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Invariance principles for hybrid systems with
connections to detectability and asymptotic stability

Ricardo G. Sanfelice, Rafal Goebel, and Andrew R. Teel

Abstract—The paper shows several versions of the (LaSalle’s)
invariance principle for general hybrid systems. The broad
framework allows for nonuniqueness of solutions, Zeno behav-
iors, and does not insist on continuous dependence of solutions
on initial conditions. Instead, only a mild structural prop erty
involving graphical convergence of solutions is posed. Thegeneral
invariance results are then specified to hybrid systems given by
set-valued data. Further results involving invariance as well as
observability, detectability, and asymptotic stability are given.

Index Terms—Hybrid systems, invariance principles, graphical
convergence, detectability, asymptotic stability.

I. I NTRODUCTION

A. Hybrid Systems

Hybrid systems theory has been an active research field
recently. This is due to the technological advances that require
mathematical models allowing for interactions between dis-
crete and continuous dynamics. Hybrid systems, having states
that can evolve continuously (flow) and/or discretely (jump),
permit modeling and simulation of systems in a wide range
of applications including robotics, aircraft control, powertrain
automotive systems, etc. Further motivation for studying hy-
brid systems comes from the recognition of the capabilities
of hybrid feedback in robust stabilization of nonlinear control
systems; see for example Hespanha and Morse [1], Prieur and
Astolfi [2], and Prieur et al. [3].

Several different models and solution concepts for hybrid
systems have appeared. See, for example, the work of Tav-
ernini [4], Michel and Hu [5], Lygeros et al. [6], Aubin et al.
[7], and van der Schaft and Schumacher [8]. Here, we will
work in the framework outlined in [9] (related to concurrent
approach in [10]), motivated there by the pursuit of robustness
of hybrid control algorithms, and established in [11]. This
framework, while similar to [6] and [7], simplifies the data
structure somewhat to focus on the dynamics and more im-
portantly, brings to the fore the relationship between properties
of the data and the structure of solution sets of a hybrid
system. The (mild) properties of the data we will use here
were already employed in [12] when showing that asymptotic
stability of a hybrid system implies the existence of a smooth

Ricardo G. Sanfelice and Andrew R. Teel are with the Center for Control,
Dynamical Systems, and Computation; Electrical and Computer Engineering
Department; University of California, Santa Barbara, CA 93106-9560,
rsanfelice@ece.ucsb.edu, teel@ece.ucsb.edu.

Research by Rafal Goebel carried out at the Center for Control, Dynamical
Systems, and Computation; current address: 3518 NE 42 St., Seattle, WA
98105,rafal.k.goebel@gmail.com.

Research partially supported by the Army Research Office under Grant no.
DAAD19-03-1-0144; the National Science Foundation under Grant no. CCR-
0311084, Grant no. ECS-0324679, and Grant no. ECS-0622253;and by the
Air Force Office of Scientific Research under Grant no. F49550-06-1-01346.

Lyapunov function and in [3], where a systematic approach
to robust hybrid feedback stabilization of general nonlinear
systems was described. The mild regularity properties of the
data – which do allow for nonuniqueness of solutions, multiple
jumps at a time instant, Zeno behavior, etc. – were further
motivated in [13] by accounting for the effects of vanishing
noise in a hybrid control system (even when nominal solutions
are “well-behaved”). For hybrid control systems that satisfy
these regularity properties, results on robustness to a class of
singular perturbations, control smoothing, measurement noise,
and sample-and-hold implementation of the hybrid controller
were recently reported in [14] and [15]. Additionally, in [16],
we have developed a general model for simulation of hybrid
systems and, relying on the robustness properties shown in
[11], we have established sufficient conditions for continuity
of asymptotically compact sets of simulated hybrid systems.

B. Invariance Principle Results

LaSalle’s invariance principle, presented originally by
LaSalle [17], [18] in the setting of differential and difference
equations, is one of the most important tools for convergence
analysis in dynamical systems. The original principle states
that bounded solutions converge to the largest invariant subset
of the set where the derivative or the difference, respectively, of
a suitable energy function is zero. Byrnes and Martin [19] gave
a version stating that bounded solutions converge to the largest
invariant subset of the set where an integrable output function
is zero. Ryan [20] extended this integral invariance principle
to differential inclusions and gave applications to adaptive
control. Logemann and Ryan [21] extended the principle for
differential inclusions using the notion of meagre functions,
alongside a generalization of Barbalat’s Lemma. For systems
with discontinuous right-hand side, invariance principles based
on that of LaSalle were given by Shevitz and Paden [22]
and Bacciotti and Ceragioli [23] for Filippov solutions, and
by Bacciotti and Ceragioli [24] for Carathéodory solutions.
Regarding invariance principles for hybrid systems, in [6]
Lygeros et al. extend LaSalle’s principle to nonblocking (for
each initial condition there exists at least one complete so-
lution), deterministic (the solution is unique), and continuous
(see Definition III.3 in [6]) hybrid systems, while Chellaboina
et al. [25] work with left-continuous and impulsive systems
without multiple jumps at an instant, and with further quasi-
continuity properties including uniqueness of solutions.Hes-
panha, in [26], states an invariance principle for switched
linear systems under a specific family of switching signals.
The follow-up work, [27], extends some of the results of [26]
to a family of nonlinear switched systems under a larger set of



2

switching signals. In [28], Bacciotti and Mazzi present invari-
ance principles for nonlinear switched systems with dwell-time
signals and state-dependent switching that, in contrast to[26],
allow for locally Lipschitz Lyapunov functions.

C. Contributions

In this paper, we identify some basic assumptions that seem
necessary to carry out invariance arguments for general hybrid
systems, in which nonuniqueness of solutions, multiple jumps
at the same time, and Zeno behaviors are possible. These
assumptions do not include continuous dependence on initial
solutions, whether in the standard uniform metric or in any
generalized sense. Instead, we rely on outer semicontinuous,
with respect to graphical convergence of solutions, dependence
on initial conditions. Whether a given hybrid system possesses
this property can be easily verified by checking if the data
of the system has some mild regularity. We add that the
nonuniqueness of solutions is sometimes necessary in order
for outer semicontinuous dependence of solutions on initial
conditions to be present. Such nonuniqueness has a physical
meaning in hybrid control systems: it comes up naturally when
one accounts for small state measurement error (see [13]) and
is fundamental in the robustness analysis of hybrid control.
The other aspect of the “set-valuedness” of the systems we
consider, the set-valued data, serves as an analytical tool
to capture nonuniqueness of solutions and is also deeply
motivated by the questions of robustness, as outlined in [9].
The usefulness of set-valued data has already been appreciated
in the literature of continuous-time systems; see e.g. [29].

As the key to our results is the semicontinuity property of
solutions, rather than properties of the data of a hybrid system,
we work with abstract systems, defined as sets of hybrid
trajectories having the needed property. Only later we specify
the results to hybrid systems in the framework of [11] (see also
[9], [10]). Such generality allows us to study not only hybrid
systems of [11] but also certain subsets of solutions to those,
like when the time between jumps is bounded below by a
positive constant (dwell-time solutions) or when the number of
jumps in a given interval cannot exceed a certain upper bound
(average dwell-time solutions). These are usually considered
in the switching and hybrid control literature; see [26], [30].
Also, we can obtain specialized results for the classes of Zeno,
or of uniformly non-Zeno trajectories.

Our goal is to provide sufficient conditions for convergence
of bounded hybrid trajectories. We propose two invariance
principles that resemble the original one by LaSalle. The
first principle involves a (Lyapunov-like) function that is
nonincreasing along all trajectories that remain in a givenset.
The other relaxes the assumptions, by considering a pair of
auxiliary (output) functions satisfying certain conditions only
along the hybrid trajectory in question. These conditions seem
to be the weakest previously used in invariance principles for
continuous-time and discrete-time systems. Thus, in goingto
the hybrid domain, we do not give up any of the generality.
We also invoke observability and detectability for convergence,
and we relate this approach to the use of the invariance prin-
ciples. When coupled with stability, our convergence results

give new sufficient conditions for asymptotic stability. Special
cases include hybrid versions of Lyapunov’s basic theorem and
Krasovskii’s extension [31]. (For an overview of some other
stability results for hybrid systems, see [32] and [33].)

II. H YBRID SYSTEMS

Throughout this paper, we will study abstract hybrid sys-
tems given by a setS of hybrid trajectories satisfying
certain Standing Assumption. Such objects subsume a rich
class of hybrid systems defined by generator equations (or
inclusions) subject to some weak regularity conditions, and
several subsets of solutions to those. Below,R≥0 = [0, +∞),
N = {0, 1, 2, ...}, | · | denotes the Euclidean vector norm, and
given a nonempty setA, | · |A := infa∈A |x − a|.

A. General framework

Definition 2.1 (hybrid time domain):A subsetE ⊂ R≥0 ×
N is a compact hybrid time domainif

E =

J−1
⋃

j=0

([tj , tj+1], j)

for some finite sequence0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . A
subsetE ⊂ R≥0 ×N is a hybrid time domainif ∀(T, J) ∈ E,
E ∩ ([0, T ]× {0, 1, ...J}) is a compact hybrid time domain.

Equivalently,E is a hybrid time domain ifE is a union of
a finite or infinite sequence of intervals[tj , tj+1] × {j}, with
the “last” interval possibly of the form[tj , T ) with T finite
or T = +∞. On each hybrid time domain there is a natural
ordering of points:(t, j) � (t′, j′) if t ≤ t′ andj ≤ j′.

Definition 2.2 (hybrid trajectory):A hybrid trajectory is a
pair (x, domx) consisting of a hybrid time domaindomx
and a functionx defined ondomx that is continuous int on
domx ∩ (R≥0 × {j}) for eachj ∈ N.

We will often not mentiondomx explicitly, and understand
that with each hybrid trajectoryx comes a hybrid time domain
domx. Alternatively one could think of a hybrid trajectory
as a set-valued mapping fromR≥0 × N (or from R

2) whose
domain is a hybrid time domain (for a set-valued mapping
M , thedomaindomM is the set of arguments for which the
value is nonempty) and which is single-valued on its domain.
We denote the range ofx by rgex, i.e. rgex = x(domx).

In what follows, we will rely on a concept of graphical
convergence. A sequence of (set-valued) mappings{Mi}∞i=1

converges graphicallyto M if the graphsgphMi converge
to gphM as sets (for a mappingM : R

m →→ R
n, the graph

gphM is {(a, b) ∈ R
m×R

n : b ∈ M(a)}). For details on set
convergence, see Chapter 3 in [34]. When specialized to hybrid
trajectories, graphical convergence of a sequence{xi}

∞
i=1 to

a hybrid trajectoryx amounts to the following:

(a) for any (t, j) ∈ domx there exists a sequence
(ti, ji) ∈ domxi such thatlimi→∞(ti, ji, xi(ti, ji)) =
(t, j, x(t, j)),

(b) for any convergent sequence(ti, ji) ∈ domxi such that
limi→∞ xi(ti, ji) exists, the limit equalsx(t, j) where
(t, j) = limi→∞(ti, ji).
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Whenx does not jump multiple times at a single time instant,
graphical convergence described above means, intuitively, that
the times ofj-th jumps ofxi’s approach the time of thej-th
jump of x, and on time intervals wherex does not jump,xi’s
do not jump either and converge tox pointwise.

In general, a sequence of hybrid trajectories need not
converge graphically, and even when it does, the limit may not
be a hybrid trajectory (it can even be set-valued). To carry out
invariance principles, we will need to exclude such behavior,
and pose some further restrictions, for locally eventually
bounded sequences of hybrid trajectories. We call a sequence
{xi}

∞
i=1 of hybrid trajectorieslocally eventually boundedwith

respect to an open setO if for any m > 0, there exists
i0 > 0 and a compact setK ⊂ O such that for alli > i0, all
(t, j) ∈ domxi with t + j < m, xi(t, j) ∈ K. We can now
define our main object of study.

Definition 2.3 (abstract hybrid system):Given an open set
O ⊂ R

n, anabstract hybrid systemon O is a setS of hybrid
trajectories satisfying the following:

Standing Assumption:

(B1) rgex ⊂ O for all x ∈ S,
(B2) for anyx ∈ S and any(t̄, j̄) ∈ domx we havex̄ ∈

S, wheredom x̄ = {(t, j) | (t + t̄, j + j̄) ∈ domx}
and x̄(t, j) = x(t + t̄, j + j̄) for all (t, j) ∈ dom x̄,

(B3) for any locally eventually bounded (with respect to
O) sequence{xi}∞i=1 of elements ofS that converges
graphically, the limit is an element ofS.

