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Abstract— State-feedback optimal control and cost evaluation
problems for constrained difference inclusions are considered.
Sufficient conditions, in the form of Lyapunov-like inequalities,
are provided to derive an upper bound on the cost associated
with the solution to a constrained difference inclusion with
respect to a given cost functional. Under additional sufficient
conditions, we determine the cost exactly without computing
solutions. The proposed approach is extended to study an opti-
mal control problem for discrete-time systems with constraints.
In this setting, sufficient conditions for closed-loop optimality
are given in terms of a constrained steady-state-like Hamilton-
Jacobi-Bellman equation. Applications and examples of the
proposed results are presented.

I. INTRODUCTION

A. Background

Although optimal control problems are normally formal-

ized as open-loop control problems, an aspect of fundamental

importance in the literature is whether for a given optimal

control problem an optimal state-feedback law exists; see,

e.g., [4]. When adopting optimal state-feedback laws, the

relationship between optimality and stability for the closed-

loop system is an important question. In particular, when the

horizon of the considered control problem is not bounded,

then a natural question that arises is whether the closed-loop

control system is asymptotically stable. Typically, an answer

to this question can be obtained by relying on the steady-

state Hamilton-Jacobi-Bellman equation, which, under some

conditions, indirectly provides a Lyapunov function assessing

closed-loop asymptotic stability for the closed-loop system.

Specifically, interesting results on the connections between

Lyapunov theory and optimal control can be found in [1],

[7]. Due its importance, this problem has been addressed

extensively also in the literature of model predictive control;

see [5].

Another problem that is relevant in practice is the problem

of cost evaluation, which consists of evaluating the cost

associated to the solutions to a dynamical system with

respect to a given cost functional. For the class of linear-

quadratic problems, i.e., linear dynamics and quadratic costs,
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closed form expressions of the cost value can be obtained

via direct integration of the plant dynamics. Unfortunately,

as pointed out in [1], this technique does not extend to

nonlinear systems. General results for the solution to this

problem are given in [1] for nonlinear systems. However,

to the best of the authors knowledge, there is a lack of

similar results for constrained discrete-time systems given

by equations/inclusions.

B. Contribution

In this paper, motivated by the general ideas presented

in [1], we address a class of cost evaluation and optimal

control problems for constrained difference inclusions, i.e.,

difference inclusions in which the input and the state are

confined to a given set. The contributions we offer in this

paper are as follows. First, we provide sufficient conditions,

in the form of Lyapunov inequalities, for the estimation of

an upper bound on the cost associated to the solutions to a

constrained difference inclusion with respect to a given cost

functional. Then, it is shown that under certain conditions

on the solutions to the considered difference inclusion, the

cost can be perfectly determined via the proposed conditions.

Second, we address a specific optimal control problem for

discrete-time systems with state and input constraints. More

specifically, in the optimal control problem we address, we

require limit points of feasible state trajectories to belong to

a given closed, potentially unbounded, set. This requirement

essentially prescribes an asymptotic constraint on feasible

trajectories, which are not necessarily complete and may

grow unbounded while approaching the target set. Pursuing

this approach, we are able to formulate and solve a mean-

ingful control problem for which completeness of feasible

solutions is not required. In this setting, we provide sufficient

conditions for a static state-feedback controller to be optimal.

A unique feature of our approach is that we relax the

completeness requirement for feasible solutions. This allows

us to deal with constrained systems in an elegant way. The

price to pay in taking this approach is that the proposed

feedback law provides an actual solution to the considered

optimal control problem only if trajectories to the closed-

loop system satisfy the above mentioned limit point state

constraint, condition that needs to be checked a posteriori.

In future research, we intend to use these results as a baseline

to obtain sufficient conditions for optimal control and cost

evaluation for hybrid dynamical systems in the framework

of [6]. Indeed, for the case of hybrid dynamical systems,

the interplay of continuous-time behaviors and instantaneous

changes is modeled through constrained hybrid inclusions,



and this makes constrained systems crucial in this context.

The remainder of this paper is structured as follows.

Section II-A presents some preliminaries on constrained

difference inclusions. Section II-B presents our main results

concerning the considered cost evaluation problems. Sec-

tion III is dedicated to the formulation and solution to the op-

timal control problem we consider. Due to space constraints

proofs are omitted and will be published elsewhere.

