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Abstract—The paper shows several versions of the (LaSalle’s) Lyapunov function and in [3], where a systematic approach

invariance principle for general hybrid systems. The broad
framework allows for nonuniqueness of solutions, Zeno beha
iors, and does not insist on continuous dependence of solatis
on initial conditions. Instead, only a mild structural prop erty
involving graphical convergence of solutions is posed. Thgeneral
invariance results are then specified to hybrid systems giveby
set-valued data. Further results involving invariance as wll as
observability, detectability, and asymptotic stability ae given.

Index Terms—Hybrid systems, invariance principles, graphical
convergence, detectability, asymptotic stability.

I. INTRODUCTION
A. Hybrid Systems

to robust hybrid feedback stabilization of general nordine
systems was described. The mild regularity properties ef th
data — which do allow for nonuniqueness of solutions, midtip
jumps at a time instant, Zeno behavior, etc. — were further
motivated in [13] by accounting for the effects of vanishing
noise in a hybrid control system (even when nominal soltion
are “well-behaved”). For hybrid control systems that $gatis
these regularity properties, results on robustness toss da
singular perturbations, control smoothing, measuremeisen
and sample-and-hold implementation of the hybrid cordroll
were recently reported in [14] and [15]. Additionally, ingJl

we have developed a general model for simulation of hybrid
systems and, relying on the robustness properties shown in

Hybrid systems theory has been an active research figld], we have established sufficient conditions for coritinu
recently. This is due to the technological advances thatireq of asymptotically compact sets of simulated hybrid systems
mathematical models allowing for interactions between dis
crete and continuous dynamics. Hybrid systems, havingsstat
that can evolve continuously (flow) and/or discretely (jympB- Invariance Principle Results

permit modeling and simulation of systems in a wide range aSalle’s invariance principle, presented originally by

of applications including robotics, aircraft control, pestrain

LaSalle [17], [18] in the setting of differential and difarce

automotive systems, etc. Further motivation for studyiyg hequations, is one of the most important tools for convergenc
brid systems comes from the recognition of the capabilitiggalysis in dynamical systems. The original principle estat

of hybrid feedback in robust stabilization of nonlinear ttoh

that bounded solutions converge to the largest invaridmetu

systems; see for example Hespanha and Morse [1], Prieur at¢he set where the derivative or the difference, respelstiof

Astolfi [2], and Prieur et al. [3].

a suitable energy function is zero. Byrnes and Martin [1®ga

Several different models and solution concepts for hybriglyersion stating that bounded solutions converge to tigesar
systems have appeared. See, for example, the work of Tawariant subset of the set where an integrable output fomct
ernini [4], Michel and Hu [5], Lygeros et al. [6], Aubin et al.is zero. Ryan [20] extended this integral invariance pglei
[7], and van der Schaft and Schumacher [8]. Here, we wilh differential inclusions and gave applications to adagpti
work in the framework outlined in [9] (related to concurrengontrol. Logemann and Ryan [21] extended the principle for
approach in [10]), motivated there by the pursuit of robastn differential inclusions using the notion of meagre funotip
of hybrid control algorithms, and established in [11]. Thiglongside a generalization of Barbalat'’s Lemma. For system
framework, while similar to [6] and [7], simplifies the datawith discontinuous right-hand side, invariance princihased
structure somewhat to focus on the dynamics and more ignh that of LaSalle were given by Shevitz and Paden [22]

portantly, brings to the fore the relationship between prtps

and Bacciotti and Ceragioli [23] for Filippov solutions, dan

of the data and the structure of solution sets of a hybrif, Bacciotti and Ceragioli [24] for Carathéodory soluson
system. The (mild) properties of the data we will use heRegarding invariance principles for hybrid systems, in [6]
were already employed in [12] when showing that asymptotiggeros et al. extend LaSalle’s principle to nonblockingr (f
stability of a hybrid system implies the existence of a shookach initial condition there exists at least one complete so
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lution), deterministic (the solution is unique), and cantus
(see Definition I11.3 in [6]) hybrid systems, while Chellaba