Remark 2.4:Assumption (B1) identifiesO as the state
space of the system. (B2) says that tails of trajectories in
S are also inS, and reduces to the standard semi-group
property under further existence and uniqueness conditions.
(B3) guarantees a kind of semicontinuous dependence of
trajectories on initial conditions. More specifically, given a
sequence ofxi ∈ S with xi(0, 0) convergent to some pointx∗,
a general property of set convergence (see [34, Theorem 4.18]
or Section III in [11]) implies that we can pick a subsequence
of xi’s that converge graphically. Under the eventual local
boundedness assumption, (B3) guarantees that the graphical
limit of that subsequence, sayx, is an element ofS. As from
the very definition of graphical convergence we also get that
x(0, 0) = x∗, this essentially means that a limit of graphically
convergent trajectories with initial points convergent tox∗ is a
trajectory with initial pointx∗. (However, this does not mean
that every trajectory fromx∗ is a limit of some trajectories
with initial points different from, but convergent tox∗.)

Example 2.5:Let f : R
n → R

n be a function. Consider
a differential equationẋ(t) = f(x(t)) and, for simplicity,
suppose that maximal solutions to it are complete. With each
such solution we can identify a hybrid trajectoryx with
domx = R≥0 × {0}. Let S be the set of all such hybrid
trajectories. (B1) is trivially satisfied, while (B2) follows from
the definition of a solution to a differential equation. Iff
is locally bounded (which is the case iff is continuous),
then trajectoriesx ∈ S are uniformly continuous, locally
with respect toRn. Then (B3) is equivalent to assuming that
pointwise limits or local uniform limits of (locally eventually

bounded) sequences of elements ofS are inS. Classical results
say that (B3) is satisfied whenf is continuous. When solutions
exist and are unique for each initial condition (for example
when f is locally Lipschitz continuous) then (B3) reduces
to continuous dependence of solutions on initial conditions
(in the uniform metric on compact intervals, or pointwise as
used by [18]) while (B2) becomes the semigroup property as
used by [18]. Hence, (B1)-(B3) is met by the “discontinuous
Carathéodory systems” of [24], wheref is discontinuous
and a solution closure property, corresponding to (B3) but
stated in terms of local uniform convergence, is assumed. The
importance of properties (B2), (B3) for differential inclusions
resulting from Filippov’s regularization of a discontinuous f
were recognized already in [29, Chapter 3]. �

A hybrid trajectoryx is callednontrivial if domx contains
at least one point different from(0, 0), completeif domx is
unbounded, andZeno if it is complete but the projection of
domx onto R≥0 is bounded. We say thatx is continuous
completeif domx = [0,∞) × {0} and instantaneously Zeno
if domx = {0} × N. A trajectoryx ∈ S is calledmaximal
(with respect toS) if there does not existx′ ∈ S such that
x is a truncation ofx′ to some proper subset ofdomx′. A
trajectoryx is precompactif it is complete andrgex ⊂ O
is compact. Finally, we writeS(x0) as the subset of hybrid
trajectoriesx in S starting atx0.

B. Hybrid systems generated by outer semicontinuous data

We now show that the systems in Definition 2.3 subsume
those studied in [9], [11], [10]. The latter have the form

H :

{

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D ,

(1)

where the set-valued mappingsF (flow mapping) andG (jump
mapping) describe the continuous and the discrete evolutions,
respectively, and the setsC (flow set) andD (jump set) say
where these evolutions may occur. We will also restrict the
solutions to be in a state spaceO. SH denotes the set of all
solutions toH. Formally, asolution to H is a hybrid trajectory
such thatrgex ⊂ O and:

(S1) for all j ∈ N such that such thatIj has nonempty
interior, whereIj × {j} := domx ∩ ([0, +∞) × {j}),
x(·, j) is absolutely continuous int on Ij and, for almost
all t ∈ Ij ,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j));

(S2) for all (t, j) ∈ domx such that(t, j + 1) ∈ domx,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)).

The following theorem collects some results from [11].

Theorem 2.6: If the data(F, G, C, D, O) of H satisfies

(A0) O ⊂ R
n is an open set;

(A1) C and D are closed sets relative toO;
(A2) F : O →→ R

n is outer semicontinuous and locally
bounded, andF (x) is nonempty and convex∀x ∈ C;

(A3) G : O →→ R
n is outer semicontinuous andG(x) is

nonempty andG(x) ⊂ O for all x ∈ D;
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thenSH satisfies (B1)-(B3).

The set-valued mappingF : O →→ R
n is outer semicontinuous

if for every convergent sequence ofxi’s with limxi ∈ O, and
every convergent sequence ofζi ∈ F (xi), lim ζi ∈ F (limxi).
Similarly for G. F is locally boundedif for every com-
pact K ⊂ O there exists a compactK ′ ⊂ R

n such that
F (K) ⊂ K ′. For locally bounded mappings that have closed
(and hence compact) values, outer semicontinuity agrees with
what is often called upper semicontinuity; see [34] or [11].

Even if one originally considers a hybrid system with single-
valued but discontinuous flow and jump maps (as often is
the case in hybrid feedback control of nonlinear systems),
accounting for arbitrarily small measurement noise leads to
systems with set-valued data satisfying (A1)-(A3); see [13].

Lemma 2.7: Suppose thatH satisfies (A0)-(A3) and that
D ∩ G(D) = ∅. Then for any precompactx ∈ SH there
exists γ > 0 such that tj+1 − tj ≥ γ for all j ≥ 1,
(tj , j), (tj+1, j) ∈ domx (i.e. the elapsed time between jumps
is uniformly bounded below by a positive constant).

Proof: By local boundedness ofF and precompactness
of x, F (rgex) is bounded and for someδ > 0, |ẋ(t, j)| < δ
for all (t, j) ∈ domx. Let E := ∪J−1

j=0 (tj+1, j) be the set of
all points indomx at which a jump occurs (J can be finite or
infinite). Thenx(E) ⊂ O is compact by precompactness ofx,
x(E) ⊂ D, and by relative closedness ofD in O, x(E) ⊂ D.
By outer semicontinuity ofG, G(x(E)) ⊂ G(D) is closed,
and asx(E) ∩ G(x(E)) = ∅, the distance betweenx(E) and
G(x(E)) is positive, sayǫ > 0. Then, forj = 0, 1, 2, . . . , J −
1, the time interval betweentj andtj+1 is at leastǫ/δ (as the
distance betweenx(tj , j) andx(tj+1, j) is at leastǫ).

Various subsets ofSH also satisfy the Standing Assumption.

Corollary 2.8: Suppose thatH satisfies Assumption (A0)-
(A3). Letφ : R≥0 × N × R≥0 × N → [−∞, +∞] be a lower
semicontinuous function. Then the subset ofSH consisting of
all solutionsx to H such that

(⋄) φ(s, i, t, j) ≤ 0 for all (s, i), (t, j) ∈ domx,

satisfies (B3) of the Standing Assumption. If furthermoreφ is
such that for some functionΦ we haveφ(s, i, t, j) = Φ(t −
s, j − i) for all (s, i, t, j) ∈ R≥0 × N × R≥0 × N, then the
subset of solutions satisfies (B2) of the Standing Assumption.

Proof: If {xk}∞k=1 is a locally eventually bounded and a
graphically convergent sequence isSH, then by [9, Lemma
4.3], the limit, which we callx, is a solution toH. Moreover,
the setsdomxk converge (in the sense of set convergence)
to domx; see the proof of [11, Lemma 4.3]. In particular,
given any(s, i), (t, j) ∈ domx, there exist(sk, ik), (tk, jk) ∈
domxk for all large enoughk’s, so that(sk, ik) → (s, i) and
(tk, jk) → (t, j). If each ofxk ’s satisfies(⋄), then by lower
semicontinuity ofφ, so doesx. This shows the first claim.
Now, let x ∈ SH satisfy(⋄) andφ(s, i, t, j) = Φ(t− s, j − i)
for all (s, i, t, j). For any(T, J) ∈ domx, let x(t, j) := x(t+
T, j + J). Then, for any(s, i), (t, j) ∈ domx, φ(s, i, t, j) =
Φ(t − s, j − i) = Φ((t + T ) − (s + T ), (j + J) − (i + J)) =
φ(s + T, i + J, t + T, j + J) ≤ 0 since (s + T, i + J), (t +
T, j + J) ∈ domx. This shows the second claim.

Example 2.9 (autonomous differential/difference inclusions):

Given a closed setK ⊂ R≥0 × N, let φ(s, i, t, j) be

φ(s, i, t, j) =

{

0 (t, j) ∈ K
+∞ (t, j) 6∈ K.

Such φ is lower semicontinuous, and(⋄) means just that
domx ⊂ K. In particular, forK = R≥0 × {0} (respectively,
K = {0}×N), the set of all solutions toH satisfying(⋄) can
be identified with the set of absolutely continuous functions
x : R≥0 → R

n satisfyingẋ(t) ∈ F (x(t)) andx(t) ∈ C for all
t ∈ R≥0 (respectively, with the set of sequencesx : N → R

n

satisfyingx(j+1) ∈ G(x(j)) andx(j) ∈ D) for all j ∈ N. For
the special cases ofK just mentioned, (B2) is satisfied (tails
of solutions to autonomous differential/difference inclusions
are also solutions). �

Example 2.10 (dwell-time solutions):Consider

φ(s, i, t, j) =

{

a(j − i) − b(t − s) − c i < j
−∞ i ≥ j .

Note that for suchφ, φ(s, i, t, j) = Φ(t − s, j − i) with
Φ(τ, ι) = aι − bτ − c if ι > 0, Φ(τ, ι) = −∞ if ι ≤ 0.
When a = c = 1 and b = 1/τD > 0, then (⋄) reduces to
(j− i−1)δ ≤ t−s wheni < j, which requires that the jumps
be separated by at leastτD amount of “dwell-time”. This class
of solutions is known as dwell-time solutions. Bounds of the
type j − i ≤ b(t − s) + c for i < j describe solutions with
bounded average dwell time. See [26] and [30]. �

Example 2.11 (switched systems):Fix an integerm > 0
and for eachq ∈ Q := {1, 2, . . . , m} let fq : O → R

n be a
continuous function where the setO ⊂ R

n is open. Consider
a hybrid systemH in the form (1), with a variable(x, q) and
data(ẋ, q̇) = (fq(x), 0), (x+, q+) ∈ (x, Q), C = D = O×Q.
Then H meets the conditions in Theorem 2.6. The setSH

includes representations, on hybrid time domains, of all so-
lutions to the switched systeṁx(t) = fq(x(t)) for which
the increasing (and finite or infinite) sequence of switching
times ti, i = 1, 2, . . . has no accumulation points or has one
accumulation point equal tosupi ti. (Note that each solution to
a switched system can be represented on a hybrid time domain,
but some solutions toH – those with multiple jumps at an
instant – do not correspond to a solution of a switched system.)
For background on switched systems, see for example [26].
Corollary 2.8 and Example 2.10 show that hybrid time domain
representations of certain classes of solutions to the switched
system ẋ = fq(x) do satisfy the Standing Assumption. In
particular, such classes include solutions with dwell-time τD

for eachτD > 0, and also solutions with bounded average
dwell-time or reverse average dwell-time (cf. [30]). �

Example 2.12 (Lyapunov-like inequalities):Different kinds
of families of solutions toH, also meeting the Standing As-
sumption, can be generated by various Lyapunov-like inequal-
ities. For example, for any continuous functionV : O → R,
and any fixedj ∈ N, the set of allx ∈ SH such that, if
(t, j − 1), (t, j) ∈ domx then V (x(t, j)) ≤ V (x(t, j − 1))
meets (B3) of the Standing Assumption. (In other words, this
is the set of allx such that, ifx has aj-th jump, thenV
does not increase during that jump.) Consequently, the set of
all x ∈ SH such thatV (x(t, j)) ≤ V (x(t, j − 1)) for all
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(t, j) ∈ domx such that(t, j−1) ∈ domx meets (B3); it can
be easily verified that this set also satisfies (B2). �

For any subsetK close relative toO, the subset of all
solutionsx to H such thatrgex ⊂ K meets the Standing
Assumption. More generally, ifS satisfies the Standing As-
sumption andK ⊂ O is closed relative toO, then SK :=
{x ∈ S | rgex ⊂ K} satisfies the Standing Assumption.

In contrast, the set of allx ∈ SH for which tj+1 − tj > 0
may not meet the Standing Assumption. Indeed, a sequence
of such solutions can converge graphically to an instantaneous
Zeno solution. Another negative example is the set of all
x which have exactlyJ > 0 jumps (or at leastJ jumps).
One can construct a system and a convergent sequence of its
solutions,{xi}∞i=1, so that allJ jumps forxi occur at timei.
The graphical limit will have no jumps.

III. W EAK INVARIANCE AND Ω-LIMIT SETS

We define invariance for the set of hybrid trajectoriesS.