Notation: The set N is the set of strictly positive integers,

N0 = N ∪ {0}, R≥0 represents the set of nonnegative real scalars,

S
n
+ denotes the set of real symmetric positive definite matrices

of dimension n. In partitioned symmetric matrices, the symbol •

stands for symmetric blocks. The matrix diag{A1, A2, . . . , An}

is the block-diagonal matrix having A1, A2, . . . , An as diagonal

blocks. Given x ∈ R, ⌈x⌉ is the smallest integer larger than x.

Given a matrix A ∈ R
n×n, we say that A is Schur if the eigenvalues

of A are contained in the open unit circle. For a vector x ∈ R
n,

|x| denotes the Euclidean norm of x, xi denotes the i-th entry of

x, and xT denotes the transpose of x. The symbol 1n denotes the

vector in R
n whose entries are equal to one. Given two vectors

x, y, we denote (x, y) = [xT yT]T, while we say that x � y,

if for every entry xi and yi of respectively, x and y, one has

xi ≤ yi. Given a vector x ∈ R
n and a closed set A, the distance

of x to A is defined as |x|A = infy∈A |x − y|. Given a set S,

we denote by S the closure of S. The set B denotes the closed

unit ball, of appropriate dimension, in the Euclidean norm. Given

a function f : X → Y , rge f denotes the range of f . We say that

a function α : R≥ 0 → R>0 is said to belong to the class K∞,

i.e., α ∈ K∞, if α(0) = 0, α is strictly increasing, continuous, and

lims→∞ α(s) = ∞. The notation F : X ⇒ Y indicates that F is

a set-valued mapping with F (x) ⊂ Y for all x ∈ X .

II. COST EVALUATION FOR CONSTRAINED DIFFERENCE

INCLUSIONS

A. Preliminaries on Constrained Difference Inclusions

In this section, we consider unforced constrained differ-

ence inclusions of the form

D0 : x+ ∈ G(x) x ∈ D (1)

where x ∈ R
n, D ⊂ R

n, and G : Rn ⇒ R
n.

Let X be the set of functions x : domx → Rn, with

domx = N0 ∩ {0, 1, . . . , J} for some J ∈ N0 ∪ {∞}. A

solution φ to D0 is any φ ∈ X for which φ(0) ∈ D, and for

all j ∈ domφ such that j + 1 ∈ domφ

φ(j) ∈ D

φ(j + 1) ∈ G(φ(j))

In particular, a solution φ to D0 is said to be complete if

its domain domφ is unbounded and maximal if it is not the

truncation of another solution. Given a set M , we denote

by S(M) the set of all maximal solutions φ to D0 with

φ(0) ∈ M .

B. Upper bounds

By following the general ideas proposed in [1], in this

section we investigate how a Lyapunov function can be used

to provide estimates of nonlinear cost functionals for a given

constrained difference inclusion. For each initial condition

ξ ∈ D to D0 in (1), consider the following cost:

J (ξ) = sup
φ∈S(ξ)

sup domφ∑

j=1

qd(φ(j − 1)) (2)

where qd : R
n → R≥0. Given a solution φ to (1), having

defined the cost (2) up to (sup domφ) − 1 implies that,

when domφ is bounded, the final state is not included in

the computation of the cost; obviously, this does not lead

to any difference in the cost value when φ is complete.

On the one hand, as it will be clear in the following, such

a formulation turns out to be convenient for our analysis.

On the other hand, notice that if domφ is bounded, then

φ(sup domφ) /∈ D, that is φ leaves the set D in finite time.

Therefore, discarding the cost associated with the last value

of such a φ is reasonable.

Throughout the paper, given a solution φ to (1), we denote

Jφ := lim
j→sup domφ

j∑

i=1

qd(φ(i − 1))

The following result can be established.

