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Abstract— This paper presents an adaptive hybrid feedback
law designed to robustly steer a group of autonomous vehicles
toward the source of an unknown but measurable signal, at
the same time that an obstacle is avoided and a prescribed
formation is maintained. The hybrid law overcomes the limi-
tations imposed by the topological obstructions induced by the
obstacle, which precludes the robust stabilization of the source
of the signal by using smooth feedback. The control strategy
implements a leader-follower approach, where the followers
track, in a coordinated way, the position of the leader.

I. INTRODUCTION
The problem of source seeking has been extensively stud-

ied during the last two decades. A variety of smooth source
seeking algorithms for autonomous robots modeled as single
integrators and unicycles are presented in [1]. For these types
of algorithms, local stability results are developed via classic
averaging and singular perturbation theory. Continuous-time
algorithms for source seeking are also considered in [2],
[3], and [4]. Discrete-time algorithms for source seeking are
presented in [5] using finite differences, and in [6] using a
Newton-Raphson based algorithm. Stochastic algorithms for
source seeking are presented in [7] and [8]. As noted in
[4], one of the main challenges in source seeking problems
is designing robust feedback laws that are also able to
avoid obstacles that interfere with the trajectories of the
vehicles. This problem is in general not easy, due to the
topological obstructions induced by the obstacles, which
preclude the robust stabilization of the source of the signal
by using a continuous feedback law [9, Thm 6.5]. This is
because, when using smooth feedback, it is always possible
to find arbitrarily small adversarial signals acting on the
states (or vector field), such that a set of initial conditions,
possibly of measure zero and not containing the source,
can be rendered locally stable. As noted in [4] and [9],
in gradient systems the problematic set of initial conditions
is usually related to the critical points (different from the
source) of the potential function used in the gradient-based
feedback law. Motivated by this background, we present in
this paper a novel model-free robust hybrid control law,
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which, in contrast to the existing approaches, overcomes the
limitations imposed by the topological obstructions induced
by the obstacle, guaranteeing convergence of the vehicle
to a neighborhood of the source of the signal from initial
conditions in arbitrarily large compact sets. Since our final
goal is to steer a group of vehicles toward the unknown
source of the signal, we implement a leader-follower control
approach, where the leader agent implements the model-free
hybrid seeking law, and the followers implement a distributed
formation control that operates in a faster time scale.

The remainder of this paper is organized as follows: Sec-
tion II presents some mathematical preliminaries. Section III
formalizes the coordinated source seeking problem. Section
IV presents the main results. Section V presents a numerical
example, and finally Section VI ends with some conclusions.

II. PRELIMINARIES

We denote by R the set of real numbers, and by (Z≥0)
Z the set of (nonnegative) integers. Given a compact set
A ⊂ Rn and x ∈ Rn, we use |x|A := infy∈A ‖x − y‖,
where ‖ · ‖ is the Euclidean distance, to denote the distance
of x to A. We use B to denote a closed ball with appropriate
dimension, centered at zero, and with unit radius. A set-
valued mapping M : Rp ⇒ Rn is outer semicontinuous
(OSC) at x if for each (xi, yi)→ (x, y) ∈ Rp×Rn satisfying
yi ∈M(xi) for all i ∈ Z≥0, we have y ∈M(x). A mapping
M is locally bounded (LB) at x if there exists a neighborhood
Ux of x such that M(Ux) is bounded. Given a set K ⊂
Rp, the mapping M is LB and OSC relative to K if the
set-valued mapping from Rp to Rn defined by M(x) for
x ∈ K and ∅ for x /∈ K is LB and OSC at each x ∈ K.
We use S1 to denote the set S1 := {x ∈ R2 : x2