et al. [25] work with left-continuous and impulsive systems
without multiple jumps at an instant, and with further quasi
continuity properties including uniqueness of solutioHss-
panha, in [26], states an invariance principle for switched
linear systems under a specific family of switching signals.
The follow-up work, [27], extends some of the results of [26]
to a family of nonlinear switched systems under a larger et o



switching signals. In [28], Bacciotti and Mazzi presentdriv give new sufficient conditions for asymptotic stability.esfal
ance principles for nonlinear switched systems with dwigle  cases include hybrid versions of Lyapunov’s basic theonedn a
signals and state-dependent switching that, in contrg@6lp Krasovskii's extension [31]. (For an overview of some other
allow for locally Lipschitz Lyapunov functions. stability results for hybrid systems, see [32] and [33].)

C. Contributions Il. HYBRID SYSTEMS

In this paper, we identify some basic assumptions that seemlhroughout this paper, we will study abstract hybrid sys-
necessary to carry out invariance arguments for generalchyldems given by a setS of hybrid trajectories satisfying
systems, in which nonuniqueness of solutions, multiplegsmcertain Standing Assumption. Such objects subsume a rich
at the same time, and Zeno behaviors are possible. Thekss of hybrid systems defined by generator equations (or
assumptions do not include continuous dependence onliniifzclusions) subject to some weak regularity conditions] an
solutions, whether in the standard uniform metric or in argeveral subsets of solutions to those. Belw, = [0, +-00),
generalized sense. Instead, we rely on outer semicontiudy = {0,1,2,...}, | - | denotes the Euclidean vector norm, and
with respect to graphical convergence of solutions, depeoel given a nonempty setl, | - |4 := infaeca |2 — al.
on initial conditions. Whether a given hybrid system posess
this property can be easily v_erlfled by _checkmg if the dat& General framework
of the system has some mild regularity. We add that the
nonunigueness of solutions is sometimes necessary in ordeDefinition 2.1 (hybrid time domain)A subsetE C Rxq x
for outer semicontinuous dependence of solutions on initill is a compact hybrid time domaiif
conditions to be present. Such nonuniqueness has a physical J—1
meaning in hybrid control systems: it comes up naturallymvhe E= U ([tj:tj+11,4)
one accounts for small state measurement error (see [18]) an j=0
is fundamental in the robustness analysis of hybrid contrébr some finite sequence = ¢, < ¢; < 3 ... < ty. A
The other aspect of the “set-valuedness” of the systems wughsetEl C R>o x N is ahybrid time domairif ¥(T',J) € E,
consider, the set-valued data, serves as an analytical téabln ([0,7] x {0,1,...J}) is a compact hybrid time domain.

to capture nonuniqueness of solutions and is also deeply:=quivalently,E is a hybrid time domain ifZ is a union of
motivated by the questions of robustness, as outlined in [_%] finite or infinite sequence of intervalls, ;1] x {j}, with
The us_efulness of set-v_alued da_lta has already been agptecCighe “|ast” interval possibly of the fornit,;, T) with T finite
in the literature of continuous-time systems; see €.9..[29] or 7 — 1 ~0. On each hybrid time domain there is a natural

As the key to our results is the semicontinuity property Qfrdering of points{(t, j) < (¢',;) if t <t andj < j.
solutions, rqther than properties of the.data of a hybritsys . Definition 2.2 (hybrid trajectory):A hybrid trajectoryis a
we work with abstract systems, defined as sets of hybrid: - S )
trajectories having the needed property. Only later wei(specpaIr (x’dom z) con_&stmg of a hybnq time _doma|d_omx

