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A hybrid feedback control scheme is proposed for stabilization of rigid body dynamics
(pose and velocities) using unit dual quaternions, in which the dual quaternions and veloc-
ities are used for feedback. It is well-known that rigid body attitude control is subject to
topological constraints which often result in discontinuous control to avoid the unwinding
phenomenon. In contrast, the hybrid scheme allows the controlled system to be robust in
the presence of uncertainties, which would otherwise cause chattering about the point of
discontinuous control while also ensuring acceptable closed-loop response characteristics.
The stability of the closed-loop system is guaranteed through a Lyapunov analysis and
the use of invariance principles for hybrid systems. Simulation results for a rigid body
model are presented to illustrate the performance of the proposed hybrid dual quaternion
feedback control scheme.

I. Introduction

Rigid body control is often separated into two individual problems: rotational control and translational
control. However, for many practical applications that include robotics, computer graphics,1,2 unmanned
air vehicle control and spacecraft proximity operations3–5 to name a few, these translational and rotational
dynamics are often coupled. Hence, some recent research on controlling rigid body dynamics utilizes the Lie
group SE(3) for the configuration space (pose) of the rigid body and its tangent bundle TSE(3) for the state
space which includes velocities.6 It is a well-known fact that global asymptotic stabilization of rigid body
attitude is subject to topological constraints.7,8 Similar topological obstructions are also present in rigid
body pose control when represented on SE(3).9 Hybrid feedback control10 can overcome such topological
obstructions and provide robust global solutions for the rigid body attitude stabilization problem.8 Dual
numbers introduced by Clifford11 and later generalized in,12 are often used to parametrize the members of
SE(3). In,3 a continuous controller for rigid body pose stabilization was presented. Results associated with
the kinematic sub-problem of rigid body motion using hybrid hysteresis based UDQs are presented in,9 while
an improved version using a bimodal approach to reduce higher average settling time or energy consumption
is presented in.13

In this paper we adapt the hysteresis-based switching strategy of rigid body attitude presented in7,8 to
the Unit Dual Quaternion (UDQ) parameterization of rigid body pose. Specifically, a complete solution
for rigid body kinematic and kinetic control is presented using a hybrid hysteresis-based switching strategy.
Following the results in,3 the rigid body dynamics are modeled using a state space consisting of the unit
dual quaternions to parameterize the pose (postition and attitude) along with the angular and translational
velocities and a discrete logic variable as in.7,8 We also discuss the robustness of the suggested hybrid
algorithm to uncertainties.
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The remainder of the paper is organized as follows. In Section II, the notation used throughout the paper
is defined and the needed background material on hybrid systems is provided. The problem of interest is
formalized in Section IV.A. A general hybrid feedback control solution is presented in Section IV.B, where
an energy-based controller is characterized for full state state measurements. Robustness of the proposed
algorithms to uncertainties is discussed in Section IV.C.1. Numerical simulations for a rigid body example
are given in Section V. Proofs of the results will be published elsewhere.

II. Preliminaries

II.A. Notation

The following notation and definitions are used throughout the paper. Rn denotes n-dimensional Euclidean
space. R denotes the real numbers. Z denotes the integers. R≥0 denotes the nonnegative real numbers,
i.e., R≥0 = [0,∞). N denotes the natural numbers including 0, i.e., N = {0, 1, . . .}. An identity element
1 = (1,03×1) and 0 = (0,03×1). B denotes the open unit ball in a Euclidean space. Given a vector x ∈ Rn,
|x| denotes the Euclidean vector norm. Given a set S ⊂ Rn and a point x ∈ Rn, |x|S := infy∈S |x − y|.
The equivalent notation [x> y>]> and (x, y) is used for vectors. A function β : R≥0 × R≥0 → R≥0 is said
to belong to class-KL if it is nondecreasing in its first argument, nonincreasing in its second argument, and
lims↘0 β(s, t) = limt→∞ β(s, t) = 0.