Definition 3.1 (weak invariance):For the set of hybrid tra-
jectoriesS, the setM ⊂ O is said to be

(a) weakly forward invariant(with respect toS) if for each
x0 ∈ M, there exists at least one complete hybrid trajec-
tory x ∈ S(x0) with x(t, j) ∈ M for all (t, j) ∈ domx;

(b) weakly backward invariant(with respect toS) if for each
q ∈ M, N > 0, there existx0 ∈ M and at least one
hybrid trajectoryx ∈ S(x0) such that for some(t∗, j∗) ∈
domx, t∗+j∗ ≥ N , we havex(t∗, j∗) = q andx(t, j) ∈
M for all (t, j) � (t∗, j∗), (t, j) ∈ domx;

(c) weakly invariant(with respect toS) if it is both weakly
forward invariant and weakly backward invariant.

Our weak forward invariance essentially agrees with the
concept of viability used in [7], and if one insists on unique-
ness of trajectories, with invariance as used in [6]. In [7],a
set K is viable for a impulsive differential inclusion if for
each initial condition inK there exists a complete solution
that stays inK. Invariance of a set for impulsive difference
inclusions is also defined and it is based on a viable set but
requires all complete solutions starting inK to stay inK. Sim-
ilarly, Lygeros et al. in [6] define invariance of a set but do not
restrict the solutions to be complete. Requiring completeness
in forward invariance and arbitrarily largeN > 0 in backward
invariance leads to the “smallest” possible invariant sets. To
verify the forward invariance for sets of trajectories closed
under concatenation (see Assumption (B5) in Section VII), it
is sufficient to test every pointx0 of M for the existence
of a complete hybrid trajectoryx starting atx0 such that
x(t, j) ∈ M for all t + j ≤ 1, (t, j) ∈ domx.

Given a hybrid trajectoryx ∈ S, a sequence{(ti, ji)}∞i=1

of points indomx is unboundedif the sequence ofti + ji’s
is unbounded, andincreasing if for i = 1, 2, . . . , (ti, ji) ≺
(ti+1, ji+1) in the natural ordering ondomx.

Definition 3.2 (ω-limit set): For a complete hybrid trajec-
tory x ∈ S, its ω-limit set, denotedΩ(x), is the set of all
ω-limit points, that is pointsx∗ ∈ O for which there exists an
increasing and unbounded sequence{(ti, ji)}

∞
i=1 in domx so

that limi→∞ x(ti, ji) = x∗.

The next lemma extends the results onω-limit sets in [35,
Chapter VII], [18, Chapter 1§5, Chapter 2§5], and [29,
Chapter 3§12.4] to hybrid trajectories. It can be also seen
as a generalization of [6, Lemma IV.1].

Lemma 3.3: Ifx ∈ S is a precompact hybrid trajectory of
S then itsω-limit setΩ(x) is nonempty, compact, and weakly
invariant. Moreover, the hybrid trajectoryx approachesΩ(x),
which is the smallest closed set approached byx. That is, for
all ǫ > 0 there exists(t̄, j̄) ∈ domx such that for all(t, j)
satisfying(t, j) � (t̄, j̄), (t, j) ∈ domx, x(t, j) ∈ Ω(x) + ǫB.

Proof: For any increasing and unbounded sequence
(ti, ji), the sequencex(ti, ji) is bounded and has a convergent
subsequence. ThusΩ(x) 6= ∅. Boundedness ofx implies that
of Ω(x). Pick x∗

k ∈ Ω(x) with x∗
k → x∗. By the definition

of Ω(x), for eachk there exists an increasing and unbounded
sequence(tik, ji

k) such thatxk(tik, ji
k) → x∗

k asi → ∞. Let īk
be such that|xk(tik, ji

k)−x∗
k| ≤ k−1 for all k, all i ≥ īk. Pick

ik’s so that for eachk, ik ≥ īk and(tik

k , jik

k ) ≺ (t
ik+1

k , j
ik+1

k ).
As x∗

k → x∗, we must havexk(t
nik

k , j
nik

k ) → x∗ ask → ∞.
Thusx∗ ∈ Ω(x), andΩ(x) is closed.

We now show the weak invariance. PickN > 0 and
x∗ ∈ Ω(x). Let (ti, ji) be an increasing and unbounded
sequence such thatx(ti, ji) → x∗ as i → ∞. For all large
i’s, pick (ti, ji

) ∈ domx such thatti + ji − (N + 1) ≤
ti + j

i
≤ ti + ji − N and let x̄i(t, j) = x(t + ti, j + j

i
) for

all (t, j) ∈ dom x̄i. Then x̄i ∈ S by (B2) of the Standing
Assumption. Sincex is bounded andrge x̄i ⊂ rgex, {x̄i}∞i=0

is locally eventually bounded with respect toO. By (B3),
there exists a subsequence{x̄ik

}∞k=0 of {x̄i}∞i=0, graphically
converging to somẽx ∈ S. As eachx̄ is complete, so is̃x;
see [11, Lemmas 3.5 and 4.5]. The subsequence can be picked
so that(tik

, jik
) converge to some(t∗, j∗) with t∗ + j∗ ≥ N ,

wheretik
= tik

− tik
and jik

= jik
− j

ik

. By the definition

of graphical convergence,̃x(t∗, j∗) = limk→∞ x̄ik
(tik

, jik
)

and so x̃(t∗, j∗) = x∗. Now define a hybrid arĉx by
x̂(t, j) = x̃(t + t∗, j + j∗). Thenx̂ is complete, and by (B2),
x̂ ∈ S. Thus,x̂ verifies weak forward invariance (atx∗) and
x̃, sinceN is arbitrary, verifies weak backward invariance, as
long as we show that̃x(t̃, j̃) ∈ Ω(x) for all (t̃, j̃) ∈ dom x̃. By
the graphical convergence ofx̄ik

to x̃, there exist(t̃ik
, j̃ik

) ∈
dom x̄ik

, (t̃ik
, j̃ik

) → (t̃, j̃) such thatx̄ik
(t̃ik

, j̃ik
) → x̃(t̃, j̃).

By construction,̄xik
(t̃ik

, j̃ik
) = x(t̃ik

+ tik
, j̃ik

+ jik
) where

(tik
, jik

) is increasing and unbounded. Thus, the sequence
(t̃ik

+ tik
, j̃ik

+ jik
) in domx is increasing and unbounded,

and sox̃(t̃, j̃) is anω-limit point of x.
Finally, we show convergence ofx to its ω-limit set.

Suppose that for someǫ > 0 there exists an increasing and
unbounded sequence(ti, ji) ∈ domx such thatx(ti, ji) 6∈
Ω(x) + ǫB for i = 1, 2, . . . . By precompactness ofx, there
exists a convergent subsequence ofx(ti, ji)’s. Its limit is, by
definition, in Ω(x). This is a contradiction.

IV. A N INVARIANCE PRINCIPLE INVOLVING A

NONINCREASING FUNCTION

The invariance principles we formulate in this section rely
on properties of certain functions not only on the range of
the trajectory in question, but also on the neighborhood of
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its range. Invariance principles relying only on the properties
of certain functions on the range of the trajectory will be the
subject of Section V. In what follows, given a hybrid trajectory
x with domaindomx, t(j) will denote the least timet such
that (t, j) ∈ domx, while j(t) will denote the least indexj
such that(t, j) ∈ domx.

A. Sets of hybrid trajectories

We say that a functionV : O → R is nonincreasing along
a hybrid trajectory x if V (x(t, j)) ≥ V (x(t′, j′)) for all
(t, j), (t′, j′) ∈ domx such that(t, j) � (t′, j′). The notation
f−1(r) will stand for ther-level set off ondom f , the domain
of definition of f , i.e. f−1(r) := {z ∈ dom f | f(z) = r}.

Lemma 4.1: Suppose a functionV : O → R is nonincreas-
ing along a hybrid trajectoryx. If V is lower semicontinuous,
then for somer ∈ R, V (Ω(x)) ⊂ (−∞, r]. If V is continuous,
then for somer ∈ R, V (Ω(x)) = r.

Proof: If Ω(x) = ∅, there is nothing to prove. Otherwise,
pick any z̄ ∈ Ω(x). By the definition ofΩ(x), there exists
{(ti, ji)}∞i=1, an increasing and unbounded sequence indomx,
satisfying x(ti, ji) → z̄. Let r̄ = lim infi→∞ V (x(ti, ji)).
Pick any z ∈ Ω(x), and an increasing and unbounded
sequence{(tk, jk)}∞k=1 in domx with x(tk, jk) → z. There
exists a subsequence{(tki

, jki
)}∞i=1 of {(tk, jk)}∞k=1 such

that for i = 1, 2, . . . , (ti, ji) � (tki
, jki

), and asV is
nonincreasing alongx, V (x(ti, ji)) ≥ V (x(tki

, jki
)). If V

is lower semicontinuous, taking limits asi → ∞ yields r̄ ≥
lim infi→∞ V (x(tki

, jki
)) ≥ V (z). If V is continuous, then let

r̄ = lim V (x(ti, ji)) = V (z̄), and considering a subsequence
{(tik

, jik
)}∞k=1 of {(ti, ji)}∞i=1 so that (tk, jk) � (tik

, jik
)

and V (x(tk, jk)) ≥ V (x(tik
, jik

)) yields, in the limit, that
V (z) ≥ r̄. Thus, if V is continuous,V (z) = r̄.

Lemma 4.2: LetV : O → R, uc, ud : O → [−∞, +∞]
be any functions, the setU ⊂ O be such thatuc(z) ≤ 0,
ud(z) ≤ 0 for all z ∈ U and such that for any trajectory
ξ ∈ S with rge ξ ⊂ U ,

V (ξ(t′, j′)) − V (ξ(t, j)) ≤
∫ t′

t

uc(ξ(s, j(s))) ds +

j′
∑

i=j+1

ud(ξ(t(i), i − 1)) (2)

holds for any(t, j), (t′, j′) ∈ dom ξ such that(t, j) � (t′, j′).
Let M ⊂ U be a set such thatV (M) = r for some
r ∈ R. If M is weakly forward invariant, thenM ⊂

u−1
c (0) ∪ u−1

d (0). If M is weakly backward invariant, then

M ⊂ u−1
c (0) ∪ R

(0,1)

u
−1

d
(0)

, where R
(0,1)

u
−1

d
(0)

:= {z ∈ O | z =

x(0, 1), x ∈ S(u−1
d (0)), (0, 1) ∈ domx}, that is, R(0,1)

u
−1

d
(0)

is

the reachable set fromu−1
d (0) in hybrid time(0, 1). If M is

weakly invariant, then

M ⊂ u−1
c (0) ∪

(

u−1
d (0) ∩ R

(0,1)

u
−1

d
(0)

)

.

Proof: For any trajectoryx ∈ S such thatx(t, j) ∈ M for
(t, j) ∈ domx with (t, j) � (t, j) � (t, j) for some(t, j) and

(t, j) in domx, the fact thatV is constant along trajectories
in M gives

∫ t

t

uc(x(s, j(s))) ds +

j
∑

i=j+1

ud(x(t(i), i − 1)) = 0.

Pick anyz ∈ M. If M is weakly forward invariant, then
there exists a nontrivialx ∈ S(z) with rgex ⊂ M. If
(0, 1) ∈ domx, applying the above equation to(t, j) = (0, 0),
(t, j) = (0, 1) yields ud(x(0, 0)) = 0, which shows that
z ∈ u−1

d (0). If (T, 0) ∈ domx for someT > 0, then applying
the equation to(0, 0), (T, 0) yields

∫ T

0
uc(x(s, 0)) ds = 0. As

uc is nonpositive, it must be the case thatuc(x(s, 0)) = 0 for
almost all s ∈ [0, T ]. Hence,z ∈ u−1

c (0). If M is weakly
backward invariant, then there existsx ∈ S(z∗), z∗ ∈ M,
such thatx(t∗, j∗) = z, t∗ + j∗ > 1, andx(t, j) ∈ M for all
(t, j) � (t∗, j∗). If (t∗, j∗ − 1) ∈ domx, then the inequality
above with(t, j) = (t∗, j∗ − 1), (t, j) = (t∗, j∗) shows that

ud(x(t∗, j∗ − 1)) = 0 and soz = x(t∗, j∗) ∈ R
(0,1)

u
−1

d
(0)

. If

(t∗ − T, j∗) ∈ domx for someT > 0, then an argument
similar to the one for forward invariance can be given.

The previous two lemmas allow us to establish the first
invariance principle for hybrid trajectories.

Theorem 4.3: (V invariance principle) Suppose that there
exist a continuous functionV : O → R, a setU ⊂ O, and
functionsuc, ud : O → [−∞, +∞] such that for any hybrid
trajectory ξ ∈ S with rge ξ ⊂ U ,

uc(ξ(t, j)) ≤ 0, ud(ξ(t, j)) ≤ 0

for all (t, j) ∈ dom ξ and (2) holds for any(t, j), (t′, j′) ∈
dom ξ such that(t, j) � (t′, j′).