Proposition 1: Let ξ ∈ D and qd : R
n → R≥0. Assume

that there exists V : Rn → R such that

sup
g∈G(x)

V (g)− V (x) + qd(x) ≤ 0 ∀x ∈ D (3)

Let φ : domφ → Rn be a solution to (1) from ξ. Assume

that V ◦ φ is bounded. Then Jφ is finite and in particular

Jφ + lim sup
j→sup domφ

V (φ(j)) ≤ V (ξ) (4)

�

By building on a suitable function V , Proposition 1

provides an upper bound on the cost Jφ. This bound depends

on the solution chosen from ξ. Next, by relying on further

assumptions, for a given initial condition ξ ∈ D, we provide

an upper bound on the cost J (ξ) that is independent on the

solution chosen from ξ.

Corollary 1: Let A ⊂ Rn be closed, ξ ∈ D and

qd : R
n → R≥0. Assume that there exists a function

V : Rn → R uniformly continuous on a neighborhood of A
such that V (A) = {0} and (3) holds. Furthermore, assume

that for each φ ∈ S(ξ)

lim
j→sup domφ

|φ(j)|A = 0 (5)

Then

J (ξ) ≤ V (ξ) (6)

�

Remark 1: To get a solution independent upper bound

on the cost, in the above result we assumed V to be

uniformly continuous on a neighborhood of A. Indeed, since

V (A) = {0}, one can show that uniform continuity of V on

a neighborhood of A ensures that for any j 7→ φ(j) such



that φ approaches A, V ◦ φ approaches zero1. On the other

hand, observe that when A is compact, requiring V to be

continuous on a neighborhood of A is enough.

Corollary 1 shows that when maximal solutions from ξ
converge to A, then an upper bound on the cost J (ξ) (which

is solution independent) is given by V (ξ). On the one hand,

when qd and V are positive definite with respect to A, (that

is generally the case, e.g., in classical optimal control with

A being the origin), (3) implies for any complete solution φ
that V ◦φ approaches zero2. On the other hand, for maximal

solutions that are not complete, finite-time convergence to

A is needed. For this reason, next we provide a sufficient

condition for finite-time convergence to a closed set A for

(1). Such a condition is largely inspired by [9, Theorem 3.9].

Theorem 1: Let ξ ∈ D and let A be closed. If there exists

W : Rn → R positive definite with respect to A on D∪G(D)
and such that for each φ ∈ S(ξ) there exists c > 0 satisfying

(i) inf
φ∈S(ξ)

sup domφ >

⌈
W (ξ)

c

⌉

(ii) sup
g∈G(x)

W (g)−W (x) ≤ −min{c,W (x)} ∀x ∈ D

then, for each φ ∈ S(ξ), there exists j⋆φ ∈ N0 such that

j ∈ domφ with j ≥ j⋆φ implies φ(j) ∈ A. �

C. Exact cost evaluation

In this section, our main objective is to obtain the exact

value of the cost without explicitly computing it. To that

end, next, under further assumptions on the system data and

a stronger condition than (3), we provide a way to determine

the exact value of J (ξ) for a given initial condition ξ ∈ D.

Corollary 2: Let A ⊂ Rn be closed, ξ ∈ D, qd : R
n →

R≥0, and G(x) be compact for each x ∈ D. Assume that

there exists a function V : Rn → R continuous on G(D)
such that

max
g∈G(x)

V (g)− V (x) + qd(x) = 0 ∀x ∈ D (7)

Furthermore, assume that for any solution φ0 to D0 from ξ,

V ◦ φ0 is bounded. Pick any solution φ to

x+ ∈ argmax
g∈G(x)

V (g) x ∈ D (8)

with φ(0) = ξ and let φ0 be any solution to D0 from ξ.

Then, one has that Jφ0 and Jφ are finite and in particular

Jφ0 + lim sup
j→sup domφ0

V (φ0(j)) ≤

Jφ + lim sup
j→sup domφ

V (φ(j)) = V (ξ)
(9)

Moreover, if V is uniformly continuous on a neighborhood

of A, V (A) = {0}, and there exists a maximal solution φ

1As an alternative to uniform continuity, to ensure that V ◦φ converges to
zero when φ approaches A, one can assume that V is positive definite with
respect to A and upper bounded by a continuous function positive definite
with respect to A. This is done in Corollary 3.