4 . and a functionz defined ondom z that is continuous it on
the results to hybrid systems in the framework of [11] (sese aId N (R {j}) for eachj € N
[9], [10]). Such generality allows us to study not only hybri ome 20 X J €
systems of [11] but also certain subsets of solutions toethos Ve Will often not mentionlom z explicitly, and understand
like when the time between jumps is bounded below by that with each hybrid trajectory comes a hybrid time domain
positive constant (dwell-time solutions) or when the numdfe domz. Alternatively one could think of a hybrid trajectory
jumps in a given interval cannot exceed a certain upper boudgl @ set-valued mapping froR-, x N (or from R?) whose
(average dwell-time solutions). These are usually comsitle domain is a hybrid time domain (for a set-valued mapping
in the switching and hybrid control literature; see [26]0]3 M. thedomaindom M is the set of arguments for which the
Also, we can obtain specialized results for the classes nbzZe Value is nonempty) and which is single-valued on its domain.
or of uniformly non-Zeno trajectories. We denote the range of by rgez, i.e.rgex = x(domz).

Our goal is to provide sufficient conditions for convergence !N What follows, we will rely on a concept of graphical
of bounded hybrid trajectories. We propose two invariané@nvergence. A sequence of (set-valued) mappinygs} 2,
principles that resemble the original one by LaSalle. TH&nverges graphicallyo M if the graphsgph A; converge
first principle involves a (Lyapunov-like) function that isto gph M as sets (for a mapping/ : R™ = R", the graph
nonincreasing along all trajectories that remain in a gisetn 8Ph M is {(a,b) € R™ xR™ : b € M(a)}). For details on set
The other relaxes the assumptions, by considering a pairé@nvergence, see Chapter 3 in [34]. When specialized tddhybr
auxiliary (output) functions satisfying certain conditioonly trajectories, graphical convergence of a sequefgé;2; to
along the hybrid trajectory in question. These conditiczens @ hybrid trajectoryz amounts to the following:
to be the weakest previously used in invariance principes f (a) for any (¢,j) € domaz there exists a sequence
continuous-time and discrete-time systems. Thus, in gting (ti,ji) € domua; such thatlim; (¢, ji, 2i (¢, ji)) =
the hybrid domain, we do not give up any of the generality. (¢, j, z(¢, 7)),

We also invoke observability and detectability for converge, (b) for any convergent sequencg, j;) € domx; such that
and we relate this approach to the use of the invariance prin- lim;_ . x;(t;,j;) exists, the limit equalsc(t,j) where
ciples. When coupled with stability, our convergence rssul (t,7) = im0 (ti, Ji)-



Whenzx does not jump multiple times at a single time instanhounded) sequences of elementgaire inS. Classical results
graphical convergence described above means, intuitittedy say that (B3) is satisfied whefis continuous. When solutions
the times ofj-th jumps ofx;’s approach the time of thgth exist and are unique for each initial condition (for example
jump of z, and on time intervals where does not jumpg;'s when f is locally Lipschitz continuous) then (B3) reduces
do not jump either and converge iopointwise. to continuous dependence of solutions on initial condgtion
In general, a sequence of hybrid trajectories need n@ the uniform metric on compact intervals, or pointwise as
converge graphically, and even when it does, the limit may naesed by [18]) while (B2) becomes the semigroup property as
be a hybrid trajectory (it can even be set-valued). To camty oused by [18]. Hence, (B1)-(B3) is met by the “discontinuous
invariance principles, we will need to exclude such behavicCarathéodory systems” of [24], wherg is discontinuous
and pose some further restrictions, for locally eventualgnd a solution closure property, corresponding to (B3) but
bounded sequences of hybrid trajectories. We call a sequeatated in terms of local uniform convergence, is assumed. Th
{z;}2, of hybrid trajectoriedocally eventually boundedith importance of properties (B2), (B3) for differential inslons
respect to an open s&b if for any m > 0, there exists resulting from Filippov’s regularization of a discontimuef