Let x ∈ S be a precompact hybrid trajectory such that

{x(t, j) | (t, j) ∈ domx, (T, J) � (t, j)} ⊂ U ,

for some(T, J) ∈ domx, which holds whenrgex ⊂ U . Then,
for somer ∈ V (U), x approaches the largest weakly invariant
subset of

V −1(r) ∩ U ∩
[

u−1
c (0) ∪

(

u−1
d (0) ∩ R

(0,1)

u
−1

d
(0)

)]

. (3)

Proof: For any precompact trajectoryx, from Lemma
3.3 we know thatx approaches itsω-limit, which is weakly
invariant. This ω-limit is the same as theω-limit of the
truncation ofx to (t, j)’s with (T, J) � (t, j) ∈ domx. By
(2), the functionV is nonincreasing along the truncation. Thus
V is constant onΩ(x) by Lemma 4.1. Now note thatΩ(x) is
a subset ofU intersected with{rge ξ | ξ ∈ S, rge ξ ⊂ U}. In
turn, this intersection meets the conditions placed on the set
U in Lemma 4.2. Thus, invoking Lemma 4.2, withM also
replaced byΩ(x), finishes the proof.

Corollary 4.4: Under the assumptions of Theorem 4.3,

(a) if x is Zeno, then, for somer ∈ V (U), it approaches the
largest weakly invariant subset of

V −1(r) ∩ U ∩ u−1
d (0) ∩ R

(0,1)

u
−1

d
(0)

; (4)
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(b) if x is s.t., for someγ > 0, J ∈ N, and all j ≥ J ,
tj+1−tj ≥ γ (i.e. the elapsed time between jumps is even-
tually bounded below byγ), then, for somer ∈ V (U), x
approaches the largest weakly invariant subset of

V −1(r) ∩ U ∩ u−1
c (0). (5)

Proof: If x is Zeno, then the weak invariance ofΩ(x)
can be verified by instantaneous Zeno trajectories. More
specifically, givenz ∈ Ω(x) with x(ti, ji) → z for some
increasing and unbounded sequence of(ti, ji)’s, the sequence
of trajectoriesxi(t, j) := x(t + t(ji), j + ji − 1) has a
graphically convergent subsequence, the limitξ of which has
the domain equal to{0} × N (see also the proof of Lemma
3.3) and is such thatξ(0, 1) = z. Using this limit in the proof
of Lemma 4.2 shows thatz ∈ u−1

d (0) ∩ R
(0,1)

u
−1

d
(0)

.

Regarding (b), note that we can truncatex (and we won’t
relabel it) so that, for someγ > 0, tj+1 − tj ≥ γ for all
j ≥ 0 such that(tj , j), (tj+1, j) ∈ domx. Pick z̄ ∈ Ω(x)
and an increasing and unbounded sequence(ti, ji) with the
property thatx(ti, ji) → z̄. Suppose that the sequence given
by xi(t, j) := x(t + ti, j + ji) graphically converges, say to a
trajectoryx̄ ∈ S, andx̄(0, 0) = z̄ (consult the proof of Lemma
3.3). If [0, γ/3]× {0} ⊂ dom x̄, then usingx̄ in the proof of
Lemma 4.2 shows that̄z ∈ u−1

c (0). In the opposite case, a
graphically convergent subsequence can be extracted from the
sequence given byx′

i(t, j) := x(t + ti − γ/3, j + ji) so that
its limit x̄′ is such that[0, γ/3]×{0} ⊂ dom x̄′. Furthermore
x̄′(γ/3, 0) = z̄ and rge x̄′ ⊂ Ω(x) (so x̄′ verifies the weak
backward invariance ofΩ(x) at z̄), and usingx̄′ in the proof
of Lemma 4.2 shows that̄z ∈ u−1

c (0).
Corollary 4.4 relies on the character of the trajectories

verifying the weak invariance ofΩ(x), rather that on whether
x jumps infinitely many times or whetherx is not Zeno. The
example below illustrates this, among other things.

Example 4.5:Consider the hybrid system onO = R
2 given

by f(x) := [−x2 x1]
T , C := R×[0,∞), g(x) := [−x2 x1]

T ,
and D := R × (−∞, 0]. Any solution to this system (recall
(S1) and (S2) in Section II-B) satisfies(2) with V (x) = |x|.
Let uc(x) = 0 if x2 ≥ 0, uc(x) = −∞ if x2 < 0, and
ud(x) = 0 if x2 ≤ 0, ud(x) = −∞ if x2 > 0. Functions
uc, ud are the natural bounds on the decrease ofV , see(8)

and(9). For these functions,u−1
c (0) is the (closed) upper half

plane,u−1
d (0) is the (closed) lower half plane, andR(0,1)

u
−1

d
(0)

is

the (closed) right half plane. For the periodic solution given
by x(t, j) = (cos t, sin t) for t ∈ [0, π], x(π, 1) = (0,−1), and
x(t, j) = x(t−π, j−2) for t ≥ π, j ≥ 2, theω-limit set is just
rgex: the (closed) upper half of the unit circle and(0,−1).
Note that the domain of this solution is unbounded in both
t and j directions. For this solution,V (x(t, j)) = 1 for all
(t, j) ∈ domx. Suppose that Corollary 4.4 were applicable.
Taking r = 1 and U = R

2, the set (4) would be the unit
circle in the closed fourth quadrant and the set (5) would be
the unit circle in the (closed) upper half plane. In particular,x
does not approach either of these two sets even thoughdomx
is unbounded in botht andj directions, and therefore, it will
not approach an invariant set included in those sets. Of course,

x approaches the largest weakly invariant set contained in the
union of the sets (4) and (5) (as dictated by Theorem 4.3). This
set turns out to bergex. We note that ifR(0,1)

u
−1

d
(0)

is not used

in Theorem 4.3 then we must search for the largest weakly
invariant subset ofV −1(1) ∩ U ∩

(

u−1
c (0) ∪ u−1

d (0)
)

. This
turns out to be the unit circle, which is larger thanrgex. �

Note that the strong conclusion in the example above relies
both on the strong (forward and backward) invariance notion
and the setR(0,1)

u
−1

d
(0)

in (4). In contrast, the invariance principle

in [6] would only conclude that the trajectory in the example
converges to the unit circle.

B. Hybrid Systems

For the hybrid systems as in Section II-B, the functions
uc(x) and ud(x) of Section IV-A will be constructed from
a Lyapunov-like functionV and will be denoted byuC(x)
and uD(x), respectively. One will be determined by the
“derivative” of V at x in directions belonging toF (x),
the other by the difference betweenV at x and at points
belonging toG(x). These functions will be used to bound the
increment ofV as in equation(2). We begin by formulating
the infinitesimal inequality version of this. LetV : O → R

be continuous onO and locally Lipschitz on a neighborhood
of C. Let x be any solution to the hybrid systemH, and
let (t, j), (t, j) ∈ domx be such that(t, j) � (t, j). The
incrementV (x(t, j)) − V (x(t, j)) is given by

V (x(t, j)) − V (x(t, j)) =

∫ t

t

d

dt
V (x(t, j(t))) dt +

j
∑

j=j+1

[V (x(t(j), j)) − V (x(t(j), j − 1))] , (6)

which takes into account the “continuous increment” due to
the integration of the time derivative ofV (x(t, j)) and the
“discrete increment” due to the difference inV before and after
the jump. The integral above expresses the desired quantity
since t 7→ V (x(t, j(t))) is locally Lipschitz and absolutely
continuous on every interval on whicht 7→ j(t) is constant.

The generalized gradient (in the sense of Clarke) ofV at
x ∈ C, denoted by∂V (x) is a closed, convex, and nonempty
set equal to the convex hull of all limits of sequences∇V (xi)
wherexi is any sequence converging tox while avoiding an
arbitrary set of measure zero containing all the points at which
V is not differentiable (asV is locally Lipschitz,∇V ex-
ists almost everywhere). The (Clarke) generalized directional
derivative ofV at x in the direction ofv can be expressed as

V ◦(x, v) = max
ζ∈∂V (x)

〈ζ, v〉. (7)

One of its basic properties is that for any solutionz(·) to
ż(t) ∈ F (z(t)),

d

dt
V (z(t)) ≤ V ◦(z(t), ż(t))

for almost all t. (Note that asV is locally Lipschitz, the
derivative on the left above can be understood in the standard
sense.) For more details see [36].
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Consequently, the functionuC : O → [−∞, +∞) given by

uC(x) :=

{

max
v∈F (x)

max
ζ∈∂V (x)

〈ζ, v〉 x ∈ C

−∞ otherwise
(8)

can be used to bound the increase ofV along solutions to
the hybrid system. That is, for any solution to the hybrid
system, and anyt where d

dt
V (x(t, j(t))) exists, we have

d
dt

V (x(t, j(t))) ≤ uC(x(t, j(t))).
To bound the “discrete contribution” to the change inV

from (6), we will use the following quantity:

uD(x) :=

{

max
ζ∈G(x)

{V (ζ) − V (x)} x ∈ D

−∞ otherwise.
(9)

Even without any regularity onV , one gets the bound
V (x(tj+1, j + 1)) − V (x(tj+1, j)) ≤ uD(x(tj+1, j)) for any
solution to the hybrid system.

Lemma 4.6: (upper semicontinuity ofuC and uD) If V is
continuous onO and locally Lipschitz on a neighborhood of
C, thenuC and uD are upper semicontinuous onO.

For the continuous evolution, better bounds on
d
dt

V (x(t, j(t))) can be obtained if one does not insist
on upper semicontinuity of the bounding function. We
describe two such improvements. Both are based on the
observation that not all vectorsv ∈ F (x) may be selected as
the velocity of some solution tȯx(t) ∈ F (x(t)) for somet.
The second alternative we present also relies on the concept
of nonpathological functions.

For any solutionz(t) to the differential inclusionż(t) ∈
F (z(t)), wheneverż(t) exists, we haveż(t) ∈ TC(z(t)).
Here, TC(x) is the tangent coneto C at x ∈ C. It is the
set of all v ∈ R

n for which there exists a sequence of real
numbersαi ց 0 and a sequencevi → v such that for
every i = 1, 2, ..., x + αivi ∈ C. For further details see
[37] or Chapter 6 in [34]. Hence, for any solution to the
hybrid system, d

dt
V (x(t, j(t))) ≤ vC(x(t, j(t))) for almost

all t, wherevC : O → [−∞, +∞) is defined by

vC(x) :=

{

max
v∈FT (x)

max
ζ∈∂V (x)

〈ζ, v〉 x ∈ C, FT (x) 6= ∅

−∞ otherwise,
(10)

whereFT (x) := F (x) ∩ TC(x). Obviously,vC(x) ≤ uC(x).
We note though thatvC(x) = uC(x) for all x ∈ intC since
for suchx, TC(x) = R

n. Still, different values ofvC anduC

on the boundary ofC may lead to different invariant sets.
The next construction relies on a concept proposed by

Valadier [38]. A functionf : O → R is callednonpathological
if it is locally Lipschitz and for every absolutely continuous
z : [a, b] → O the set∂ (f ◦ z) is a subset of an affine subspace
orthogonal toż(t) for almost everyt ∈ [a, b]. (For recent
results involving nonpathological functions see Bacciotti and
Ceragioli [24].) Locally Lipschitz functions that are (Clarke)
regular, semiconcave, or semiconvex are nonpathological.In
particular, finite-valued convex functions are nonpathological.

When V is nonpathological on an open set containingC,
for any absolutely continuousz : [a, b] → R

n, the set of
points{〈∂V (z(t)), ż(t)〉} reduces to the singletond

dt
V (z(t))

for almost allt ∈ [a, b]; see [38], Proposition 3. Consequently,

the following function can replaceuC in the bounds on the
increase ofV :

wC(x) :=

{

max
v∈F⊥(x)

〈∂V (x), v〉 x ∈ C, F⊥(x) 6= ∅

−∞ otherwise,
(11)

where F⊥(x) := {ν ∈ FT (x) | ∃c s.t. 〈∂V (x), ν〉 = c}.
Clearly, wC(x) ≤ vC(x) for all x ∈ C. The condition that
there existsc such that 〈∂V (x), v〉 = c means just that
∂V (x) is in an affine subspace orthogonal tov. Note that
to make (11) resemble(8) more, we can replace (without
really changing anything) the expression〈∂V (x), v〉 above
by maxζ∈∂V (x)〈ζ, v〉. Note that equivalently,min can be
used instead ofmax. In any case, for any solution to the
hybrid system, we haved

dt
V (x(t, j(t))) ≤ wC(x(t, j(t))) ≤

vC(x(t, j(t))) ≤ uC(x(t, j(t))) almost everywhere.
As mentioned before, bothvC andwC can fail to be upper

semicontinuous. The reason for this is that the set-valued
mappingFT , and consequentlyF⊥, does not need to be outer
semicontinuous (TC(x) is not an outer semicontinuous map).
If one definesw′

C(x) similarly to wC(x), but with the maxi-
mum overv in F ′(x) := {ν ∈ F (x) | ∃c s.t. 〈∂V (x), ν〉 = c},
the function still need not be upper semicontinuous. Indeed,
consider the functionV : R → R≥0 given byV (x) = |x| and
the set valued mappingF : R →→ R given byF (x) = [−1, 1]
for all x ∈ R. Then F ′(0) = 0 while F ′(x) = F (x)
for x 6= 0 (in general,F ′(x) = F (x) for all x at which
∂V (x) = ∇V (x)). Thus, F ′ is not outer semicontinuous.
Evaluatingw′

C yields w′
C(0) = 0 while w′

C(x) = 1 for all
x 6= 0. This function is not upper semicontinuous.