II.B. Well-posed hybrid systems

Hybrid systems are dynamical systems with both continuous and discrete dynamics. In this paper, we
consider the framework for hybrid systems in10,14, where a hybrid system H is defined by the following
objects:

• A map f : Rn → Rn called the flow map.

• A map g : Rn → Rn called the jump map.

• A set C ⊂ Rn called the flow set.

• A set D ⊂ Rn called the jump set.

The flow map f defines the continuous dynamics on the flow set C, while the jump map g defines the discrete
dynamics on the jump set D. These objects are referred to as the data of the hybrid system H. Additionally,
it also permits explicit modeling of perturbations in the system dynamics, a feature that is very useful for
robust stability analysis of dynamical systems; see14 for more details. A solution φ to H is parametrized by
pairs (t, j), where t is the ordinary time component and j is a discrete parameter that keeps track of the
number of jumps; see [10, Definition 2.6]. A solution φ to H is said to be nontrivial if domφ contains at least
one point different from (0, 0), complete if domφ is unbounded, Zeno if it is complete but the projection
of domφ onto R≥0 is bounded and maximal if it cannot be extended, i.e., it is not a truncated version of
another solution. The set SH(ξ) denotes the set of all maximal solutions to H from ξ. In this paper, we
employ the following asymptotic stability notion of a set for closed-loop hybrid systems.

Definition II.1 ((pre-)asymptotic stability) Consider a hybrid system H. A closed set A ⊂ Rn is said
to be

• stable for H if for each ε > 0 there exists δ > 0 such that any solution φ to H with |φ(0, 0)|A ≤ δ
satisfies |φ(t, j)|A ≤ ε for all (t, j) ∈ domφ;

• pre-attractive for H if there exists δ > 0 such that any solution φ to H with |φ(0, 0)|A ≤ δ is bounded
and if it is complete then limt+j→∞ |φ(t, j)|A = 0;

• pre-asymptotically stable if it is both stable and pre-attractive;

• asymptotically stable if it is pre-asymptotically stable and there exists δ > 0 such that any maximal
solution φ to H with |φ(0, 0)|A ≤ δ is complete.
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The set of all points in C ∪ D from which all solutions are bounded and the solutions that are complete
converge to A is called the basin of pre-attraction of A.a 4

II.C. Unit Dual Quaternions

1. H denotes a set of quaternions (not necessarily normalized), i.e., H :=
{
q : q = (η, µ), η ∈ R, µ ∈ R3

}
,

in which η ∈ R is the scalar part and µ ∈ R3 is the vector part.

2. Hv denotes a set of quaternions with zero scalar part, i.e., Hv :=
{
q ∈ H : η = 0}.

3. Hs denotes a set of quaternions with zero vector part, i.e., H0 :=
{
q ∈ H : µ = 03×1}.

4. Given x = (x1, x2, x3) ∈ R3, we define

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 .

5. Given two vectors x, y ∈ R3, their cross product x× y = S(x)y = −y>S(x).

6. Given two quaternions q1, q2 ∈ H, q1 = (η1, µ1), q2 = (η2, µ2), the following properties hold:

• Conjugate: q∗1 = (η1,−µ1)

• Addition: q1 + q2 = (η1 + η2, µ1 + µ2)

• Quaternion multiplication: q1 ⊗ q2 = (η1η2 − µ>1 µ2, η1µ2 + η2µ1 + S(µ1)µ2)

• Dot product: q1 · q2 = η1η2 + µ1 · µ2.

• Norm: ‖q1‖ =
√
q1 · q1.

7. Sn := {x ∈ Rn+1 : x>x = 1} denotes a n-dimensional sphere embedded in Rn+1. In particular, S3
denotes the set of unit quaternions, which is often used to parameterize the Lie group SO(3) of rigid
body attitude, where each unit quaternion is such that ‖q‖2 = η2 + µ>µ = 1.

8. The set S3 has, under the quaternion multiplication, an identity element 1 = (1,03×1) and the inverse
given by the quaternion conjugate q∗.