2Completeness of maximal solutions is guaranteed if and only if G(D) ⊂
D.

to (8) with φ(0) = ξ such that

lim
j→sup domφ

|φ(j)|A = 0

then, one has

J (ξ) = V (ξ) (10)

�

D. Applications and Examples

In this section we present some special cases of our

results, which are useful in practical applications, along with

examples.

First, notice that whenever G is a single-valued map, i.e.,

for x ∈ D, G(x) = {g(x)} with g : Rn → Rn, then for

each x ∈ D, (7) reduces to V (g(x))−V (x)+ qd(x) = 0. In

particular, for the linear-quadratic case, we get the following

result.

Proposition 2: Let A = {0}, G(x) = {Ax} for each x ∈
D with A ∈ Rn×n, ξ ∈ D, and x 7→ qd(x) := xTQx,

where Q ∈ Sn+. If A is Schur, then there exists V : Rn → R

continuous and positive definite with respect to A on G(D)∪
D such that

V (Ax) − V (x) + qd(x) = 0 ∀x ∈ D

�

An example within the setting considered in the above

result is presented next.

Example 1: Consider system (1) defined by the following

data: D := {x ∈ R2 : |x1| ≤ 1, |x2| ≤ 1} and G(x) = {Ax}

for x ∈ D, where A =
(

1
2 1

0 1
4

)
. It is easy to check that for

each k ∈ N, one has

Ak =

(
1
2k

4
(

1
2k

− 1
4k

)

0 1
4k

)
(11)

At this stage, notice that one may explicitly characterize the

set of initial conditions O that lead to complete maximal

solutions. In particular, one has that

O = {x ∈ R
2 : |Akx| � 12 ∀k ∈ N}

Moreover, from (11), it follows that for each x ∈ R2 such

that |x| � 12 and |Ax| � 12, for any k ∈ N≥2 one has

|Akx| � 12. Therefore, O reduces to {x ∈ R2 : |x| �
12, |Ax| � 12}, which is the polyhedral set represented in

Fig. 1. Now, define x 7→ qd(x) := xTx and x 7→ V (x) :=
xTPx, with

P =

(
4
3

16
21

16
21

304
105

)

Then, one has that for each x ∈ R2, V (Ax)−V (x)+qd(x) =
0. To show the application of our results, we consider the

following two solutions to (1):

φ(1)(j) = Aj

(
− 1

2
− 1

2

)
=: Ajξ1 domφ(1) = N

φ(2)(j) =





(
− 3

4

− 3
4

)
=: ξ2 if j = 0

(
− 9

8

− 3
16

)
if j = 1

domφ(2)={0, 1}



Fig. 1: The set O (red), the boundary of the set D (black),

φ(1) (crosses), and φ(2) (circles) in Example 1.

both solutions are displayed in Fig. 1. Obviously, φ(1) is

complete and, A being Schur, one has limj→∞ φ(1)(j) = 0.

Therefore, according to Corollary 2, one has

J (ξ1) = lim
j→∞

j−1∑

i=0

qd(φ
(1)(i)) =

∞∑

i=1

|Ai−1ξ1|
2 = V (ξ1)

and this is confirmed by Fig. 2, where the evolution of the

function j 7→ J̃φ(1)(j) :=
∑j−1

i=0 qd(φ
(1)(i)) is reported.

Concerning φ(2), again from Corollary 2, one has Jφ(2) +
V (Aξ2) = V (ξ2), which, due to J (ξ) = Jφ(2) , implies

J (ξ) = V (ξ2)− V (Aξ2), that is J (ξ) = |ξ2|
2.

5 10 15
0

0.5

1

1.5

j

J̃
φ
(
1
)

Fig. 2: The evolution of the function j 7→ J̃φ(1)(j) in

Example 1.

A result similar to Proposition 2 holds for the case of

linear difference inclusions. Such a result is given next.

Proposition 3: Let A = {0}, G(x) = {A1x, A2x,

. . . , Aνx} for each x ∈ D, with A1, A2, . . . , Aν ∈ Rn×n,

ξ ∈ D, and x 7→ qd(x) := xTQx, where Q ∈ Sn+. Assume

that there exists P ∈ Sn+ such that

diag
{
AT

1PA1 − P −Q,AT

2PA2 − P −Q, . . .