We now state the invariance principle for hybrid systemsH
satisfying (A0)-(A3) when a Lyapunov-like functionV is pro-
vided that is locally Lipschitz and possibly nonpathological.

Theorem 4.7: (hybrid V invariance principle) Given a hy-
brid systemH, let V : O → R be continuous onO and locally
Lipschitz on a neighborhood ofC. Suppose thatU ⊂ O is
nonempty, and thatx ∈ SH is precompact withrgex ⊂ U . If

uC(z) ≤ 0, uD(z) ≤ 0

for all z ∈ U , then for some constantr ∈ V (U), x approaches
the largest weakly invariant set in

V −1(r) ∩ U ∩
[

u−1
C (0) ∪

(

u−1
D (0) ∩ G(u−1

D (0))
)]

. (12)

If uD(z) ≤ 0 for all z ∈ U and eithervC(z) ≤ 0 for all
z ∈ U , or V is nonpathological on a neighborhood ofC
and wC(z) ≤ 0 for all z ∈ U , then the conclusion holds
with u−1

C (0) replaced byv−1
C (0), respectively byw−1

C (0), in
equation(12).

Proof: The bound(2) holds withuc, ud replaced byuC ,
uD, for any trajectoryx with rgex ⊂ U . Consequently, by
Theorem 4.3, any precompact trajectoryx with rgex ⊂ U
approaches the largest weakly invariant set in (3) for some
r ∈ V (U) (with G = g), and here, the reachable setR

(0,1)

u
−1

D
(0)

is just G(u−1
D (0)). Since uC is upper semicontinuous and

nonpositive onU , the setu−1
C (0) is closed, and the closure

can be omitted. The same reasoning applies when assumptions
involve vC or wC , however since these functions need not be
upper semicontinuous, the closures are necessary.
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Consequences of Theorem 4.7, similar to those of Theorem
4.3 stated in Corollary 4.4, can be given. As in Theorem 4.3,
Theorem 4.7 can be written for the case that, for some(T, J) ∈
domx, {x(t, j) | (t, j) ∈ domx, (T, J) � (t, j)} ⊂ U .

C. Relation to previous results

As noted in Example 2.5, continuous-time systems param-
eterized byt ∈ R≥0 can be viewed as hybrid trajectories
with domains inR≥0 × {0} and that the set of all hybrid
trajectories corresponding to solutions ofẋ(t) = f(x(t)) with
f continuous meets the Standing Assumption. Thus, Theorem
4.7 implies the original invariance principle of LaSalle, [17,
Theorem 1], by settingF = f , C = O, andD = ∅. Taking
C = O andD = ∅ but lettingF be a set-valued map satisfying
(A2) of Theorem 2.6 reduces Theorem 4.7 to the invariance
principle in [20, Theorem 2.11]. Theorem 4.3 implies the
principle as stated by LaSalle in [18, Chapter 2, Theorem 6.4]
— the general notion of a derivative used in [18, Chapter
2, Theorem 6.4] can take the place ofuc in inequality (2);
see [18, Chapter 2, Lemma 6.2] and the comment following
it. Theorem 4.3 also implies [24, Proposition 3], by using
the nonpathological derivative of the Lyapunov function as
uc in (2) and relying on the solutions closure property, [24,
Definition 5], to satisfy our Standing Assumption.

SettingC = ∅, G = g whereg is a function, andD = O
reduces Theorem 4.7 to a discrete-time systems invariance
principle [18, Theorem 6.3, Chapter 1]. Indeed, the term
G(u−1

D (0)) in (12) is irrelevant for discrete-time systems, but
it is important in truly hybrid systems; see Example 4.5.

Theorems 4.3, 4.7 and their corollaries can also be used
to deduce convergence of trajectories of switched systems.
Let ẋ(t) = fq(t)(x(t)), q(t) ∈ Q := {1, 2, . . . , m} be a
switched system andH be a corresponding hybrid system,
as in Example 2.11. LetS(τD) be the set of all solutions to
this hybrid system with dwell-timeτD (recall Example 2.10).

Proposition 4.8: For eachq ∈ Q let fq : R
n → R

n be a
continuous function andVq : R

n → R≥0 be a continuously
differentiable function such that∇Vq(x) · fq(x) ≤ 0 for all
x ∈ R

n. Let S∗ ⊂ S(τD) for someτD > 0 be such that
Standing Assumption holds holds forS∗ andVq(t,j+1)(x(t, j+
1)) ≤ Vq(t,j)(x(t, j)) for all solutions(x, q) ∈ S∗. Then each
precompact solution(x, q) ∈ S∗ approaches the largest subset
K of

⋃m
q=1{∇Vq(x) · fq(x) = 0} that is invariant in the

following sense: for eachx0 ∈ K there existsε > 0 and: i)
q ∈ Q and a solutionx to ẋ(t) = fq(x(t)) such thatx(0) = x0

and x(t) ∈ K for all t in [0, ε); ii) q ∈ Q and a solutionx
to ẋ(t) = fq(x(t)) such thatx(0) = x0 and x(t) ∈ K for all
t in (−ε, 0].

Proof: The bound (2) holds for each(x, q) ∈ S∗

with uc(x, q) = ∇Vq(x) · fq(x) and ud(x, q) = 0 for all
(x, q) ∈ R

n ×Q. Corollary 4.4 implies that(x, q) approaches
L, the largest weakly invariant (with respect toS∗, and thus
with respect to the larger setS(τD)) subset of

⋃

q∈Q{∇Vq(x)·
fq(x) = 0} × {q}. Thus x approaches the projectionL′

of L onto R
n. It remains to show that this projection is

invariant in the sense stated in the proposition. Pick any
x0 ∈ L′ and a corresponding(x0, q0) ∈ L. By weak forward

invariance of L, there exists a complete(x, q) ∈ S(τD)
with (x(0, 0), q(0, 0)) = (x0, q0) and (x(t, j), q(t, j)) ∈ L
for all (t, j) ∈ dom(x, q). As (x, q) ∈ S(τD), we either
have (t, 0) ∈ dom(x, q) and q(t, 0) = q0 for someε > 0
and all t ∈ [0, ε], in which caseẋ(t, 0) ∈ fq0(x(t, 0)) and
x(t, 0) ∈ L′ for t ∈ [0, ε], or (0, 1) ∈ dom(x, q) in which
caseẋ(t, 1) ∈ fq(0,1)(x(t, 1)) andx(t, 1) ∈ L′ for t ∈ [0, τD].
Either x(·, 0) or x(·, 1), with the corresponding values ofq,
provide the needed (forward) solutions. Arguments involving
backward invariance are similar.

When V1, V2, . . . , Vm are identical, then the condition
Vq(t,j+1)(x(t, j +1)) ≤ Vq(t,j)(x(t, j)) is trivially satisfied for
any solution to the switched system. Thus, the result above
implies that any solution with a positive dwell-time (i.e.,an
element ofS(τD) for someτD > 0) approaches the setK;
see Section V-C for further generalizations. This is essentially
the invariance principle for switched systems as stated in [28,
Theorem 1]; our result is stronger as the concept of invariance
in Proposition 4.8 involves both forward and backward parts,
and not forward or backward, as in [28]. See [26] for related
results involving multiple Lyapunov functions.

Regarding hybrid systems, a result closely related to our
work, in particular to Theorem 4.7, is [6, Theorem IV.1]. [6,
Theorem IV.1] assumes continuous dependence of solutions on
initial conditions, properties quite hard to verify by looking
at the data (see [39] and [40] for some results in that
direction). Theorem 4.7 of this paper relies on semicontinuous
dependence, both weaker and easier to verify (recall Theorem
2.6). Another difference is the sharper notion of invariance
(which includes backward invariance) used in Theorem 4.7
and the presence of the termG(u−1

D (0)) in (12) which leads
to a tighter characterization of the set to which trajectories
converge; recall Example 4.5.

V. A MEAGRE-LIMSUP INVARIANCE PRINCIPLE

Below, we use the concept of a weakly meagre func-
tion. A function f : R≥0 → R is weakly meagreif
limn→∞(inft∈In

|f(t)|) = 0 for every family {In | n ∈ N}
of nonempty and pairwise disjoint closed intervalsIn in R≥0

with infn∈N µ(In) > 0. Here,µ stands for the Lebesgue mea-
sure. Weak meagreness was used previously by Logemann et
al. in [21] to formulate extensions of the Barbalat’s lemma and
resulting invariance principles. Following [21],f is weakly
meagre if for someτ > 0,

lim
M→+∞

∫ M+τ

M

|f(t)| dt = 0. (13)

In particular, anyL1 function is weakly meagre.

A. Case of a general hybrid trajectory

Lemma 5.1: (meagre-limsup conditions) Letx be a com-
plete hybrid trajectory such that

(*) For eachz ∈ Ω(x) andǫ > 0 there existδ > 0 andT > 0
such that, ifx(t, j) ∈ z + δB for some(t, j) ∈ domx
thenx(t′, j) ∈ z + ǫB for all t′ ∈ [t−T, t+T ] such that
(t′, j) ∈ domx.
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Furthermore, suppose that for some setU ⊂ O with rgex ⊂ U
there exist functionsℓc, ℓd : U → [0, +∞] that, for the hybrid
trajectory x, satisfy the meagre-limsup conditions given by

(a) if the projection ofdomx onto R≥0 is unbounded then
t 7→ ℓc(x(t, j(t))) is weakly meagre,

(b) if the projection ofdomx onto N is unbounded then for
all large enoughj there existst∗j ∈ [t(j), t(j + 1)] such
that lim supj→∞ ℓd(x(t∗j , j)) = 0.

Then Ω(x) ⊂ Ex,ℓc
∪ Ex,ℓd

, where Ex,ℓc
and Ex,ℓd

are
respectively defined by
{z ∈ rgex | ∃zi → z, zi ∈ rgex, lim inf i→∞ ℓc(zi) = 0},
{z ∈ rgex | ∃zi → z, zi ∈ rgex, lim infi→∞ ℓd(zi) = 0}.

Proof: Suppose otherwise, that for somex∗ ∈ Ω(x) and
ǫ, γ > 0, ℓ(z) := min{ℓc(z), ℓd(z)} ≥ γ for all z ∈ x∗ + ǫB,
z ∈ rgex. By definition ofω-limit point, there is an increasing
and unbounded sequence(ti, ji) ∈ domx with x(ti, ji) → x∗

as i → ∞. We can assume that for alli, ti + ji + 1 ≤ ti+1 +
ji+1. Let δ, T > 0 be related tox∗, ǫ as in condition (*) and,
without loss of generality, suppose thatT < 1. Ignoring initial
terms if necessary, we havex(ti, ji) ∈ x∗ + δB for all i ∈ N.
Consequently,x(t, ji) ∈ x∗ + δB for all t ∈ [ti − T, ti + T ],
(t, ji) ∈ domx. For eachi, either of the two conditions holds:

(1’) either t(ji) ≤ ti − T or t(ji + 1) ≥ ti + T (x flows for
time T either beforeti or after ti)

(2’) t(ji) > ti − T and t(ji + 1) < ti + T (x jumps within
time T before and afterti)

Either (1’) or (2’) has to occur for infinitely manyi’s. Suppose
it is (1’) and thatt(ji) ≤ ti −T for suchi’s (the other case is
treated similarly). Then,domx must be unbounded in thet-
direction. The fact thatℓ(x(t, j(t))) > γ for anyt ∈ [ti−T, ti]
for infinitely many i’s contradicts weak meagreness oft 7→
ℓc(x(t, j(t))) (note that intervals[ti−T, ti] are disjoint). If (2’)
holds for infinitely manyi’s, thendomx is unbounded in the
j-direction, and for infinitely manyi’s and allt ∈ [t(ji), t(ji+
1)] we haveℓd(x(t, ji)) > γ. This contradicts (b).