9. Given a matrix M ∈ R4×4, and a quaternion q ∈ H,

Mq = (M11η +M12µ,M21η +M22µ) ∈ H

where M11 ∈ R, M12 ∈ R1×3, M21 ∈ R3×1, M22 ∈ R3×3 are entries of M =

[
M11 M12

M21 M22

]
10. The set of dual quaternions is given by

H := {q : q = (η, µ) = qr + εqt, η ∈ R, µ ∈ R3}

where ε is called the dual unit which is nilpotent, i.e., ε 6= 0, ε2 = 0.

• η = ηr + εηt ∈ R is the dual scalar part.

• µ = µr + εµt ∈ R3 is the dual vector part.

• qr = (ηr, µr) ∈ S3 is the rotational part parameterizing attitude.

• qt = (ηt, µt) ∈ Hv is the translational part.

aNote that by definition, the basin of pre-attraction contains a neighborhood of A. In addition, points in Rn \ (C ∪ D)
always belong to the basin of pre-attraction since there are no solutions starting at such points, and therefore, there is nothing
to be checked. Furthermore, if A is pre-asymptotically stable and every maximal solution is complete, then we say that A is
asymptotically stable (without the prefix “pre”).
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11. Hv denotes a set of dual quaternions with zero scalar part, i.e., Hv :=
{
q ∈ H : η = 0

}
.

12. Given a dual quaternion q ∈ H, the following properties hold:

• Conjugate: q∗ = q∗r + εq∗t = (η,−µ).

• Swap: qs = qt + εqr.

13. S3 denotes the set of unit dual quaternions, where each unit dual quaternion q ∈ H is such that
‖qr‖ = 1 and qr ⊗ q∗t + qt ⊗ q∗r = 04×1.

14. Given any dual quaternions q1, q2, q3 ∈ S3, the following properties hold:

• Dual quaternion multiplication: q1 ⊗ q2 = qr1 ⊗ qr2 + ε(qr1 ⊗ qt2 + qt1 ⊗ qr2).

• Dot product: q1 · q2 = 1
2 (q∗1⊗ q2 + q∗2⊗ q1) = 1

2 (q1⊗ q∗2 + q2⊗ q∗1) = qr1 · qr2 + ε(qt1 · qr2 + qr1 · qt2).

• Circle product: q1 ◦ q2 = qr1 · qr2 + qt1 · qt2 .

• q1 ◦ (q2 ⊗ q3) = qs2 ◦ (qs1 ⊗ q∗3) = qs3 ◦ (q∗2 ⊗ qs1).

• M ? q = (M11qr +M12qt) + ε(M21qr +M22qt), Mi,j ∈ R4×4, i, j ∈ {1, 2}.

15. Unit Dual Quaternions (UDQs) are often used to parametrize the Lie group SE(3) of rigid body pose.

16. The set S3 has, under the dual quaternion multiplication, an identity element 1 = 1 + ε0 and the
inverse given by the dual quaternion conjugate q∗.

III. Rigid Body Kinematics and Dynamics

III.A. Kinematics

An arbitrary rigid body configuration with respect to a fixed inertial frame is characterized by rotation
qr ∈ S3 followed by the translation qt ∈ Hv using dual quaternions15 as

q = qr + εqt, (1)

where given an angle θ ∈ S1 and an axis n̂ ∈ S2, a unit quaternion

qr =

[
ηr

µr

]
=

[
cos(θ/2)

sin(θ/2)n̂

]
, (2)

represents vector rotation from body frame to inertial frame. As noted in (1), given the relative position
rd ∈ R3 of the rigid body, with respect to the inertial frame and represented in the inertial frame, the
translational part of the dual quaternion is given by

qt =
1

2
ν(rd)⊗ qr, (3)

where ν(rd) = (0, rd). Therefore, from (1), (2), (3), the combined rotational and translational kinematics of
a rigid body in UDQ representation3,13 are

q̇ =
1

2
ν(ωI)⊗ q. (4)

where ν(ωI) = (0 + ε0, ωI), ωI = ωI + ε(ṙd + rd × ωI) is called the twist, ωI ∈ R3, ṙd ∈ R3 are the angular
and translational velocities of the rigid body with respect to the inertial frame represented in the inertial
frame, respectively. In many applications, it is a common practice to measure the angular and translational
velocities of the rigid body in the body frame using onboard sensors. Hence, following the transformation
presented in [15, Appendix A], the rigid body kinematics are

q̇ = 1
2ν(ωI)⊗ q = 1

2q ⊗ ν(ω) = 1
2

[
−µ>

ηI + S(µ)