1 + x2
2 =

1}. A directed graph is represented by G = {V, E}, where
V = {1, 2, . . . , N} is a set of nodes, and E ⊂ V × V is
a set of edges. If (i, `) ∈ E then node i has access to the
information of node `. A directed path is a sequence of nodes
such that any pair of consecutive nodes in the sequence is
a directed edge of G. A graph G has a globally reachable
node if one of its nodes can be reached from any other node
by traversing a directed path. In this paper we will consider
hybrid dynamical systems (HDS) aligned with the framework
of [10]. A HDS with state x ∈ Rn is represented as H :=
(C,F,D,G), and it is characterized by the inclusions

ẋ ∈ F (x) x ∈ C (1a)
x+ ∈ G(x) x ∈ D, (1b)

where the set-valued mappings F : Rn ⇒ Rn and G : Rn ⇒
Rn, called the flow map and the jump map, respectively,



describe the evolution of the state x when it belongs to the
flow set C or/and the jump set D, respectively. We always
impose the following conditions on the data of the system:

(C1) The sets C and D are closed.
(C2) F is OSC and LB relative to C, and F (x) is convex

and nonempty for every x ∈ C.
(C3) G is OSC and LB relative to D, and G(x) is

nonempty for every x ∈ D.

Solutions of (1) are indexed by a continuous-time index t,
and a discrete-time index j, generating hybrid time domains,
see [10, Ch.2] for details on the formal definition of solutions
to (1). A compact set A is said to be uniformly globally
asymptotically stable (UGAS) for H if there exists a KL
function β such that any solution x toH satisfies |x(t, j)|A ≤
β(|x(0, 0)|A, t + j) for all (t, j) ∈ dom(x). Note that
definition of UGAS does not insist that every solution needs
to have an unbounded time domain. However, every solution
with an unbounded time domain (called complete) must
converge to A. For a HDS parametrized by a small positive
parameter ε, and denoted as Hε := (Cε, Fε, Dε, Gε), a
compact set A ⊂ Rn is said to be semiglobally practically
asymptotically stable (SGP-AS) as ε → 0+ if there exists
a function β ∈ KL such that the following holds: for each
∆ > 0 and ν > 0 there exists ε∗ > 0 such that for each
ε ∈ (0, ε∗) each solution x of Hε that satisfies |x(0, 0)|A ≤
∆ also satisfies |x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + ν, for all
(t, j) ∈ dom(x).

III. PROBLEM STATEMENT

We consider a group of N autonomous vehicles, each one
modeled as a two-dimensional point mass with dynamics

ẋi = ux,i
ẏi = uy,i,

}
, ∀ i ∈ {1, 2, . . . , N}, (2)

where ux,i, uy,i ∈ R are independent velocity inputs to
the vehicle. Without loss of generality we assume that the
vehicle i = 1 is the leader vehicle, and that the vehicles
share information via a directed unweighted time-invariant
graph G = {V, E}, where V is the set of nodes representing
the N vehicles, and E is the set of edges representing
the communication links between vehicles. We impose the
following assumption on this communication graph.

Assumption 3.1: The leader vehicle is a globally reachable
node for the graph G = {V, E}. �

We assume that there exists an unknown signal J that
can be measured by the leader vehicle, and that attains its
maximum value J∗ at some unknown point [x∗, y∗]> ∈ R2.
For the purpose of analysis we assume that J satisfies the
following assumption.

Assumption 3.2: J : R2 → R is smooth and it has a strict
global maximum [x∗, y∗]> ∈ R2. Moreover, for each α ∈ R
the set {(x, y) : J(x, y) ≥ α} is compact, and contains no
points where ∇J(x, y) = 0 other than [x∗, y∗]>. �

To model the coordinated behavior of the followers, let
Ξ :=

{
[xf1 , y

f
1 ]>, [xf2 , y

f
2 ]>, . . . , [xfN , y

f
N ]>

}
be a collection

of N positions in the plane. Then, we say that the N vehicles
satisfy the formation Ξ if their location belongs to the set

FΞ :=
{

[x>, y>]> ∈ R2N : xi = xfi + ζx,

yi = yfi + ζy, ∀ i ∈ V, [ζx, ζy]> ∈ R2
}
.