10 > 0 and a compact sek C O such that for alk > ig, all were recognized already in [29, Chapter 3]. d
(t,j) € domw; with £ +j < m, 2(t,j) € K. We can now A hybrid trajectoryz is callednontrivial if dom z contains
define our main object of study. at least one point different frorf0, 0), completeif dom z is

Definition 2.3 (abstract hybrid system{Biven an open set unbounded, an&enoif it is complete but the projection of
O c R", anabstract hybrid systeran O is a setS of hybrid domz onto R>( is bounded. We say that is continuous
trajectories satisfying the following: completeif domx = [0,00) x {0} andinstantaneously Zeno

Standing Assumption: if .dOInI = {0} x N A trajectoryx € S is called maximal
(B1) rgex c Oforall z € (w.|th respect Fos) if there does not exist’ € S such that
(B2) for anyz € S and anyéf 7) € domz we haves € x is a truncation ofz’ to some proper subset dbomz’. A

heredom 7 — { (1 )’|j t+Ej+]) ed ) trajectory z is precompactf it is complete andrgez C O
gr,u;l\;(ir?) ZH;Z N i_(jij)( for ailf (t ‘;) c d(c))rr;l; is compact. Finally, we writes(z°) as the subset of hybrid

, trajectoriesr i tarting atz°.
(B3) for any locally eventually bounded (with respect torajec oriesr In & starting a

0) sequencéz; }$2, of elements ofS that converges
graphically, the limit is an element ¢f. B. Hybrid systems generated by outer semicontinuous data

] . . . We now show that the systems in Definition 2.3 subsume
Remark 2.4:Assumption (B1) identifiesO as the state those studied in [9], [L1], [10]. The latter have the form

space of the system. (B2) says that tails of trajectories in
S are also inS, and reduces to the standard semi-group ) t € F(x) reC

. X - H - 4 Q)
property under further existence and uniqueness condition T e G(r) reD,

(BC_S) guarantees a kind qf_ semicontinuous_ _depend_ence vlere the set-valued mappings(flow mapping) and? (jump
trajectories on |n|t|ql conditions. More specifically, 8IVa apping) describe the continuous and the discrete evolitio
sequence af; € S with z;(0,0) convergent to some point, egpectively, and the sets (flow set) andD (jump set) say

a general property of.set convergence (seg [34, Theorem 4.4 ere these evolutions may occur. We will also restrict the
or Section Il in [11]) implies that we can pick a subsequencg,| tions to be in a state space Sy denotes the set of all

of a;'s that converge graphically. Under the eventual localy|,tions tar. Formally, asolution to 7 is a hybrid trajectory
boundedness assumption, (B3) guarantees that the graphicay, thatrge s C O and:

limit of that subsequence, say is an element o§. As from

the very definition of graphical convergence we also get that
z(0,0) = z*, this essentially means that a limit of graphically
convergent trajectories with initial points convergenttois a
trajectory with initial pointz*. (However, this does not mean
that every trajectory fromx* is a limit of some trajectories z(t,j) € C, i(t,j) € F(z(t,7));
with initial points different from, but convergent to*.)

(S1) for all j € N such that such thaf; has nonempty
interior, wherel; x {j} := domx N ([0, +o0) x {j}),
z(-, j) is absolutely continuous ition I; and, for almost
alt e Ij,

, , (S2) for all(t,j) € domz such that(t,j + 1) € dom x,
Example 2.5:Let f : R® — R"™ be a function. Consider

a differential equationi(t) = f(x(t)) and, for simplicity, x(t,j) € D, x(t,j+1) € G(x(t,7)).