]
ω q ∈ S3, (5)

where ν(ω) = (0 + ε0, ω), ω = ω + εv ∈ R3, ω, v ∈ R3 are the angular and translational velocities or the
rigid body with respect to the inertial frame represented in the body frame, respectively; η = ηr + εηt ∈ R,
µ = µr + εµt ∈ R3.
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III.B. Rigid Body Kinetics

Let the dual inertia matrix be defined as the mass of the rigid body given by the dual inertia matrix

M =


1 01×3 0 01×3

03×1 mI3×3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 J

 ∈ R8×8, (6)

where m ∈ R is the mass of the rigid body, J ∈ R3×3 is the mass moment of inertia of the body about its
center of mass written in the body frame, and I is the identity matrix. Following3 the dynamics of the rigid
body are

M ? ν(ω̇
s
) = T − ν(ω)× (M ? ν(ωs)) (7)

where ν(ωs) = (0, (ωs)) ∈ Hv, ωs = v + εω ∈ R3, ω = ω + εv ∈ R3, T = (0, F ) + ε(0, τ) ∈ Hv, F ∈ R3

represents control forces and τ ∈ R3 represents control torques applied to the rigid body. Since the mass
m ∈ R and the inertial matrix J ∈ R3 are considered a constant, the dual inertial matrix M in the above
formulation is invertible and the inverse of M is M−1. This formulation is advantageous over the formulation
in,16 as it does not include the operator d

dε defined by d
dεq = d

dε (qr + εqt) (see16 for more details).

IV. Hybrid Feedback Control and Stability

IV.A. Problem Description

Given the desired attitude of the rigid body with respect to the inertial frame t 7→ Rd(t) ∈ SO(3) and the
desired position of the center of mass of the rigid body with respect to the inertial frame t 7→ rd(t) ∈ R3; the
attitude and position errors are given by R = R>d Rm element of SO(3) and r = rm − rd ∈ R3, respectively
and the ‘m’ subscript denotes the true attitude and position. Therefore, the objective is to design a controller
to have Rd = Rm and rd = rm or to globally asymptotically stabilize R = I, r = 0 ∈ R3. In terms of dual
quaternions, this reduces to the problem of designing a controller that globally asymptotically stabilizes
q = (η, µ) = qd

∗ ⊗ qm = 1 for the rigid body kinematics in (5) along with ω = 03×1 ∈ R3 for the dynamics
in (7).

Similar to the unit quaternion case (for attitude stabilization),8 dual quaternions provide a dual cover
for the elements in SE(3), i.e., for every element in SE(3), and for each r, there are exactly two UDQs
±q = ±(qr + εqt), such that R = R(qr) = R(−qr), where given an angle θ ∈ R and an axis n̂ ∈ S2,
a unit quaternion qr in (2) represents an element of SO(3) by the map R : S3 → SO(3) defined as
R(qr) = I + 2ηrS(µr) + 2S2(µr). In addition, following the principle of transference presented in,17 the
characteristics of unit quaternion are completely inherited by dual quaternions. Therefore, the rigid body
pose stabilization using dual quaternions can have disadvantages due to this non-uniqueness. Similar to
the problem of rigid body attitude stabilization in SO(3),8 a continuous linear feedback law results in the
‘unwinding’ phenomenon. Alternatively, a discontinuous controller can be designed as in.18,19

Such a discontinuous controller would not be robust to small measurement noise as previously shown
in the literature for both dual quaternion and quaternion cases.7,8 Hence, we introduce a logic variable as
in7,8 to handle the topological obstruction of stabilizing a set on a manifold. We design a logic-based hybrid
controller that steers the rigid body clockwise or counter-clockwise to take shortest route and reach the desired
orientation and position while remaining robust to small perturbations. We assume that, measurements of
dual quaternion qm and dual velocity ωm are available and, hence, dual quaternion error q and dual velocity
error ω are available, respectively, in IV.C. Following the results in8 we include a hybrid switching logic into
the controller suggested in20 to overcome topological issues with antipodal points.