(3)

Finally, we also consider the existence of an obstacle N ⊂
R2, located away from the source of the signal J . We
assume that the position of the obstacle N is known only
by the leader vehicle. Based on this, our main goal in this
paper is to design a distributed and robust feedback law that
guarantees that the leader will converge to a neighborhood
of the unknown point [x∗, y∗]> that maximizes J , avoiding
the obstacle N , and that the follower agents asymptotically
achieve a pre-specified formation Ξ around the leader.

IV. ROBUST ADAPTIVE HYBRID DYNAMICS
In order to solve the source seeking problem with obstacle

avoidance and formation control, we design a feedback law
where the leader vehicle implements a robust hybrid adaptive
law, and the followers implement a distributed formation
control that tracks the position of the leader. To present the
key ideas behind the adaptive law, and to motivate the im-
plementation of a hybrid controller, we start by considering
a non-hybrid law for the leader, which solves the source
seeking problem when no obstacles exist. After this, we
“hybridize” this law in order to solve, in a robust way, the
source seeking problem with obstacle avoidance.

A. Smooth Seeking Dynamics: The Obstacle-Free Case
For the case when there are no obstacles, we consider a

velocity adaptive control law for the leader vehicle, given by

ux,1 = aωµ2 + kξx (4a)
uy,1 = −aωµ1 + kξy, (4b)

where k := σ · ω̄, and [σ, ω̄, a, ω]> ∈ R4
>0. The dynamics of

(ξx, ξy) and µ are given by

ξ̇x = −ω̄
(
ξx − 2a−1J(x, y)µ1

)
(5a)

ξ̇y = −ω̄
(
ξy − 2a−1J(x, y)µ2

)
(5b)

µ̇1 =
µ̇2 =

ωµ2

−ωµ1

}
, µ = [µ1, µ2]> ∈ S1. (5c)

This feedback law is similar to those considered in [2] and [1,
Ch. 2], with the subtle difference that we model the excitation
signals µ1 and µ2 by means of the time-invariant oscillator
(5c). To analyze this control law, and following the ideas in
[1, Ch. 2], consider the time-invariant change of variables

x̃ = x1 − aµ1, ỹ = y1 − aµ2, (6)

and the new time scale ρ̃ = ω̄t. With these new variables,
and using the vector notation ξ = [ξx, ξy]> and p̃ = [x̃, ỹ]>,
the closed-loop system in the ρ̃-time scale has the form

ξ̇ = −
(
ξ − 2a−1J(p̃+ aµ)µ

)
(7a)

˙̃p = σξ (7b)
ω̄
ω µ̇1 =
ω̄
ω µ̇2 =

µ2

−µ1

}
, µ ∈ S1. (7c)



For values of ω̄
ω sufficiently small we can analyze system (7)

based on averaging results for nonlinear systems e.g., [11].
The average system is obtained by averaging the dynamics
(7a)-(7b) along the solutions of the oscillator (7c). Since the
dynamics (7b) do not explicitly depend on the state µ, the
averaging step affects only the dynamics (7a). As in [12],
to obtain the average system, we perform a Taylor series
expansion of J(·) around p̃ + aµ, obtaining J(p̃ + aµ) =
J(p̃)+a µ>∇J(p̃)+er, where the term er is of order O(a2).
The following lemma is instrumental to analyze system (7)
via averaging theory.