suppose that maximal solutions to it are complete. With eagfjﬁe following theorem collects some results from [11]
such solution we can identify a hybrid trajectory with '

domz = Rso x {0}. Let S be the set of all such hybrid Theorem 2.6: If the dat&F’, &, ', D, O) of 1 satisfies

trajectories. (B1) is trivially satisfied, while (B2) folies from (AO) O C R™ is an open set;

the definition of a solution to a differential equation. ff (A1) C and D are closed sets relative tO);

is locally bounded (which is the case jf is continuous), (A2) F : O = R"™ is outer semicontinuous and locally
then trajectoriesr € S are uniformly continuous, locally bounded, and?(x) is nonempty and conveke: € C;

with respect tdR™. Then (B3) is equivalent to assuming that (A3) G : O = R" is outer semicontinuous an@(x) is
pointwise limits or local uniform limits of (locally evenally nonempty andz(z) C O for all z € D;



then Sy, satisfies (B1)-(B3). Given a closed sek C R>o x N, let ¢(s,1,t,j) be

The set-valued mapping : O = R" is outer semicontinuous o 0 (t,j) € K
if for every convergent sequence gfs with limz; € O, and ¢(s,1,t,7) = too (t,)) € K.
every convergent sequence@fe F(z;), lim¢; € F(limz;).

Similarly for G. F' is locally boundedif for every com- Such ¢ is lower semicontinuous, anb) means just that

pact K C O there exists a compadk’  R" such that domx C K. In particular, forK = R>( x {0} (respectively,

F(K) C K'. For locally bounded mappings that have closeff - {0}_>_< N), t_he set of all solutions t6¢ satis_fying(o) can
(and hence compact) values, outer semicontinuity agrets Wt?e identified with the set of absolutely continuous funcdion
what is often called upper semicontinuity; see [34] or [11]. © - R=0 — R” satisfyingi(t) € F(x(t)) andu(t) € C for all

Even if one originally considers a hybrid system with singlet € R> (respectively, with the set of sequencesy — R"

valued but discontinuous flow and jump maps (as often ¥ tisfyinga(j +1) € G(x(5)) andz(j) € D) forall j € N. For

the case in hybrid feedback control of nonlinear systemé € spef:ial cases df just men_tioned,_(BZ_) Is satisfi_ed_ (tails
accounting for arbitrarily small measurement noise leaxds f solutions to autonomous differential/difference irssans

systems with set-valued data satisfying (A1)-(A3); sed.[13 are also solutions). -

Lemma 2.7: Suppose tha{ satisfies (A0)-(A3) and that Example 2.10 (dwell-time solutionsfonsider

D N G(D) = 0. Then for any precompact € Sy there o a(j—i)—bt—8)—c i<y

existsy > 0 such thatt;,; —t; > ~ for all j > 1, ZCRAN) _{ —50 P>

(t;,4), (tj+1,7) € domz (i.e. the elapsed time between jump o N

isJuniforlj”nIy bounded below by a positive constant). Rote that for suchs, Os,i,t,5) = &t —s,j — i) with
O(r,0) = ar—br—cif ¢ > 0, ®(1,1) = —o0 if ¢+ < 0.

Proof: By local boundedness of and precompactness\yhena — ¢ — 1 andb — 1/7p > 0, then (o) reduces to

of &, F(rgex) is bounded and f°§7510”‘§3> 0, (%, 7)1 <0 (j—i—1)5 < t— s wheni < 5, which requires that the jumps

for all (¢,7) € dom. Let E':= U2, (1j+1,j) be the set of e separated by at leags amount of “dwell-time”. This class

all points indom  at which a jump occurs/ can be finite or ¢ so|ytions is known as dwell-time solutions. Bounds of the

infinite). Thenz(E) C O is compact by precompactnessaof type j —i < b(t — s) + ¢ for i < j describe solutions with

z(E) C D, and by relative closedness 8fin O, z(E) C D.  poyunded average dwell time. See [26] and [30]. O

By outer semicontinuity oG, G(z(E)) C G(D) is closed, _ . _

and ase(E) N G(z(E)) = 0, the distance betweern(E) and Example 2.11 (switched system§jx an integerm > 0

G(z(E)) is positive, say > 0. Then, forj = 0,1,2,...,J— and foreachy € @ := {1,2,...,m} let f, : O — R" be a

1, the time interval betweety andt; ., is at least/§ (as the continuous funct|0_n where the s@tc R™ is open. Consider

distance between(t;, ;) andz(t;;1,7) is at least). m 2 hybrid systent{ in the form (1), with a variabl¢z, ¢) and
Various subsets @, also satisfy the Standing Assumptiondata(#, ¢) = (f4(2),0), (z7,¢") € (2,Q), C =D = O x Q.