IV.B. Hybrid Closed-Loop System

Given the rigid body kinematics and dynamics in (5), (7), to overcome the previously mentioned topological
obstructions, and inspired from,8 the following hybrid model is considered along with the logic variable
h ∈ {−1, 1} =: Q. The hybrid model of the rigid body kinematics and dynamics H = (C, f,D, g) has state
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ξ = (q, ν(ωs), h) ∈ S3 ×Hv ×Q =: X , with flow and jump dynamics

ξ̇ = f(ξ, T ) (ξ, T ) ∈ C ×Hv,
ξ+ = g(ξ) ξ ∈ D,

(8)

respectively, where maps f : X ×Hv → X , g : X → X and the sets C ⊂ X , D ⊂ X are

f(ξ, T ) :=

 1
2q ⊗ ν(ω)

M−1 ? (T − ν(ω)× (M ? ν(ωs)))

0

 , g(ξ) :=

 q

ν(ωs)

−h

 ,

C = {ξ ∈ X : hηr ≥ −δ}, D = {ξ ∈ X : hηr ≤ −δ}, δ ∈ (0, 1). (Note that ν(ωs) = (0, (ωs)) ∈ Hv is
considered as a state over ωs = v + εω ∈ R3 to preserve the dimensionality of the system.) For this hybrid
system, we design T ∈ Hv to globally asymptotically stabilize the compact set

A = {ξ ∈ X : q = h1, ωs = 03×1} (9)

where 1 = 1 + ε0.

IV.C. Dual quaternion and dual velocity feedback

We assume that the output of the system (8) is measured as y = (qm, ωm) and hence the error vector (q, ω)
is available for feedback. Therefore, considering the hybrid system H given in (8), our main result is as
follows.

Theorem IV.1 The hybrid feedback

T = κ(ξ) := −kph(q∗ ⊗ (hqs − ε1))− kdν(ωs) ∈ Hv, (10)

where kp, kd > 0, dual number ε 6= 0, ε2 = 0, renders the set A globally asymptotically stable for the hybrid
system H in (8).

Sketch of proof : For the closed-loop hybrid system resulting from controlling the plant (8) with the controller
(10), we first show that every complete solution to it converges to A. For this purpose, we use the invariance
principle for hybrid systems in10 for which H has to satisfy the hybrid basic conditions, which is the case.
Specifically, the sets C and D are closed subset of X and by definition, the maps f : X ×Hv → X , g : X → X
are continuous, respectively, and we conclude that the closed-loop system H is well-posed following [10,
Assumption 6.5]. In addition, since H satisfies the hybrid basic conditions, following [10, Proposition 6.10],
we can conclude every maximal solution to the hybrid system is complete.

Now to show the convergence of maximal solutions to A, consider the function V : X → R defined as

V (ξ) = kp(hq − 1) ◦ (hq − 1) +
1

2
ν(ωs) ◦ (M ? ν(ωs)), (11)

where ‘◦’ operator for the UDQs is defined in Section II.C. Applying invariance principles for hybrid systems
in [10, Theorem 8.2], every precompact (complete and bounded) solution to the hybrid system (8) converges
to the largest weakly invariant set W inside

{ξ ∈ X : hηr ≥ −δ, ω = 03×1} ∩ V −1(a)

for some a ∈ R. Since A is compact, and the function V : X → R in (11) is positive definite relative
to A and non-increasing along the solutions of H, then the set W is contained in A. Hence, the set A is
asymptotically stable and global asymptotic stability is a consequence of well-posedness and the asymptotic
stability property of A; see [10, Chapter 7].
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IV.C.1. Robustness of the Closed-loop System