Lemma 4.1: Every solution of (7c) satisfies∫ 2πω̄
ω

0
µi(t)dt = 0, ω

2πω̄

∫ 2πω̄
ω

0
µi(t)

2dt = 1
2 , and∫ 2πω̄

ω

0
µi(t)µj(t)dt = 0, for all i 6= j. ♦

Using the Taylor expansion of J(p̃+aµ) in (7), averaging
the right hand side of (7a) over one period of the periodic
signals µ, and using Lemma 4.1, we obtain the average
system in the ρ̃-time scale

ξ̇A = −(ξA −∇J(p̃A)− er) (8a)
˙̃pA = σ · ξA (8b)

where er is now of order O(a). Considering the new time
scale α = σρ̃, system (8) is in singular perturbation form
for values of σ > 0 sufficiently small, with dynamics (8a)
acting as fast dynamics, and dynamics (8b) acting as slow
dynamics. The stability of the fast dynamics is analyzed by
setting σ = 0 in (8b), which freezes the state p̃. By linearity
of (8a) this system has the equilibrium point ∇J(p̃A) +
er exponentially stable. To obtain the slow dynamics, we
replace ξA by ∇J(p̃A) + er in (8b), obtaining the following
slow dynamics in the α-time scale and with new state z̃ ∈ R2

˙̃z = ∇J(z̃) + er. (9)

Therefore, under an appropriate tunning of the parameters
( ω̄ω , σ, a), the feedback law given by equations (4) and (5),
applied to the vehicle (2), approximates, on average and in
the slowest time scale, a gradient system. By setting er = 0
and under Assumption 3.2, this unperturbed gradient system
guarantees uniform global asymptotic stability of the unique
equilibrium point of J via the Lyapunov function J(z̃∗) −
J(z̃), where z̃∗ := [x∗, y∗]>. Using the continuity of ∇J(·)
and the uniform asymptotic stability of the unperturbed
system, by [10, Lemma 7.20], we get that this same point
is SGP-AS as a→ 0+ for system (9). Having established a
semiglobal practical stability result for the reduced average
system (9), the main theorems in [11, Thm. 1] or [12, Thm.
1] can be used to guarantee a semiglobal practical asymptotic
stability result for the original closed-loop system (7) with
respect to the parameters

(
ω̄
ω , σ, a

)
. In light of the change of

variables (6), the previous argument implies that the feedback
law (4)-(5) can be tuned to guarantee convergence of the
vehicle to any ε-neighborhood of [x∗, y∗]> from any compact
set K of initial conditions.

B. Hybrid Seeking Dynamics for Robust Obstacle Avoidance
The results of the previous section show that, provided

Assumption 3.2 is satisfied, the feedback law (4) can be

M1

M2

M
N

K

K

SOURCE

Fig. 1: A group of vehicles following a leader who aims to
converge to the source under the presence of the obstacle N .

tuned to guarantee robust convergence to a neighborhood
of [x∗, y∗]> by generating solutions that approximate those
of (9). However, the direct application of this same feedback
law for the case when there are obstacles in the state space
may be problematic, even when potential functions are added
to J to “push” the vehicles away from the obstacles. To see
this, consider Figure 1 where the state space has been divided
in three setsM1,M2, and K, and consider a controller that
generates a closed-loop time-invariant system of the form
˙̃z = f(z̃), with z̃(0) = z0, where f(·) is assumed to be
locally bounded, and where for all z0 ∈ R2 there exists
at least one (Carathéodory) complete solution. Due to the
topological properties of the problem, there exists a curve
M such that for initial conditions on each side of M, the
trajectories of the system approach the set K either from
above the obstacle or from below it. Because of this, it is
possible to find arbitrarily small signals e(t) acting on the
states of the system (or on the vector field), such that some
of the trajectories of the closed-loop system will remain in a
neighborhood of the lineM, and will not converge to the set
K. The following assumption and proposition, corresponding
to [9, Assump 6.4 and Thm. 6.5], establish this fact.