The condition (*) in Lemma 5.1 can be viewed as a sort
of continuity of x(t, j) in t, uniform “near each point of
Ω(x)”. The condition automatically holds ifx is a solution
to a hybrid system that satisfies (S1) and (S2) in Example
II-B and subject to (A0)-(A3). In fact, sinceF is locally
bounded,x(t, j) is Lipschitz in t, locally “near each point
of Ω(x)”. Also, (*) holds if x is precompact, andS is any
family satisfying our standing assumption. Indeed, suppose
that in such a case, for somez ∈ Ω(x) and ǫ > 0 there exist
increasing and unbounded sequences(ti, ji), (t

′
i, ji) ∈ domx

with x(ti, ji) → z, t′i − ti → 0, and x(t′i, ji) 6∈ z + ǫB.
By passing to a subsequence, we can suppose thatt′i ≥ ti
(the opposite case is treated similarly). Sincex is precompact,
the sequence of trajectoriesxi(t, j) := x(t + ti, j + ji) is
locally eventually bounded. Letξ ∈ S be the graphical limit
of xi’s. Thenξ(0, 0) contains bothz and some pointw with
|z − w| = ǫ. This is impossible.

In Lemma 5.1,Ex,ℓc
⊂ {z ∈ rgex | ℓc(z) = 0}, whereℓc

is the lower semicontinuous closure ofℓc. (Given a setU and a
functionℓ : U → [−∞, +∞], its lower semicontinuous closure
ℓ : U → [−∞, +∞], is the greatest lower semicontinuous
function defined onU , bounded above byℓ onU . Equivalently,

for anyx ∈ U , ℓ(x) = lim infxi→x ℓ(xi). In this terminology,
Ex,ℓ is the zero-level set of the lower semicontinuous closure
of the functionℓ truncated torgex.) In particular, if bothℓc

and ℓd are lower semicontinuous, andrgex ⊂ U , then the
conclusion of Lemma 5.1 implies thatΩ(x) is a subset of

{z ∈ rgex | ℓc(z) = 0} ∪ {z ∈ rgex | ℓd(z) = 0}.

However, if the assumption thatℓc, ℓd are nonnegative was
weakened to say that they are nonnegative only onrgex, the
last conclusion above may fail.

Let x be a precompact hybrid trajectory for which there exist
functionsuc, ud : O → [−∞, 0] andV : O → R such that(2)
holds for the hybrid trajectoryx for all (t, j), (t′, j′) ∈ domx
such that(t, j) � (t′, j′). Then ℓc = −uc, ℓd = −ud satisfy
conditions (a) and (b) of Theorem 5.1. In fact, there exists a
constantM > 0 for which

∫ T

0

ℓc(x(t, j(t))) dt < M,

J
∑

j=0

ℓd(x(t(j + 1), j)) < M,

for any (T, J) ∈ domx (this shows thatℓc(t, j(t)) is inte-
grable on[0,∞) and thus weakly meagre, while to satisfy
(b), one can taket∗j = t(j + 1)).

Based on the previous discussion, the next result shows
that, when a functionV with the right properties exists, the
conditions (a) and (b) of Lemma 5.1 are guaranteed.

Corollary 5.2: Let x ∈ S be a precompact hybrid trajec-
tory. Suppose that there exists a continuous functionV : O →
R, and functionsuc, ud : O → [−∞, +∞] such that for some
(T, J) ∈ domx,

uc(x(t, j)) ≤ 0, ud(x(t, j)) ≤ 0

for all (t, j) ∈ domx with (T, J) � (t, j), and (2) holds for
the hybrid trajectoryx for all (t, j), (t′, j′) ∈ domx such that
(T, J) � (t, j) � (t′, j′). ThenΩ(x) ⊂ Ex,uc ∪ Ex,ud , where
Ex,uc and Ex,ud are respectively defined by
{z ∈ rgex | ∃zi → z, zi ∈ rgex, lim supi→∞ uc(zi) = 0},
{z ∈ rgex | ∃zi → z, zi ∈ rgex, lim supi→∞ ud(zi) = 0}.

More precise results can be obtained if the domain of the
hybrid trajectory is bounded in one of the directions.

Corollary 5.3: Let x be a complete hybrid trajectory for
which (*) holds.

(a) If the projection ofdomx onto N is bounded and there
exists a functionℓc : rgex → [0, +∞] such thatt 7→
ℓc(x(t, j(t))) is weakly meagre, thenΩ(x) ⊂ Ex,ℓc

.
(b) If the projection ofdomx ontoR≥0 is bounded and there

exists a functionℓd : rgex → [0, +∞] such that, for all
large enoughj, there existst∗j ∈ [t(j), t(j +1)] such that
lim supj→∞ ℓd(x(t∗j , j)) = 0, thenΩ(x) ⊂ Ex,ℓd

.

Proof: For (a) useℓd(z) = r > 0 for all z in the Theorem
above, for (b) useℓc(z) = r > 0.

If, for a hybrid trajectory, the time between jumps is uni-
formly positive then only (a) of the meagre-limsup conditions
needs to be checked to draw the conclusion of Lemma 5.1.

Corollary 5.4: Letx be a complete hybrid trajectory such
that (*) holds andtj+1 − tj ≥ γ > 0 for all j = 1, 2, . . ..
If there exists a functionℓc : rgex → [0, +∞] such that
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condition (a) of the meagre-limsup conditions holds, then
Ω(x) ⊂ Ex,ℓc

.

Proof: In the proof of Lemma 5.1,T can be chosen
arbitrarily small. PickingT < γ

2 shows that (2’) in the proof
of Lemma 5.1 cannot hold; hence (1’) has to hold for infinitely
many times. The proof follows that of Lemma 5.1.

If multiple instantaneous jumps can occur “only on the zero
level set ofℓd” (for a hybrid systemH, this is equivalent to
ℓd (G(D) ∩ D) = 0) and x ∈ S is precompact, then only
(a) of the meagre-limsup conditions needs to be checked to
draw the conclusion of Lemma 5.1. This is because under
such assumption on the jumps, on each compact set away
from the zero level set ofℓd, the elapsed time between jumps
is uniformly bounded below by a positive constant.

Corollary 5.5: Given the functionℓd : O 7→ R≥0, assume
that for all x̃ ∈ S, if (t, j − 1), (t, j), (t, j + 1) ∈ dom x̃, then
ℓd(x̃(t, j)) = 0. Let x ∈ S be a precompact hybrid trajectory.
Suppose that there exists a functionℓc : rgex → [0, +∞] such
that condition (a) of the meagre-limsup conditions holds. Then
the conclusion of Lemma 5.1 is true.

Proof: The first paragraph of the proof of Lemma 5.1 can
be repeated. Then, we claim that there existsτ ∈ (0, T ] such
that for all large enoughi’s, the following holds:
(1’) either t(ji) ≤ ti − τ or t(ji + 1) ≥ ti + τ (x flows for

time τ either beforeti or after ti)
Otherwise, for some sequence ofτk ց 0 and a subse-
quencetik

there is a jump at̄t−(k) ∈ [tik
− τk, tik

] and at
t̄+(k) ∈ [tik

, tik
+ τk], so that(t̄−(k), jik

− 1), (tik
, jik

), and
(t̄+(k), jik

+1) are all indomx. Now, consider a sequence of
trajectories given byxk(t, j) = x(t + t̄−(k), j + jik

− 1), and
pick a graphically convergent subsequence. For the limitx̄ we
must have that(0, 0), (0, 1), and (0, 2) are in dom x̄, while
x̄(0, 1) = x∗. This contradicts the assumption. Now, as (1’)
has to occur infinitely many times, the proof can be completed
as for Lemma 5.1.

Based on the results stated so far in this section, various
invariance principles can be stated.

Corollary 5.6: (meagre-limsup invariance principle) Let
x ∈ S be a precompact hybrid trajectory. Suppose that for
U ⊂ O, rgex ⊂ U , there exist functionsℓc, ℓd : U → [0, +∞]
for which the meagre-limsup conditions hold. Thenx con-
verges to the largest weakly invariant subset of

{z ∈ U | ℓc(z) = 0} ∪ {z ∈ U | ℓd(z) = 0}.

If rgex ⊂ U and ℓc, ℓd are lower semicontinuous, then all the
closure operations above can be removed.

The difference between Theorem 4.3 and Corollary 5.6
is that, in the latter, properties ofℓc, ℓd are only relevant
on the range of the hybrid trajectoryx in question. In the
former, we require properties ofuc, ud, and V to hold for
other trajectories than the one in question (in particular,for
the trajectories verifying forward invariance ofΩ(x)). One
may ask whether the conclusions of Corollary 5.6 can be
strengthened if assumptions were made on all trajectories;i.e.,
whether the following is true:

Suppose that there exist functionsℓc, ℓd : O → [0, +∞]
such that, for allx ∈ S, conditions (a) and (b) of Lemma

5.1 hold. Letx ∈ S be a precompact hybrid trajectory.
Thenx converges to the largest weakly invariant subset
of ℓ−1

c (0) ∪ ℓ−1
d (0).

This turns out to be impossible. Such a conclusion is not a
byproduct of the trajectories considered here being hybrid;
rather, it is caused byℓ not being lower semicontinuous. We
illustrate this with an example in continuous time.

Example 5.7:Consider the nonlinear system given byẋ1 =
φ(x) (x2 − x1(|x| − 1)) , ẋ2 = φ(x) (−x1 − x2(|x| − 1)) ,
wherex := [x1 x2]

T ∈ R
2, φ : R

2 → R≥0 is any smooth
function such thatφ(0, 1) = 0, φ(x) > 0 when x 6= (0, 1).
Except for the trajectoryx(t) = (0, 0) for all t ≥ 0, the
trajectories with initial points not on the unit circle rotate and
get closer to the unit circle (while “slowing down” in the
neighborhood of(0, 1)). In particular, their omega limit set
is the unit circle. The trajectories originating on the unitcircle
converge to(0, 1) (and so their omega limit set is(0, 1)). Let
ℓ : R

2 → R≥0 be given byℓ(x) = (|x| − 1)2 when |x| 6= 1
and x 6= 0, ℓ(x) = 0 when |x| = 1 and x2 ≥ 0 or x = 0,
ℓ(x) = 1 when|x| = 1 andx2 < 0. One can verify that for all
trajectories of the system,ℓ(x(t)) is weakly meagre. However,
it is not true that the omega limit of any nonzero trajectory
originating not on the unit circle (such omega limit is the unit
circle) is in the closure of the zero level set ofℓ (which is the
union of the upper unit semicircle and the origin). �

B. Case of a solution to a hybrid system

For hybrid systems, the natural counterparts ofℓc, ℓd,
that is the functionsuC and uD, as defined by(8), (9),
are upper semicontinuous. This does not lead to significant
improvements over the results in the previous subsection.

Corollary 5.8: Given a hybrid systemH, let V : O → R

be continuous onO and locally Lipschitz on a neighborhood
of C. Suppose thatU ⊂ O is nonempty andx is a precompact
solution toH with rgex ⊂ U . If

uC(z) ≤ 0, uD(z) ≤ 0

for all z ∈ U , then for some constantr ∈ V (U), x approaches
the largest weakly invariant set in

V −1(r) ∩ U ∩ (Ex,uC ∪ Ex,uD ) . (14)

If uD(x) ≤ 0 for all z ∈ U and eithervC(z) ≤ 0 for all
z ∈ U or V is nonpathological on a neighborhood ofC ∩ U
and wC(z) ≤ 0 for all z ∈ U , then Ex,uC in (14) can be
replaced byEx,vC (respectively,Ex,wC ), defined analogously,
with vC (respectively,wC ) replacinguC .

If, in Corollary 5.8, we havergex ⊂ U , thenEx,uC can be
replaced by{z ∈ rgex | uC(z) = 0}, based only on upper
semicontinuity arguments; similarly forEx,uD . The resulting
conclusion for locally LipschitzV (about the invariant set
approached byx) is the same as that of Corollary 4.7. Fur-
thermore, ifrgex ⊂ U then Ex,vC ⊂ {z ∈ U | vC(z) = 0},
and, if V is nonpathological,Ex,wC ⊂ {z ∈ U | wC(z) = 0}
(here, vC (wC ) is the upper semicontinuous closure ofvC

(respectively,wC )). The resulting conclusion is weaker than
Corollary 4.7, wherev−1

C (0) (and w−1
C (0)) appears. This
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shows that relying on properties ofV along all trajectories
in U , rather than just alongx, leads to stronger results when
continuity or semicontinuity (ofvC andwC ) can not be used.
We add that ifuC is continuous onC, thenEx,uC reduces to
rgex ∩ u−1

C (0); similarly for Ex,uD , Ex,vD , andEx,wC .
A similar result to Corollary 4.4 can be written when a

single trajectory is considered.

Corollary 5.9: Let the assumptions of Corollary 5.8 hold.

(a) If x is Zeno, then, for some constantr ∈ V (U), it
approaches the largest weakly invariant set in

V −1(r) ∩ U ∩ Ex,uD .