To take our stability analysis close to the real world problems, let us consider that the plant (8) is affected
by unmodeled dynamics given by d1 ∈ X , actuator error d2 ∈ R4×1 and measurement error d3 ∈ X as

ξ̇ = f(ξ + d3, T + d2) + d1.

where d3 = (d3q , d3ω , 0) ∈ X , d3q ∈ S
3, d3ω ∈ Hv. Denoting ξ̃ := ξ + d3, the closed-loop system H in (8)

results in the perturbed closed-loop system Hd with dynamics

ξ̇ = fd(ξ̃, T + d2) + d1 (ξ̃, T + d2) + d1 ∈ Cd ×Hv,
ξ+ = gd(ξ̃) ξ̃ ∈ Dd,

(12)

where the maps fd : X ×Hv → X , gd : X → X and the sets Cd ⊂ X , Dd ⊂ X , respectively, are

fd(ξ̃, T + d2) :=

 1
2 (q + d3q )⊗ ν(ω + d3ω )

M−1 ? (T + d2 − ν(ω + d3ω )× (M ? ν(ωs + d3ω )))

0

 , gd(ξ) :=

 q + d3q
ν(ωs + d3ω )

−h


Cd = {ξ̃ ∈ X : hηr ≥ −δ}, Dd = {ξ̃ ∈ X : hηr ≤ −δ}, where δ ∈ (0, 1).

Following the global asymptotic stability property of the set A for the closed-loop system H established
in Theorem IV.1, we have the following result.

Theorem IV.2 There exists β ∈ class-KL such that, for each ε > 0 and each compact set M ⊂ X , there
exists d > 0 such that for each measurable d : R≥0 → δB every solution φ to the hybrid system H with hybrid
feedback controller (10) with initial condition φ(0, 0) ∈M satisfies

|φ(t, j)|A ≤ β(|φ(0, 0)|A, t+ j) + ε ∀(t, j) ∈ domφ.

V. Simulations

To verify the ideas presented in this paper we apply the hybrid hysteresis based switching strategy to a
rigid body model with mass m = 1kg, and inertia

J =

 1 0.1 0.15

0.1 0.63 0.05

0.15 0.05 0.85

 kg-m2

as in.20 In the results presented below, each of the the plots show simulations of ‘hybrid’, ‘discontinuous’
and ‘continuous’, controllers. For the simulations labeled hybrid, the hysteresis half-width δ ∈ (0, 1) and
h(t, j) ∈ {−1, 1}. When the hysteresis width δ = 0, the controller reduces to discontinuous scheme where

h(t, j) := sgn(ηr) =

−1 ηr < 0

1 ηr ≥ 0.
(13)

When δ > 1, h(t, j) = 1 and a continuous controller exhibiting unwinding is implemented. To this end, sim-
ulations associated with various initial conditions are presented to show that the suggested hybrid controller
(10) is insensitive to initial conditions and indeed robustly globally asymptotically stable. Next, simulations
associated with full state feedback using controller (10), where the output of the system (8) is measured
as y = (qm, ωm) (and hence the error vector (q, ω) is available for feedback) are presented in Section V.A.
Following the results in Section IV.C.1, for all the simulation results below, a zero-mean Gaussian noise with
variance (0.2)2 is added to the state ηr ∈ R (corresponding to the principal angle), and a variance (0.2m)2

is added to µt ∈ R3 (corresponding to the position) to account for measurement errors in configuration.
In addition, a zero-mean Gaussian noise with variances (0.02rad/sec)2 and (0.02m/sec)2 are added to the
angular velocity ω ∈ R3 and translational velocity v ∈ R3 of the rigid body, respectively, to account for
measurement errors in velocities. This additional noise in the states results in chattering behavior for the
switching signal sgn(ηr) for the discontinuous controller, while the hysteresis based hybrid logic is impervious
to such noise as shown in Figures 1-3.
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V.A. Dual quaternion and dual velocity feedback