Assumption 4.1: There exists a T > 0 such that for each
z̃0 ∈ M and each ρ > 0 there exist points z̃1(0), z̃2(0) ∈
{z̃0}+ρB, for which there exist (Carathéodory) solutions z̃1

and z̃2, respectively, satisfying z̃1(t) ∈M1\M and z̃2(t) ∈
M2\M for all t ∈ [0, T ]. �

Proposition 4.2: [9, Thm 6.5] Suppose that Assumption
4.1 holds. Then for every positive constants ε, ρ′, ρ′′, and
every z̃0 ∈ M + εB such that z̃0 + ρ′B ⊂ R2\N and
z̃0 + ρ′′B ⊂ (M1 ∪M2) there exist a piecewise constant
function e : dom(e) → εB and a (Carathéodory) solution
z : dom(z) → R2\N to ˙̃z = f(z̃ + e(t)) such that
z̃(t) ∈ (M + εB) ∩ (M1 ∪M2) ∩ (z0 + ρ′B) for all t ∈
[0, T ′) for some T ′ ∈ (T ∗,∞], where dom z̃ = dom ẽ,
T ∗ = min{ρ′, ρ′′}m−1, and m = sup{1 + |f(η)| : η ∈
z0 + max{ρ′, ρ′′}B}. ♦

In order to address this issue and to guarantee that the
stability properties of the feedback law are not lost under
arbitrarily small adversarial signals e(t), we propose to
follow the ideas in [13], and to modify the dynamics (4)
by partitioning the state space and adding a switching state
q ∈ {1, 2}. Then, our resulting feedback law is hybrid and
model-free by nature, and it is based on a mode-dependent
localization function Jq defined as

Jq(x1, y1) := −J(x1, y1) +B (dq(x1, y1)) , (10)



Fig. 2: Space O1. The blue arrows indicate the flow set and
the red arrows indicate the jump set.

where dq(x1, y1) =
∣∣[x1, y1]>

∣∣2
R2\Oq

. The function | · |2R2\Oq
maps a position [x1, y1]> ∈ R2 to the squared valued of its
distance to the set R2\Oq , and B(·) is a barrier function
defined as follows

B(z) =

{
(z − ρ)2 log

(
1
z

)
, if z ∈ [0, ρ]

0, if z > ρ,
(11)

with ρ ∈ (0, 1] being a tunable parameter to be selected
sufficiently small. The sets O1 and O2 are constructed as
shown in Figures 2 and 3. Namely, we construct a box
centered around the obstacle N , with tunable height h, and
we project the adjacent sides of the box to divide the space
in two parts. Figures 2 and 3 also show the level sets of Jq
over Oq , for q ∈ {1, 2}. Note that O1∪O2 covers R2 except
for the box that includes the obstacle. Also, note that under
this construction the function (10) is smooth for each q.

To define the set of points where the leader switches the
state q, let p = [x1, y1]>, and let µ > 1, λ ∈ (0, µ − 1).
Using the localization function Jq (10), we define the sets

CJ : =
{

(p, q) ∈ R2 × {1, 2} : Jq(p) ≤ µJ3−q(p)
}
,

(12a)

DJ : =
{

(p, q) ∈ R2 × {1, 2} : Jq(p) ≥ (µ− λ)J3−q(p)
}
.

(12b)

The blue line and blue arrows in Figures 2 and 3 indicate
the points in Oq that also belong to the flow set CJ , while
the red line and the red arrows indicate the points in Oq that
also belong to the jump set DJ . Note that since (µ−λ) > 1
the sets CJ and DJ always overlap. The switching rule for
q is then given by the mapping

Q(q) := 3− q, (13)

and by modifying the dynamics (7) we obtain the model-free
hybrid feedback law with flow dynamics

ξ̇x =

ξ̇y =

−ω̄
(
ξx − 2a−1 · Jq(x, y) · µ1

)
−ω̄

(
ξy − 2a−1 · Jq(x, y) · µ2

) } , ξ ∈ R2

(14a)
ẋ1 =
ẏ1 =
q̇ =

aωµ2 − kξx
−aωµ1 − kξy
0

 , (p, q) ∈ CJ (14b)