(b) If x is such that, for someγ > 0, J ∈ N, and all j ≥ J ,
tj+1 − tj ≥ γ (i.e. the elapsed time between jumps is
eventually bounded below by a positiveγ), then, for some
r ∈ V (U), x approaches the largest weakly invariant
subset of

V −1(r) ∩ U ∩ Ex,uC .

Proof: Part (a) is just a restatement of (b) in Corollary
5.3. Part (b) follows from Corollary 5.4.

Of course, as in Theorem 4.3, Corollary 5.8 can be written
for the case thatx stays inU after some(T, J) ∈ domx.

C. Relation to previous results

A reduction of the results of this section to continuous-time
systems, much like what we noted in Section IV-C, is also
possible. Lemma 5.1 implies [20, Theorem 2.10] (which in
turn implies the result of [19]) because condition (*) of Lemma
5.1 is satisfied for solutions of differential inclusions discussed
in [20] and the setEx,ℓc

is exactly{z ∈ rgex | ℓc(z) = 0}
whenℓc is lower semicontinuous, as assumed in [20, Theorem
2.10]. Furthermore, results of this section can also be applied
to switched systems. For example, via Corollary 5.4 and a
simple trick of building a solution with dwell-timeτD > 0
from what [26] calls a p-dwell solution with parametersτD >
0, T > 0, we can recover results like [26, Theorem 4 and 8].

VI. L OCATING WEAKLY INVARIANT SETS USING

OBSERVABILITY, OR STABILITY AND DETECTABILITY

Now we extend results on stability and convergence, and
the implications of observability and detectability, fromdif-
ferential equations to sets of hybrid trajectoriesS.

A. Observability

Definition 6.1 (observability):Given setsA, K ⊂ O, the
distance toA is observable relative toK for the set of
trajectoriesS if for every nontrivial trajectoryx ∈ S such
that rgex ⊂ K we have|x(t, j)|A = 0 for all (t, j) ∈ domx.

Classically, (zero-state) observability means that if theout-
put of a system is zero, the state is identically zero. If, fora
certain (output) functionh : O → R

k, K = h−1(0), we say
that the distance toA is observable through (the output)h.

Basic properties based on observability are stated below,
under the assumption thatA andK are compact subsets ofO

and the distance toA is observable relative toK for the sets
of hybrid trajectoriesS:

(a) the largest weakly invariant set inK is a subset ofA;
(b) if ω : O → R≥0 is a continuous and positive definite

function with respect toK, x ∈ S is precompact, and the
meagre-limsup conditions hold forx with ℓc, ℓd replaced
by ω, thenx converges toA.

B. Relative stability and detectability

In differential equations, detectability is the property that
when the output is held to zero, complete solutionsx satisfy
limt→∞ |x(t)|A = 0. Below, we generalize this notion.

Definition 6.2 (detectability):Given setsA, K ⊂ O, the
distance toA is detectable relative toK for the set of
trajectoriesS if for every complete trajectoryx ∈ S such
that rgex ⊂ K we havelim inft+j→∞ |x(t, j)|A = 0.

As discussed in [41], this detectability condition can be
understood asx having anω-limit point at A. As for ob-
servability, if K = h−1(0) for some functionh : O → R

k,
then we say that the distance toA is detectable throughh.

Definition 6.3 (relative stability):Given setsA, K ⊂ O, A
is stable relative toK for the set of trajectoriesS if for any
ǫ > 0 there existsδ > 0 such that any trajectoryx ∈ S(x0)
with rgex ⊂ K andx0 ∈ A+δB is such thatrgex ⊂ A+ǫB.

Stability of A is the same as stability relative toO. When
detectability (as in Definition 6.2) is combined with relative
stability, the usual detectability is recovered.

Lemma 6.4: (detectability and relative stability) Let
A, K ⊂ O be compact. If the distance toA is detectable
relative to K and A is stable relative toK, then each
complete trajectoryx ∈ S with rgex ⊂ K converges toA.

Example 6.5:For x ∈ R
n, A1, A2 ∈ R

n×n, and closed
C, D ⊂ R

n, consider the hybrid systemH given by

ẋ = A1x when x ∈ C, x+ = A2x when x ∈ D.

For simplicity, assume thatC ∪ D = R
n. The motivation

for this type of systems comes from many applications, like
sample-data control, reset systems, etc. Suppose that:

(◦) Let C̃ ∈ R
m×n be such that there exists matricesL1, L2,

andP = PT > 0 that satisfy

xT

(

(

A1 + L1C̃
)T

P + PT
(

A1 + L1C̃
)

)

x < 0,

xT

(

(

A2 + L2C̃
)T

P
(

A2 + L2C̃
)

− P

)

x < 0,

where the first inequality is for allx ∈ C \ {0} and the
second one for allx ∈ D \ {0}.

This assumption holds in particular when the pairs(C̃, A1)
and (C̃, A2) are detectable (in the linear sense) and the
detectability of both pairs can be verified with a common
Lyapunov function (which is quadratic and given byP ).

Let SH be the set of solutions toH, K any subset of
{

z ∈ R
n

∣

∣

∣
C̃z = 0

}

, andA = {0} ⊂ R
n. By definition of
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K, trajectories that remain inK are also trajectories of the
output injected hybrid systemHO defined as

ẋ = (A1 + L1C̃)x x ∈ C, x+ = (A2 + L2C̃)x x ∈ D.

Stability ofA (for the system above, and hence forH relative
to K) can be easily verified with the use of the common
quadratic Lyapunov functionV (x) = xT Px. Moreover, by
Corollary 4.7 withU = R

n and V (x), every trajectory that
stays in K converges toA. Hence, the distance toA is
detectable relative toK for the set of hybrid trajectoriesSH.
We point out though that (◦) is not a necessary condition for
detectability ofH relative toK, it is only sufficient.

Note that for LTI systems the concepts of relative stability
and detectability introduced above reduces to the standardone
in the literature. For instance, for the continuous-time LTI
system ẋ = Ax with output y = C̃x, detectability of the
pair (C̃, A) is equivalent to the distance toA := {0} being

detectable relative to subsets of
{

z ∈ R
n

∣

∣

∣
C̃z = 0

}

. �

Theorem 6.6: (detectability and invariance principle) Let
A, K ⊂ O be compact, and suppose thatA is stable relative to
K for the set of trajectoriesS. Then the following statements
are equivalent:

1) The distance toA is detectable relative toK.
2) The largest weakly invariant set inK is a subset ofA.

Proof: (1 ⇒ 2) Let M be the largest weakly invariant set
in K. Suppose that there existsz ∈ M\A. Let ǫ = |z|A. By
stability ofA relative toK, there existsδ > 0 such that every
hybrid trajectoryξ ∈ S with rge ξ ⊂ K andξ(0, 0) ∈ A+ δB

satisfiesrge ξ ⊂ A+ ǫ
2B. By weak backward invariance ofM,

there exists a trajectoryx1 ∈ S such that for some(t1, j1) ∈
domx1, t1 + j1 ≥ 1, x1(t1, j1) = z andx1(t, j) ∈ M for all
(t, j) � (t1, j1), (t, j) ∈ domx1 (in particularx1(0, 0) ∈ M).
Note that by stability, sincex1(t1, j1) 6∈ A + ǫ

2B, we have
x1(t, j) ∈ M \ (A + δB) for all (t, j) ∈ domx1, (t, j) �
(t1, j1). In this way, we can construct a sequencexi ∈ S
such that for everyi > 0, there exists(ti, ji) ∈ domxi, ti +
ji ≥ i with xi(ti, ji) = z and xi(t, j) ∈ M \ (A + δB)
for all (t, j) � (ti, ji), (t, j) ∈ domxi. As K is compact,
the sequence{xi}∞i=1 is locally eventually bounded. By the
Standing Assumption, it has a subsequence (that we won’t
relabel) converging to somex ∈ S, with xi(0, 0) → x(0, 0) ∈
M. Sincedomxi are “increasing”,x is complete; see [11,
Lemma 3.5]. Finally,rgex ⊂ M\ (A+δB), and alsorgex ⊂
K. The second inclusion, by detectability ofA relative to
K, relative stability ofA, and Lemma 6.4, implies thatx
converges toA. This is a contradiction with the first inclusion.

(2 ⇒ 1) Any trajectory x ∈ S with rgex ⊂ K is
precompact, by compactness ofK, and as such, it converges
to its ω-limit. Since theω-limit is invariant and a subset of
K, it must be a subset ofA. Hence,x converges toA.

Corollary 6.7: LetA, K be compact subsets ofO, with A
stable relative toK and with the distance toA detectable on
K, and letω : O → R≥0 be a continuous and positive definite
function with respect toK. If x ∈ S is precompact and the
meagre-limsup conditions hold forx with ℓc, ℓd replaced by
ω, thenx converges toA.

C. Uniform Convergence

Stability and detectability of the distance to a compact set
A relative to a compact setK leads to uniform convergence.

Theorem 6.8: (uniform convergence) LetA, K ⊂ O be
compact. Suppose thatA is stable relative toK and the
distance toA is detectable relative toK. Then, for each
ǫ > 0, there existsM > 0 such that for each complete
trajectory x ∈ S with rgex ⊂ K we have|x(t, j)|A ≤ ǫ
for all (t, j) ∈ domx, t + j ≥ M .

Proof: Suppose otherwise. Then, for someǫ > 0, there
exist a sequence of complete trajectoriesxi ∈ S such that
rgexi ⊂ K and a sequence(ti, ji) ∈ domxi with ti + ji ≥ i
such that|xi(ti, ji)|A > ǫ. By relative stability ofA, there
existsδ > 0 such that for eachi = 1, 2, . . . , |xi(t, j)|A > δ for
all t+j ≤ i, (t, j) ∈ domxi. SinceK is compact, the sequence
{xi}∞i=1 is locally eventually bounded, and, by the Standing
Assumption, it has a graphically convergent subsequence. Its
limit, let us call it x, is complete (since eachxi is complete;
see [11, Lemma 3.5]) and such thatrgex ⊂ K. Furthermore,
for all (t, j) ∈ domx, |x(t, j)|A ≥ δ. This contradicts the
detectability assumption.

VII. A SYMPTOTIC STABILITY

A. Definitions and aKLL-characterization

For results on uniform convergence without a priori restric-
tion of the trajectories to a compact set, we need an additional
condition. Besides the Standing Assumption, from now on we
also suppose the following:

(B4) any sequence{xi}∞i=1 of hybrid trajectories inS for
which initial pointsxi(0, 0) converge to a pointx0 where
every maximal solutionx ∈ S(x0) is complete, is locally
eventually bounded.

For solutions to hybrid systems, this property requires local
boundedness ofG. With the other growth properties ofG and
the fact thatG maps toO, its local boundedness is equivalent
to local boundedness with respect toO: for any compactK ⊂
O there exists a compactK ′ ⊂ O such thatG(K) ⊂ K ′.

Theorem 7.1: ([11], Theorem 4.6) If the hybrid systemH
with state spaceO satisfies (A0)-(A3) andG : O →→ O is
locally bounded, thenSH satisfies (B4).

Definition 7.2 (attractivity):A set A ⊂ O is attractive for
the set of trajectoriesS if there existsρ > 0 such that for any
x0 ∈ A+ ρB, each maximal trajectoryx ∈ S(x0) is complete
and satisfieslimt+j→∞ |x(t, j)|A = 0.

We denote byBA the basin of attraction of a compact setA,
i.e. the set of all pointsx0 for whichS(x0) is nonempty, each
x ∈ S(x0) is complete and such thatlimt+j→∞ |x(t, j)|A =
0. The setA is said to beasymptotically stableif it is
both stable and attractive. For the basin of attraction of an
asymptotically stable set to be forward invariant, another
assumption needs to be placed onS:

(B5) For anyx1 ∈ S, any (T, J) ∈ domx1, and anyx2 ∈

S(x1(T, J)), the hybrid trajectoryx defined on

domx := {(t, j) ∈ domx1 | (t, j) � (T, J)}

∪ {(t + T, j + J) | (t, j) ∈ domx2}
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is given byx(t, j) = x1(t, j) for (t, j) ∈ domx1, (t, j) �
(T, J), andx(t, j) = x2(t−T, j−J) for (t, j) such that
(t − T, j − J) ∈ domx2 is an element ofS.

The assumption means that a concatenation of two solutions is
still a solution. (Recall that assumption (B2) required that tails
of solutions be solutions.) It automatically holds for the hybrid
systemH as in Section II-B, and here, it guarantees that if
x ∈ S(BA) then for any(t, j) ∈ domx we havex(t, j) ∈ BA.

Given an open setX ⊂ O and a compact setA ⊂ X , a
proper indicatorω : X → R≥0 for A on X is a continuous
function that is positive definite with respect toA and proper
with respect toX . A function β : R≥0 × R≥0 × N → R≥0

is said to belong to classKLL if it is continuous,β(·, t, j)
is zero at zero and nondecreasing,β(s, ·, j) andβ(s, t, ·) are
nonincreasing and converge to zero ast, respectively,j go
to ∞. We say that the set of hybrid trajectoriesS is forward
complete onK if for all x0 ∈ K, everyx ∈ S(x0) is complete.