STy 25 Suppose ha sases ASSUMBION (A0) s repesertatons. on hybrid ime domains. of il
: :Rxo >0 — [—o0,

semicontinuous function. Then the subseggfconsisting of Iut|o_ns to the swﬂche_d_ syste_m(_t)_ = Jala(?)) for Whl.Ch .
: the increasing (and finite or infinite) sequence of switching
all solutionsz to ‘H such that

timest;, ¢ = 1,2,... has no accumulation points or has one

(©) ¢(s,i,t,5) < 0forall (s,i),(t, j) € domz, accumulation point equal taip, ¢;. (Note that each solution to
satisfies (B3) of the Standing Assumption. If furthermpie a switched system can be represented on a hybrid time domain,
such that for some functio®® we have¢(s,i,t,j) = ®(t — but some solutions tG{ — those with multiple jumps at an

s,j —1) for all (s,i,t,7) € R>o x N x R>g x N, then the instant — do not correspond to a solution of a switched sy3tem
subset of solutions satisfies (B2) of the Standing Assumpti&or background on switched systems, see for example [26].
Proof: If {x;}5°, is a locally eventually bounded and gCorollary 2.8 and Example 2.10 show that hybrid time domain
graphically convergent sequenceds;, then by [9, Lemma representations of certain classes of solutions to theckedt
4.3, the limit, which we callz, is a solution to}. Moreover, Systemi = f,(z) do satisfy the Standing Assumption. In
the setsdom ), converge (in the sense of set convergencBRrticular, such classes include solutions with dwelletim
to domz; see the proof of [11, Lemma 4.3]. In particularfor €ach7p > 0, and also solutions with bounded average
given any(s, i), (t,j) € domz, there exist(sy, ix), (tx, ji) € dwell-time or reverse average dwell-time (cf. [30]). [

dom z}, for all large enoughk’s, so that(s, ir) — (s,i) and  Example 2.12 (Lyapunov-like inequalitiedpifferent kinds

(tx, jr) — (t,4). If each ofz;’s satisfies(o), then by lower of families of solutions tdH, also meeting the Standing As-

semicontinuity of¢,_so doesz. This shows the first claim. sumption, can be generated by various Lyapunov-like inequa

Now, letz € Sy satisfy (o) and¢(s,i,t,5) = ®(t —s,j —i) jties. For example, for any continuous functidh: O — R,

for all (s,i,t, ). For any(T, J) € domz, letz(t, j) := z(t+ and any fixedj € N, the set of allz € Sy such that, if

T,j+ J). Then, for any(s, i), (t,j) € domZ, ¢(s,1,t,j) = (t,7—1),(t,7) € domz thenV(z(t, ) < V(z(t,j — 1))

Dt —s,j—i)=((t+T) = (s+T),(j+J) = (i+])) meets (B3) of the Standing Assumption. (In other words, this

¢(s +Tyi+ Jit+T,5+J) <0since(s +T,i+J),(t+ s the set of allz such that, ifz has aj-th jump, thenV

T,j+ J) € domz. This shows the second claim. does not increase during that jump.) Consequently, thefset o
Example 2.9 (autonomous differential/difference induos): all = € Sy such thatV(z(¢,j)) < V(z(t,j — 1)) for all

|+



(t,j) € domz such that(t, j — 1) € domz meets (B3);itcan  The next lemma extends the results wimit sets in [35,
be easily verified that this set also satisfies (B2). 0 Chapter VII], [18, Chapter 185, Chapter 2§5], and [29,