µ̇1 =
µ̇2 =

ωµ2

−ωµ1

}
, µ ∈ S1. (14c)

Fig. 3: Space O2. The blue arrows indicate the flow set and
the red arrows indicate the jump set.

and jump dynamics

ξ+
x = ξx, ξ+

y = ξy, (ξx, ξy) ∈ R2 (15a)

x+
1 = x1, y+

1 = y1, q+ = Q(q), (p, q) ∈ DJ (15b)

µ+
1 = µ1, µ+

2 = µ2, µ ∈ S1. (15c)

The main idea behind the hybrid feedback law (14)-(15) is as
follows: The vehicle continuously measures the source signal
J(x, y), and at the same time calculates the term B(dq(x, y))
for both q = 1 and q = 2, obtaining the values J1(x(t), y(t))
and J2(x(t), y(t)) in (10) at each t ≥ 0. Whenever q(t) = 1
and J1(t) ≥ (µ − λ) · J2(t), the state q is update to q+ =
2, and the signal used in (14a) is changed from J1 to J2.
Whenever q(t) = 2 and J2(t) ≥ (µ− λ) · J1(t), the state q
is update to q+ = 1, and the signal used in (14a) is changed
from J2 to J1. By implementing this switching feedback
law the leader vehicle will always implement -on average- a
gradient ascent law over the set Oq , where no problematic
setM arises. The parameter µ > 1 is used to avoid recurrent
jumps, while the parameter λ is used to inflate the jump set
such that existence of solutions is guaranteed under small
perturbations on the state or vector field.

C. Analysis of Hybrid Adaptive Seeking Dynamics

To analyze the hybrid adaptive law (14)-(15) we follow a
similar path as in the analysis of system (4)-(5), this time
using averaging and singular perturbation results for hybrid
dynamical systems and hybrid extremum seeking control,
i.e., [14], [15], [16]. First, we restrict the ξ-dynamics to a
compact set λ̃B ⊂ R2, where the constant λ̃ ∈ R>0 can be
selected arbitrarily large to model any complete solution of
interest of the system. Then, applying the change of variable
(6) to system (14)-(15) we obtain a hybrid system in vectorial
form with flow map in the ρ̃-time scale given by

ξ̇ = −ω̄
(
ξ − 2a−1Jq(p̃+ aµ)µ

)
, ξ ∈ λ̃B (16a)

˙̃p = −σξ, q̇ = 0, (p̃+ aµ, q) ∈ CJ (16b)
ω̄

ω
µ̇1 = µ2,

ω̄

ω
µ̇2 = −µ1, µ ∈ S1, (16c)

and jump map

ξ+ = ξ, ξ ∈ λB (17a)
p̃+ = p̃, q+ = Q(q), (p̃+ aµ, q) ∈ DJ (17b)

µ+
1 = µ1, µ+

2 = µ2, µ ∈ S1. (17c)



For this system we will consider the additive term aµ acting
on the equations (16b) and (17b) as a small perturbation
acting on the position state p̃. Thus the stability analysis
will be based on a nominal system where this perturbation
is set to zero, using later robustness principles to establish
the stability properties for the original perturbed system (16)-
(17). Based on this idea, and following the same procedure
of Section IV-A, for small values of ω̄ω , we obtain the average
system with flow map in the α-time scale given by

σξ̇A = −
(
ξA −∇Jq(p̃A)− er

)
, ξA ∈ λ̃B

˙̃pA = −ξA, q̇A = 0, (p̃A, qA) ∈ CJ
and jump map given by

ξA+ = ξA, ξA ∈ λB
p̃A+ = p̃A, qA+ = Q(qA), (p̃A, qA) ∈ DJ .