Definition 7.3: (KLL stability) Let ω : K → R≥0 be
continuous. The set of hybrid trajectoriesS is said to beKLL-
stable with respect toω if it is forward complete onK and
there existsβ ∈ KLL such that, for eachx0 ∈ K, every
x ∈ S(x0) satisfies

ω(x(t, j)) ≤ β(ω(x0), t, j) for each(t, j) ∈ domx.

Theorem 7.4: (asymptotic stability impliesKLL stab.) Sup-
pose that, for the set of trajectoriesS, the compact setA is
locally asymptotically stable, and its basin of attractionBA

can be expressed asX∩Y whereX ⊂ O is open andY ⊂ O
is closed relative toO. Then, for each proper indicatorω for
A on X , S is KLL-stable with respect toω.

Proof: The proof follows that of Theorem 6.5 in [11].
The expressionX ∩Y for BA is used to conclude that the set
{z ∈ BA |ω(z) ≤ r} is compact for anyr ≥ 0, while with
(B5), the reachable set from any subset ofBA is a subset of
BA. Other arguments, including those leading to Propositions
6.2 and 6.3 in [11], carry over essentially without change.

A particular case when a basin of attraction can be de-
scribed as in the theorem above is when the range ofS, i.e.
R := {rgex | x ∈ S}, is closed relative toO and when every
maximal solution inS is complete. Indeed, then it can be
shown thatBA is open relative toR (related result for hybrid
systemsH is in Proposition 6.4 of [11]). Then one can take
Y = R and an appropriate openX exists by the definition
of a relatively open set. We add that by (B2) of the Standing
Assumption,R = {x(0, 0) | x ∈ S}, and by (B3),R is closed
whenever it is bounded with respect toO. For hybrid systems
H as described in Section II-B,R is always closed under
(A0)-(A3). We conclude this section by illustrating the need
for some closedness assumptions onBA.

Example 7.5:Let S be the set of all solutions to the hybrid
system given onO = (−∞, 5) by D = [0, 1]∪(2, 3]∪[4, 5) and
G(x) = x/2 if x ∈ [0, 1], G(x) = 7−x if x ∈ (2, 3], G(x) =
x−4 if x ∈ [4, 5). (Such hybrid system can be identified with
a difference equation, and thus in what follows we do not
mentiont). Note that such a system does not meet (A0)-(A3)
sinceD is not closed relative toO. However, the setS does

meet the assumptions (B0)-(B5). Indeed, the only potential
“trouble” is the sequence of solutionsxi with xi(0) → 2. For
example, takexi(0) = 2 + 1/i. Thenxi(1) = 5 − 1/i, and
xi(2+k) = (1−1/i)2−k for k = 0, 1, . . . . The graphical limit
of such a sequence is given byx(0) = 2, x(1) = 5, x(2+k) =
2−k for k = 0, 1, . . . . Clearly,x 6∈ S. However, the sequence
of xi’s is not locally eventually bounded (asxi(2) → 5 as
i → ∞), so (B3) is not violated. The fact thatxi’s are not
locally eventually bounded does not violate (B4), as there are
no solutions starting from2 at all.

Now, notice that forS, A = {0} is asymptotically stable,
andBA = D (and thusBA = O∩D). However, there is noKL
bound ifω is a proper indicator ofA with respect toO. Indeed,
any KL function β such thatω(xi(1)) ≤ β(ω(xi(0)), 1) for
i = 1, 2, . . . would need to satisfyβ(s, 1) = ∞ for all
s ≥ ω(2), which is impossible. In common words, trajectories
originating far from the boundary ofO get arbitrarily close to
the boundary (before approachingA).

In order to makeD (and thusR, the range ofS) closed, one
could include a solutionx(0) = 2, x(1) = 1.5 (maximal, but
not complete) inS. Assumptions (B0)-(B5) are still satisfied.
The setR now equals[0, 1] ∪ {1.5} ∪ [2, 3] ∪ [4, 5), but BA

remains unchanged. Any open setX such thatBA = X ∩ R
must not contain2. The solutionsxi considered above are now
such thatxi(0) approach the boundary ofX as i → ∞, and
so ω(xi(0)) → ∞ for any proper indicator ofA with respect
to X . For suchω, a KL bound can be written down. �

B. Lyapunov and Krasovskii theorems for hybrid systems

In what follows, we work with hybrid systemsH with
data(F, G, C, D, O) as described in Section II-B. We replace
the Standing Assumption by the following assumptions: (A0)-
(A3), G locally bounded (see Theorem 7.1), and

(VC) for eachx0 ∈ C and for some neighborhoodU of
x0, for everyx′ ∈ U ∩ C, TC(x′) ∩ F (x′) 6= ∅,

(VD) for eachx0 ∈ D, G(x0) ⊂ C ∪ D.
The conditions (VC) and (VD) guarantee existence of solu-
tions; see [11, Proposition 2.4]. A particular consequenceof
them is that any maximal solution toH is either complete or
eventually leaves any compact subset ofO.

Theorem 7.6: (hybrid Krasovskii) Given a hybrid systemH,
suppose that
(⋆) A ⊂ O is compact,U ⊂ O is a neighborhood ofA,

V : O → R≥0 is continuous onO, locally Lipschitz on
a neighborhood ofC, and positive definite onC ∪ D
with respect toA, and uC and uD satisfyuC(z) ≤ 0,
uD(z) ≤ 0 for all z ∈ U .

ThenA is stable. Suppose additionally that
(⋆⋆) there existsr∗ > 0 such that for allr ∈ (0, r∗) the largest

weakly invariant subset in (12) is empty.
ThenA is locally asymptotically stable.

Proof: Assume (⋆) and letǫ > 0 be small enough so that
A + 2ǫB ⊂ U . We claim that there existscǫ such that

V (z) ≤ cǫ, z ∈ (A + 2ǫB) ∩ (C ∪ D)
⇒ z ∈ (A + ǫB) ∩ (C ∪ D), G(z) ⊂ (A + ǫB) ∩ (C ∪ D).

(15)
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Certainly, asV is positive definite onC ∪ D with respect
to A, there existsr′ǫ > 0 so that forz ∈ (A+2ǫB)∩ (C ∪D),
V (z) ≤ r′ǫ implies z ∈ (A + ǫB) ∩ (C ∪ D). Now note that
as uD(z) ≤ 0 for all z ∈ A and V is positive definite on
C ∪D with respect toA, G(A∩(C ∪D)) ⊂ A∩(C ∪D). By
outer semicontinuity and local boundedness, the mappingG
is “upper semicontinuous”, in particular there existsγ > 0 so
that G(A + γB) ⊂ A + ǫB. Using positive definiteness ofV
again, one can findr′′ǫ > 0 so thatz ∈ (A + 2ǫB) ∩ (C ∪ D)
andV (z) ≤ r′′ǫ imply z ∈ (A+ γB) ∩ (C ∪D). To make the
implication (15) true, one now takesrǫ = min{r′ǫ, r

′′
ǫ }.

Based on(15), we claim that the set

N = {z ∈ (A + ǫB) ∩ (C ∪ D) | V (z) ≤ rǫ} (16)

is (strongly) forward invariant forH, that is for anyx ∈ S(z)
with z ∈ N , rgex ⊂ N . Indeed, pick anyz ∈ N and let
x ∈ S(z). If (0, 1) ∈ domx, thenx(0, 1) ∈ G(z) ⊂ (A+ǫB)∩
(C ∪ D). If [0, T ] × {0} ⊂ domx and for somet′ ∈ (0, T ],
x(t′, 0) 6∈ N , then by continuity oft 7→ x(t, 0), for some
t′′ ∈ (0, t′], x(t′′, 0) 6∈ N butx(t′′, 0) ∈ (A+ǫB)∩(C∪D) and
V (x(t′′, 0)) ≤ rǫ (the latter is true asV is nonincreasing along
x). By equation(15), x(t′′, 0) ∈ N . This is a contradiction.
Thus x([0, T ], 0) ⊂ N . The facts just shown are enough to
conclude thatN is forward invariant.

Finally, by continuity ofV , given any small enoughǫ > 0
andrǫ > 0 so that(15) holds, we can findδ ∈ (0, ǫ) so that
z ∈ (A+δB)∩(C∪D) impliesV (z) ≤ rǫ. Relying on forward
invariance ofN , each maximalx ∈ S(z) with z ∈ A+ δB is
so thatrgex ⊂ A + ǫB. Thus,A is stable.

Now assume (⋆) and (⋆⋆). To show attractivity, note that
givenǫ > 0 with A+2ǫB ⊂ U , we can findrǫ ∈ (0, r), r as in
condition (⋆⋆) so thatN in (16) is forward invariant (i.e. one
can pickrǫ in the proof of stability ofA arbitrarily small). In
particular, if δ is associated withǫ as in the paragraph above,
any x ∈ S(z) with z ∈ A + δB is precompact. As such,
by Theorem 4.7, it converges to the largest weakly invariant
subset of the set given by(12). It must be the case thatr′ ≤ rǫ

asV is nonincreasing alongx, and thenr′ < r∗. As Ω(x) is
nonempty,x converges to the largest weakly invariant subset
of (12) with r = 0 which, by positive definiteness ofV , is a
subset ofA. Hence,A is attractive.

We note that in Theorem 7.6, the functionuC could be
replaced byvC , or wC if V is also nonpathological, as long
asu−1

C (0) in equation(12) is replaced byv−1
C (0) or w−1

C (0).
(In fact, the result could be stated in terms of any functionsuc,
ud for which (2) holds for all solutions to the hybrid system
H; the justification would involve Theorem 4.3.) Similarly,
vC or wC could be used in the results below; for the sake of
clarity we choose not to state them in the greatest generality.

Corollary 7.7: (hybrid Lyapunov) For a hybrid systemH,
suppose that (⋆) of Theorem 7.6 holds, and that furthermore
uC(z) < 0, uD(z) < 0 for all z ∈ U \A. ThenA is attractive,
and hence locally asymptotically stable.

The following result states that whenuC (respectively,uD)
is negative in points near a compact set and instantaneous
Zeno solutions (respectively, complete continuous solutions)
converge to the compact set, then it is asymptotically stable.

Theorem 7.8: For the hybrid systemH, suppose that (⋆) of
Theorem 7.6 holds. Suppose that either

(a) uC(z) < 0 for eachz ∈ U \ A,
(b) any instantaneous Zeno solutionx to H with rgex ⊂ U

converges toA;

or

(a’) uD(z) < 0 for eachz ∈ U \ A,
(b’) any complete continuous solutionx to H with rgex ⊂ U

converges toA.

ThenA is locally asymptotically stable.

Proof: Stability of A is guaranteed by Theorem 7.6. To
show attractivity, pickδ > 0 as in the last paragraph of the
proof of Theorem 7.6. Pick anyz ∈ A + δB and anyx ∈

S(z). Then Ω(x) ⊂ N , whereN is given by (16), and in
particular,Ω(x) ⊂ U . Given anyz′ ∈ Ω(x), let ξ ∈ S(z′) be
any solution toH verifying the forward invariance ofΩ(x), i.e.
rge ξ ⊂ Ω(x). By Lemma 4.1,V is constant alongξ. Suppose
thatV (ξ(t, j)) = d > 0 for all (t, j) ∈ dom ξ, so in particular
Ω(x) ∩ A = ∅. If assumptions (a) and (b) hold, then by (a)
and Lemma 4.1,ξ is instantaneously Zeno sinceΩ(x) ⊂ N .
Hence, by (b), it converges toA. But this contradictsV being
constant alongξ. If assumptions (a’) and (b’) hold, then by
(a’) and Lemma 4.1,ξ has no jumps, i.e. it is a complete
continuous solution. Hence, by (b’), it converges toA. This
again contradictsV being constant alongξ. Thus,V (ξ(t, j)) =
0 for all (t, j) ∈ dom ξ and consequently,Ω(x) ⊂ A. This
implies thatx converges toA.

VIII. C ONCLUSIONS

In the appropriate framework, the most general invariance
principles from continuous-time or discrete-time dynamical
systems can be extended, with no loss of generality, to the
setting of hybrid systems. As an application, these extensions
enrich the set of tools available for establishing asymptotic sta-
bility of compact sets in hybrid control systems. They permit
stability proofs using Lyapunov functions that do not strictly
decrease along both flows and jumps, and also trajectory-based
proofs, perhaps based on small-gain theorems expressed in
terms of detectable outputs. These tools can be used to readily
assist in the analysis of many physical examples, including
the bouncing ball system, Newton’s cradle, and swing-up of
an inverted pendulum on a cart.
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