V.A.1. Measurement noise

The response of the closed-loop rigid body dynamics with energy-based controller (10) when dual quaternion
error and velocity errors (q, ω) are available for feedback is presented in Figure 1. The simulations are
performed with the initial condition set to qr(0, 0) = (0, 0.4243, 0.5657, 0.7071), rp(0, 0) = (0, 25, 25, 25),
ω(0, 0) = (0.2, 0.4, 0.6)rad/s, v(0, 0) = (0.1, 0.2, 0.3)m/s and h(0, 0) = 1. The energy-based controller has
the gains kd = 0.5, kp = 0.5 and a hysteresis gap of δ = 0.1. Figure 1 also shows a comparison between the
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Figure 1. Closed-loop response of the continuous, discontinuous and hybrid controllers subjected to measurement noise
with the switching logic h(0, 0) = 1 and δ = 0.1.

linear continuous controller with h(t, j) = 1, a discontinuous controller where the switching logic variable
h(t, j) := sgn(ηr) as in (13) and the hybrid controller with h(t, j) ∈ {−1, 1} as in Section IV.C. Next, we
consider a larger hysteresis width of δ = 0.4 and repeat the the simulations with the same set of initial
conditions and uncertainties as above. The hybrid controller now exhibits the same unwinding solution as
the linear continuous controller due to the larger hysteresis gap.
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Figure 2. Unwinding in rigid body rotational and translational dynamics with the switching logic h(0, 0) = 1 and δ = 0.4.

In addition, Figure 3 presents the results with the initial condition set to rp(0, 0) = (0, 2, 2, 1), qr(0, 0) =
(−0.4618, 0.1917, 0.7999, 0.3320), ω(0, 0) = (−0.1, 0.2,−0.3)rad/s, v(0, 0) = (0.1,−0.2, 0.3)m/s and h(0, 0) =
1. The energy-based controller has the gains kd = 0.5, kp = 0.5 and a hysteresis gap of δ = 0.4. Noise is added
similar to the previous simulations. As discussed previously in,8 there is a correlation between hysteresis
width δ and the sensitivity of the controller (10) to noise and the control effort as shown in Figures 2- 3.
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Figure 3. Rigid body rotational and translational dynamics with the switching logic h(0, 0) = 1 and δ = 0.4.

V.A.2. Measurement noise and actuator error

In addition to the measurement noise in section V.A.1, to include actuator errors, a zero-mean Gaussian
process noise with variance (0.2)2 and (0.2m)2 is added to the input states ηr and µt, respectively. And a
zero-mean Gaussian process noise with variance (0.02rad/sec)2 and (0.02m/sec)2 is added to the angular
velocity ω and translational velocity v of the input states, respectively.

As discussed in Section IV.A and evident from the simulation results, the continuous linear feedback con-
trol exhibits unwinding, while the discontinuous feedback control with h(t, j) := sgn(ηr) exhibits chattering
in the presence of measurement noise and is not impervious to noise and requires additional control effort.
The hybrid feedback control, however, is robust to the disturbances and achieves robust global asymptotic
stability for the rigid body dynamics as shown in Figure 4.
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Figure 4. Closed-loop response of the continuous, discontinuous and hybrid controllers subjected to measurement noise
and input error with the switching logic h(0, 0) = 1 and δ = 0.1.
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As suggested in,8 as well as the results in Sections IV.C, V, there is a trade-off between the choice of
hysteresis width δ (which should be increased for greater amounts of noise to ensure robustness) and the
control energy expended with the dual quaternion formulation.

VI. Conclusion

In this paper, a hybrid UDQ feedback control scheme was proposed for rigid body robust pose stabilization
with full state of the system available for feedback. The stability of the closed-loop system was guaranteed
through an energy-based Lyapunov function analysis using invariance principles for hybrid systems. We
showed that the proposed control schemes can globally asymptotically stabilize the kinematics and kinetics
and establish global asymptotic stability for a rigid body. In addition, the proposed hybrid scheme allows
for the controlled system to be stable in the presence of small uncertainty, which would otherwise cause
chattering about the point of discontinuous control.
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