For values of σ sufficiently small, this HDS is a singularly-
perturbed HDS [15], with ξ-dynamics acting as fast dynam-
ics. The reduced or “slow” system is obtained to be the
hybrid system with new state (z̃, q) ∈ R2 × {1, 2}, flows
in the α-time scale given by

˙̃z = −∇Jq(z̃) + er, q̇ = 0, (z̃, q) ∈ CJ , (18)

and jumps given by

z̃+ = z̃, q+ = Q(q), (z̃, q) ∈ DJ . (19)

The following proposition follows directly by [13, Thm. 4.4],
[10, Thm. 7.14], and the fact that er in (18) is of order O(a).

Proposition 4.3: Let µ > 1 and λ ∈ (0, µ − 1), consider
the HDS (18)-(19) and suppose that Assumption 3.2 holds
with minimum z̃∗ ∈ R2. There exists a ρ ∈ (0, 1] such that
this point is SGP-AS as a→ 0+. Moreover, for a sufficiently
small a and a sufficiently small perturbation e(t) acting on
the state z̃, there exists a complete solution from every point
in the set {z̃} × {1, 2} that is away from the obstacle. ♦

Having established a stability result for the average-
reduced hybrid system (18)-(19), we can now obtain a
stability result for the original system (14)-(15), which
corresponds to the first main result of this paper. The proof
follows by the results in [16] and the change of variable (6).

Theorem 4.4: Let µ > 1 and λ ∈ (0, µ− 1) and suppose
that Assumption 3.2 holds with maximizer p̃∗ = [x̃∗, ỹ∗]>.
Then, there exists a ρ > 0 such that for each compact set
K ⊂ R2 such that p̃∗ ∈ int(K) there exists a λ̃ > 0 such
that for each ε ∈ R≥0 there exists a a∗ such that for each
a ∈ (0, a∗] there exists a σ∗ such that for each σ ∈ (0, σ∗)
there exists a ω̄

ω

∗ ∈ R>0 such that for each ω̄
ω ∈ (0, ω̄ω

∗
] there

exists a T ∗ such that p̃(t, j)→ p̃∗+εB for all t+j ≥ T ∗ for
the HDS (16)-(17) with flow set λ̃B×CJ ∩(K×{1, 2})×S1

and jump set λ̃B×DJ ∩ (K × {1, 2})× S1. ♦
D. Followers Dynamics

To guarantee that the followers achieve a formation Ξ, we
consider the following formation control law

ux,i = −β
∑
j∈Ni

(
xi − xj − xfi + xfj

)
uy,i = −β

∑
j∈Ni

(
yi − yj − yfi + yfj

)
,

 , (20)

for all i ∈ {2, . . . , N}, where β ∈ R>0 is a tunable
parameter. The stability analysis of the follower’s dynamics
ignores the obstacle and assumes that the position of the
leader vehicle is fixed, i.e., ẋ1 = 0 and ẏ1 = 0. The next
lemma, which follows directly by the results in [17], estab-
lishes asymptotic convergence toward the desired formation,
parametrized by the position of the leader.

Lemma 4.5: Suppose that Assumptions 3.1 hold. Consider
the system comprised of the follower dynamics (20) and the
leader dynamics ẋ1 = 0 and ẏ1 = 0 with [x1(0), y1(0)]> ∈
O1 ∪O2. Then, every complete solution of this system con-
verges exponentially fast to the point p∗x = xf +1N (x1(0)−
xf1 ), p∗y = yf + 1N (y1(0)− yf1 ).

E. Closed-loop System
We now consider the closed-loop system given by the

leader vehicle with hybrid feedback law (14)-(15) and
the follower vehicles with feedback law (20) for all i ∈
{2, . . . , N}. The following theorem corresponds to the sec-
ond result of this paper. The proof follows by Lemma 4.5
and results in singular perturbation theory for HDS [15].

