive definite

symmetric matrices P,Rik such that

M(0) < 0, M(T2) < 0 (23)

where T2 = (T 1
2 , T

2
2 , . . . , T

N
2 ).

Remark 3.6: For the case when N = 1, the resulting

observer is a single Luenberger-like observer for the case

of intermittent measurements and the matrix inequality in

(23) reduces to the condition in Theorem 1 in [13].

Remark 3.7: Note that the off-diagonal block matrices in

(23) involve the multiplication of KAθ−hK , which contain

cross terms involving Kik, γ, and hik. The presence of these

terms makes the problem nonlinear and difficult to solve

numerically. However, LMI conditions can be established

following the ideas in [13].

Example 3.8: Consider a plant with system matrix

A =





0 −1 0
1 0 0
0 0 0



 . (24)

2In partitioned symmetric block matrices, the symbol ⋆ stands for
symmetric blocks in the matrix.

where the state x = (x1, x2, x3) ∈ R
3 has oscillatory

dynamics for (x1, x2) and trivial dynamics for x3. Note that

such a plant has eigenvalues at {±1i, 0} and, for every initial

condition outside of the origin, its states never converge to a

set point. In this example, we consider three scenarios which

show that the estimation states x̂i converge to the state of the

plant exponentially: 1) the case of all-to-all network but each

agent cannot reconstruct the state individually; 2) a strongly

connected network with the same output matrices as in 1);

and, lastly, 3) an all-to-all connection, but the second agent

cannot measure the plant.

Consider the case of three agents that are all-to-all con-

nected, i.e.,

G =





1 1 1
1 1 1
1 1 1



 ,

and measure yi according to (3) with

H1 =
[

1 1 0
]

H2 =
[

0 1 0
]

H3 =
[

0 0 1
]

.

Since the pair (Hi, A) is not observable for each i-th

agent, no single agent can estimate the full state of the

plant running an observer like that in [13]. However,

when communication between agents is allowed, our

observer is able to reconstruct the state of the plant x.

In fact, given T i
1 = 0.1 and T i

2 = 0.7 for each i ∈ V ,

by solving for the conditions in Theorem 3.4, we obtain

the following parameters: K11 =
[

1.2 −0.9 0.3
]⊤

,

K12 =
[

0 −0.1 −0.3
]⊤

, K13 =
[

−0.1 −0.4 −0.1
]⊤

K21 =
[

−0.5 −0.1 −0.1
]⊤

K22 =
[

1 −0.1 −0.4
]⊤

,

K23 =
[

−0.3 −0.1 −0.3
]⊤

, K31 =
[

−0.2 −0.5 −1
]⊤

, K32 =
[

−0.2 −0.1 −0.1
]⊤

,

K32 =
[

0.4 −0.2 −0.1
]⊤

, h11 = −1, h12 = h13 =
h22 = h31 = h32 = h33 − 0.1, h21 = −0.5, h23 = −0.4,

σ = 0.3 and γ = −0.2. The numerical solution shown in

Figure 2(a) indicates that the estimates x̂i for each i ∈ V
converge to the state of the plant x exponentially.

We can reduce the number of links between the agents

and still satisfy the conditions in Theorem 3.4 using the

same parameters Kik, hik , and γ previously proposed. In

Figure 2(b), we use the gains from the initial simulation in

(a) while forcing g21 = g32 = 0. In particular, when edges

(2, 1) and (3, 2) are removed from the edge set, each agent

has less information to use in their observer, which, as can

be seen in Figure 2(b), makes the estimate converge slower

to the state of the plant.3

More interestingly, due to the communication topology

between the agents under the previous network, the case

when a single agent may not receive any measurements, but

when it is connected to neighbors the consensus terms in

(9) allows the agent to reconstruct the state of the plant.

For instance, consider the previous system model but with

H2 ≡ 0. Then, values of the gains Kik, hik and γ can be

found such that the conditions in Theorem 3.4 satisfied; see

3Code at https://github.com/HybridSystemsLab/EstimAsyncTrans

https://github.com/HybridSystemsLab/EstimAsyncTrans
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(a) Completely connected graph network, each agent cannot measure the
full state of the plant.
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(b) Same network as in (a), but with two links removed. The graph remains
strongly connected; however, each agent has less information. Exponential
convergence ensues.
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(c) Completely connected graph as in (a), but Agent 2 does not receive
measurements of the output the plant. Convergence is still possible, however,
in this scenario the convergence is slower than (a) and (b).

Fig. 2. Numerical Simulation of three agents estimating a plant with oscil-
latory behavior in (x1, x2) and trivial dynamics in x3. In each simulation
case, even though each pair (Hi, A) is not detectable individually, through
the interconnection, the estimates x̂i still converge to the state of the plant
x as indicated by |e| converging to zero.

Figure 2(c). Note that it is solely through communication

that reconstruction of the plant is achieved.

Remark 3.9: Due to form the memory states defined in

(9), as mentioned in Example 3.8, even though a single agent

in a network may not be able to measure the state directly, it

can still maintain an estimate of the plant using neighboring

information to reconstruct the state. More specifically, the

γ(xi − xk) component of (9), sometimes considered as a

consensus term, takes the difference between the estimates

of itself and its neighbors to drive its estimate to the true state

solely based on the estimates of its neighbors exponentially.

IV. CONCLUSION

In this paper, a distributed state observer was developed

to accurately reconstruct the state under intermittent com-

munication and measurement is proposed. At each agent,

the estimation algorithm stores information received using

multiple memory states, which are updated asynchronously

between agents. Sufficient conditions were presented in the

form of matrix inequalities which ensure global exponential

stability of the estimation error set. Future directions of

research include investigating nonlinear dynamics and mea-

surements, dynamic time varying network graphs, and delays

in the communication structure.
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