AT

νPAν − P −Q
}
≤ 0

(12)

Then, there exists V : Rn → R continuous and positive

definite with respect to A on G(D) ∪D such that

max
i∈{1,2,...,ν}

V (Aix)− V (x) + qd(x) = 0 ∀x ∈ D

�

A necessary condition for (12) to be feasible for some P ∈
Sn+ is that the matrices {A1, A2, . . . , Aµ} are simultaneously

asymptotically stable; cf. [3].

Next, we showcase the applicability of the proposed result

in the case of nonlinear dynamics.

Example 2: Let α, β, p, q ∈ R>0, consider system (1) de-

fined by the following data [10, Example 4.11]: D := [0, p]×
[0, q] and for all x ∈ D, G(x) = {g(x)}, where x 7→ g(x) :=(

αx2

1+x2
1
, βx1

1+x2
2

)
. Pick x 7→ qd(x) := xT

(
q11 0
0 q22

)
x := xTQx

with q11, q22 ∈ R>0. Define x 7→ V (x) = xTPx, where

P ∈ S
n
+. Then, we want to compute P such that for each

x ∈ D, V (g(x))− V (x) ≤ −qd(x), that is

g(x)TPg(x)− xTPx ≤ −qd(x) ∀x ∈ D (13)

To this end, first notice that by defining

Ĝ(x) :=

(
0 α

1+x2
1

β

1+x2
2

0

)
∀x ∈ D

for each x ∈ D, one has g(x) = Ĝ(x)x. Therefore, (13) can

be rewritten as

xT∆(x)x ≤ −qd(x) ∀x ∈ D (14)

with ∆(x) := Ĝ(x)TPĜ(x)− P for all x ∈ D. A sufficient

condition for the above inequality to be satisfied is

∆(x) +Q ≤ 0 ∀x ∈ D (15)

In particular, by denoting

P =

(
p11 p12
• p22

)
(16a)

one gets for each x ∈ D

∆(x)+Q =




β2 p22

(x2
2+1)

2 − p11 + q11
αβp12

(x2
1+1)(x2

2+1)
− p12

• α2p11

(x2
1+1)2

− p22 + q22




At this stage, if one enforces p12 = 0, then (15) holds if

β2 p22

(x2
2+1)

2 − p11 + q11

α2p11

(x2
1+1)2

− p22 + q22



 ∀x ∈ D (16b)

which can be fulfilled by picking p11, p22 ∈ R>0 such that

p11 ≥ max
x∈D

β2 p22

(x2
2+1)2

+ q11 = β2 p22 + q11

p11 ≤ min
x∈D

1
α2 (p22 − q22)

(
x2
1 + 1

)2 (16c)

It can be easily checked that if αβ < 1, then (16c) can

be always fulfilled. Moreover, notice that due to qd positive

definite with respect to A, the satisfaction of (13) ensures

that maximal solutions to (1) converge to A; see [6].

Now we show that under certain assumptions on α, β, p,

and q, maximal solutions to (1) are complete. To this end,



it suffices to select α, β, p, and q such that G(D) ⊂ D.

Denote x 7→ (g1(x), g1(x)) :=
(

αx2

1+x2
1
, βx1

1+x2
2

)
and observe

that g1(D) × g2(D) = [0, αq] × [0, βp]. Moreover, since

g(D) ⊂ g1(D)×g2(D), it follows that if αq ≤ p and βp ≤ q,

then G(D) ⊂ D.

For this example, we select α = 1
2 , β = 1, p = q =

5, q11 = q22 = 1, which allows to enforce G(D) ⊂ D
and (16c). In particular, since as mentioned above maximal

solutions to (1) converge to A, from Corollary 1 one has

that for each initial condition ξ ∈ D, J (ξ) ≤ ξTPξ, where

P ∈ Sn+ is any matrix that satisfies (14). As mentioned

earlier, to fulfill (14), P can be selected as in (16). In

particular, one may operate a convenient selection of P so to

minimize the conservatism in the upper bound on the cost J
for each x ∈ D. This objective can be achieved by selecting