Theorem 4.6: Suppose that Assumptions 3.1 and 3.2 hold,
and consider the adaptive hybrid feedback law (14)-(15) for
the leader vehicle, and the consensus feedback law (20) for
the follower agents. Then, the results of Theorem 4.4 hold
for the leader vehicle, and for each ε > 0 and compact set
of initial conditions K ⊂ R2N of the vehicles, the parameter
β > 0 can be selected sufficiently small such that any
trajectory of the group of followers that avoids the obstacle
will converge to the set

(
{xf + 1N−1(x∗ − xf1 )} × {yf +

1N−1(y∗ − yf1 )}
)

+ εB in finite time. ♦
Theorem 4.6 establishes semiglobal and robust model-

free convergence of the leader to the source of the signal
J , as well as formation realization for the trajectories of
the followers, provided they avoid the obstacle. However,
even though the leader will always avoid the obstacle from
any initial condition, there is no guarantee that the followers
implementing (20) would also avoid the obstacles from all
possible initial conditions. Nevertheless, under the hybrid
feedback law (14)-(15) for the leader, and the linear feedback
law (20) for the followers, the avoidance property for the
followers can be obtained if one considers the set of initial
conditions Xp ⊂ R2(N−1) satisfying that if p is the initial
position of the leader, ṗ = 0, and R(Xp) is the reachable
set of (20) from Xp, there exists an ε > 0 such that the
intersection of R(Xp)+εB and the obstacle is empty. In this
case one could implement the formation control in a faster
time scale by selecting β sufficiently large. The previous
observation simply suggests the necessity of using a hybrid
formation control law if one is interested in achieving both
objectives: global (or semiglobal) robust obstacle avoidance
and robust formation control. The design of such hybrid for-
mation control laws is currently an active research direction.

V. NUMERICAL EXAMPLES
We apply the results of the previous section to a group of

6 vehicles aiming to achieve formation around the source of



Fig. 4: Evolution of the vehicles over the level sets of J1.

a signal J , which can be sensed by the leader agent, with
an obstacle located at the point [1, 0]>. For the purpose of
simulation we assume that this signal has a quadratic form
J = 1

2 (x1 − 3)2 + 1
2y

2
1 . We emulate the situation where the

6 robots are initially located at the entrance of a room, and
where the source of the signal J is only know to be located
at the other side of the room, with the obstacle N located
between the entrance of the room and the source of the signal
J . The parameters of the controller are selected as h = 0.5,
ρ = 0.4, λ = 0.09, µ = 1.1, a = 0.01, ω̄ = 1, k = 1, and
β = 4. The desired formation is characterized by the set Ξ =
{(−2,0.5),(−2,−0.5),(−1.13,0),(0,0),(−2.86,1),(−1.13,−1)}. Figures
4 and 5 show the position of the vehicles at 7 different time
instants, over the virtual level sets of Jq , for q ∈ {1, 2}. After
approximately 5 seconds the follower agents have achieved
the desired formation behind the leader agent (represented by
the black dot). The leader implements the hybrid feedback
law initially with q = 2, and at approximately 9 seconds
it enters the jump set shown in Figure 5, and updates its
logic mode state as q+ = 1, flowing now along the level
sets shown in Figure 4, until convergence is achieved to the
source of the signal. Since the box around the obstacle is
constructed sufficiently large compared to the size of the
formation, the followers also avoid the obstacle by achieving
the formation around the leader in a faster time scale and by
maintaining the required formation while the leader slowly
moves toward the unknown source of the signal.

VI. CONCLUSIONS

In this paper we presented a robust adaptive hybrid feed-
back law for a group of vehicles seeking for the source
of an unknown signal J , and aiming to achieve a desired
formation. The feedback law implementes a switching state
q that is switched based on a geometric construction around
the obstacles position. By implementing this hybrid law, no
problematic set of measure zero of initial conditions emerges.
Using a consensus based law, the follower vehicles can also
achieve a desired formation parameterized by the position of
the leader from initial conditions whose inflated reachable
set does not include the obstacles position.

Fig. 5: Evolution of the vehicles over the level sets of J2.
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