P = diag{p11, p22} with p11, p22 ∈ R>0 being the solution

to the following optimization problem

minimize
p11,p22

max
ξ∈D

ξTPξ

subject to p11 ≥ β2 p22 + q11

p22 ≤
1

α2
(p22 − q22), p11, p22 ∈ R>0

which turns out to be equivalent to the following optimization

problem

minimize
p11,p22

max{p11, p22}

subject to p11 ≥ β2 p22 + q11

p11 ≤
1

α2
(p22 − q22), p11, p22 ∈ R>0

The solution (p⋆11, p
⋆
22) to the above optimization problem

can be easily computed by inspection of the feasible set. In

particular, such a solution corresponds to the unique point

belonging to

{(p11, p22) ∈ R>0 × R>0 : p11 = β2 p22 + q11,

p11 =
1

α2
(p22 − q22)

}

which yields (p⋆11, p
⋆
22) = (83 ,

5
3 ).

Let φ be the unique solution to (1) from ξ =
(0.5693, 1.6093), which converges to A. Fig. 3 depicts the

evolution of the cost function j 7→ J̃φ(j) :=
∑j−1

i=0 qd(φ(i)),
along with some upper bounds on the cost J (ξ) obtained

via Corollary 1 through different selections of the matrix

P in (13). The picture shows the relevance of the proposed

optimization in reducing the conservatism in the upper bound

of J (ξ).

III. TOWARDS OPTIMAL CONTROL WITH ASYMPTOTIC

TERMINAL CONSTRAINTS

Building on the results presented in the previous section, in

this section we consider a particular optimal control problem

for which a solution can be indirectly obtained by the use

of a Lyapunov-like function, along with some additional

conditions. The results contained in this section extend the

ideas proposed in [1] to the case of constrained discrete-

time systems. For simplicity, we assume the dynamics of

0 2 4 6 8 10

5

10

15

20

j

V ⋆(ξ1)

V1(ξ1)

V2(ξ1)

Fig. 3: The evolution of the function j 7→ J̃φ(j) in Example 2

(blue bullets), along with different upper bounds on J (ξ)
obtained for: P = diag{p⋆11, p

⋆
22} (dashed-dotted line), P1 =

diag{10, 4} (dashed line), and P2 = diag{15, 6} (dotted

line).

the system being single valued. However, with the results

in Section II-B, the extension to difference inclusions is

straightforward.

A. Preliminaries on Controlled Constrained Difference

Equations

We consider controlled constrained difference equations

with state x ∈ Rn and input u ∈ Rm of the form

D : x+ = g(x, u) (x, u) ∈ D (17)

where x ∈ Rn, D ⊂ Rn × Rm, and g : Rn × Rm → Rn.

Let U be the set of functions u : domu → Rm, with

domu = N0 ∩ {0, 1, . . . , J}, for some J ∈ N0 ∪ {∞}. A

solution pair (φ, u) to D is any (φ, u) ∈ X × U , for which

domφ = domu, (φ(0), u(0)) ∈ D, and for all j ∈ domφ
such that j + 1 ∈ domφ

(φ(j), u(j)) ∈ D

φ(j + 1) = g(φ(j), u(j))

In particular, a solution pair (φ, u) to D is said to be complete

if its domain domφ is unbounded and maximal if it is not

the truncation of another solution pair.

Definition 1 (Set of maximal solution pairs): Given ξ ∈
R

n, we denote by Su(ξ) the set of maximal solution pairs

(φ, u) ∈ X × U to (17) such that φ(0) = ξ.

Definition 2 (Set of maximal responses): Given ξ ∈ Rn

and u ∈ U , we denote the set of maximal responses by

R(ξ, u) = {φ ∈ X : (φ, u) ∈ Su(ξ)}

Definition 3 (Set of closed-loop maximal solutions):

Given ξ ∈ Rn and a function κ : Rn → Ru, we denote by

Sκ(ξ) the set of maximal solutions φ to

x+ = g(x, κ(x)) (x, κ(x)) ∈ D (18)

such that φ(0) = ξ.

Let us define the projection of D onto Rn as Π(D) =
{ξ ∈ Rn : ∃u ∈ Rm s.t. (ξ, u) ∈ D}. Now, let A ⊂ Rn be



closed, consider the following sets:

XA := {x ∈ X : lim
j→sup domx

|x(j)|A = 0}

and UA(ξ) := {u ∈ U : ∃x ∈ R(ξ, u) ∩ XA}. Essentially,

XA is the set of sequences in X converging to A, while

UA(ξ), for each ξ ∈ Rn, is the set of inputs such that

the resulting response to (17) from ξ converges to A. For

each initial condition ξ ∈ Rn and u ∈ UA(ξ), consider the

following cost3

Ju(ξ, u) =

sup domφ∑

φ∈R(ξ,u),j=1

qd(φ(j − 1), u(j − 1)) (19)

where qd : R
n ×Rm → R≥0. Then, the following result can

be established.

Theorem 2: Let A ⊂ Rn be closed, ξ ∈ Π(D), and

qd : R
n → R≥0. Assume there exist functions V : Rn → R

and κ : Rn → Rm such that V is uniformly continuous on a

neighborhood of A, V (A) = {0}, and

V (g(x, κ(x))) − V (x) + qd(x, κ(x)) = 0 ∀(x, κ(x)) ∈ D
V (g(x, u))− V (x) + qd(x, u) ≥ 0 ∀(x, u) ∈ D

(20)

Furthermore, assume that the unique φκ ∈ Sκ(ξ) is such that

lim
j→sup domφκ

|φκ(j)|A = 0

Then, one gets

min
u∈UA(ξ)

Ju(ξ, u) = V (ξ)

where the above minimum exists. In particular, κ is the

optimal control, in the sense that

min
u∈UA(ξ)

Ju(ξ, u) =

sup domφκ∑

φκ∈Sκ(ξ),j=1

qd(φκ(j−1), κ(φκ(j−1)))

�

Remark 2: For each x ∈ Rn, define the following set-

valued map Πu(x,D) := {u ∈ Rm : (x, u) ∈ D}. Then, it

follows that (20) is equivalent to

0 = min
u∈Πu(x,D)

(V (g(x, u))− V (x) + qd(x, u)) ∀x ∈ Π(D)

which is a state-and-input constrained version of the steady

state discrete-time Hamilton-Jacobi-Bellman equation; see

[2].

The applicability of Theorem 2 requires the feedback law

κ to induce convergence towards the set A. On the other

hand, it is worthwhile to observe that when qd is positive

definite with respect to A, one can add further assumptions

on V so that (20) implies convergence of maximal solutions

towards the set A. This aspect is illustrated in the result given

next.

Corollary 3: Let A ⊂ Rn be closed, qd be positive

definite with respect to A on D. Assume that there exist

3Notice that, due to g being single valued, for any ξ ∈ Rn, given u ∈

UA(ξ), the set R(ξ, u) is a singleton. This implies that the cost Ju is
univocally determined once u and ξ are given.

functions V : Rn → R, κ : Rn → Rm, α1, α2 ∈ K∞, (20)

holds, and

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ Π(D) ∪ g(D)

Furthermore, assume that the following conditions are satis-

fied

κ(x) ∈ {u ∈ Rm : (x, u) ∈ D} ∀x ∈ Π(D)
κ(x) ∈ {u ∈ Rm : (g(x, u), u) ∈ D} ∀x ∈ Π(D)

Then, for each ξ ∈ Π(D), minu∈UA(ξ) J(ξ, u) = V (ξ),
where such a minimum exists. In particular, κ is the optimal

control, in the sense that

min
u∈UA(ξ)

Ju(ξ, u) =

sup domφκ∑

φκ∈Sκ(ξ),j=1

qd(φκ(j−1), κ(φκ(j−1)))

�

IV. CONCLUSION

In this paper we addressed cost evaluation and optimal

control problems for constrained difference inclusions. The

results are obtained via a Lyapunov-like approach and pro-

vide sufficient conditions to solve a meaningful optimal

control problem for which completeness and boundedness of

maximal solutions are not required. The approach we pursue

sets this paper apart from the literature of model predictive

control, where the main focus is to provide constructive

design methods for optimal feedback.

Future research directions include the use of inverse opti-

mality approaches to allow for the design of optimal control

laws, as well as the extension of the proposed approach to

discrete-time dynamical games in the spirit of [8]. Moreover,

the extension to the case of hybrid dynamical systems in the

framework [6], which is currently part of our work.
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