For any subsetk close relative toO, the subset of all Chapter 3‘3‘1_2.4]. to hybrid trajectories. It can be also seen
solutionsz to H such thatrgez C K meets the Standing @S @ generalization of [6, Lemma IV.1].
Assumption. More generally, i§ satisfies the Standing As- Lemma 3.3: Ifz € S is a precompact hybrid trajectory of
sumption andK C O is closed relative taD, then Sx := S then itsw-limit setQ(x) is nonempty, compact, and weakly
{zx € § | rgex C K} satisfies the Standing Assumption. invariant. Moreover, the hybrid trajectory approache$(z),

In contrast, the set of alt € Sy for whicht;4,1 —¢; > 0 which is the smallest closed set approached:b¥hat is, for
may not meet the Standing Assumption. Indeed, a sequeadlec > 0 there exists(Z, j) € domx such that for all(¢, j)
of such solutions can converge graphically to an instamase satisfying(t, j) = (¢, 7), (¢,j) € domz, z(t,5) € Q(x) + €B.
Zeno solution. Another negative example is the set of all proof: For any increasing and unbounded sequence
z which have exactly/ > 0 jumps (or at least/ jumps). gi’ji)' the sequence(t;, j;) is bounded and has a convergent
One can construct a system and a convergent sequence ogifssequence. Thu3(z) # (. Boundedness of implies that
solutions,{xz;}2,, so that all./ jumps forz; occur at timei.  of ((z). Pick z; € Q(z) with 2} — z*. By the definition

The graphical limit will have no jumps. of Q(x), for eachk there exists an increasing and unbounded
sequencet;,, ji) such thate,(t),, j;,) — =} asi — oo. Letiy
I1l. W EAK INVARIANCE AND Q-LIMIT SETS be such thafzy (¢, ji) —z;| < k~! for all k, all i > 4. Pick

ix's so that for eaclk, i, > i and (£}, ji) < (£, j;).

We define invariance for the set of hybrid trajectorigs K
As z; — x*, we must haver,(t,",j, ") — «* ask — oo.

Definition 3.1 (weak invariance)For the set of hybrid tra- Thusz* € Q(x), andQ(z) is closed.

jectoriess, the set/\/l-c O. IS sa.|d to be . We now show the weak invariance. Pidk > 0 and

(a) weakly forward invarianwith respect tas) if for each .« ~ Q(z). Let (t;,4;) be an increasing and unbounded
20 € M, there exists at least one complete hybrid traje%‘equence such that(t;, j;) — =* asi — oo. For all large
tory z € S(a") with z(t, j) € M for all (,j) € domz; s pick (¢,,5.) € domz such thatt; + j; — (N + 1) <

(b) weakly backward invarianwith respect taS) if foreach ;. 4 ; <, +j — N and letz;(t,§) = x(t +t;,j +j.) for
g € M, N >0, there exist:® € M and at least one g (3 j) & dom;. Thenz; € S by (B2) of the Standing
hybrid trajectoryz € S(«”) such that for some!”, j*) € Assumption. Sincer is bounded andge z; C rge, {7;}5%,
domuz, t*+j* > N, we havex(t*, j) = g andx(t, j) € s |ocally eventually bounded with respect @. By (B3),

M forall (t,5) < (t*,j%), (£,) € domu; there exists a subsequenge;, }7°, of {z;}32,, graphically
(c) weakly invariant(with respect tas) if it is both weakly  converging to some € S. As eachz is complete, so is;
forward invariant and weakly backward invariant. see [11, Lemmas 3.5 and 4.5]. The subsequence can be picked

Our weak forward invariance essentially agrees with tH® that(%,,j;, ) converge to somé*, j*) with t* + j* > N,
concept of viability used in [7], and if one insists on uniquevheret;, = t;, —t; andj; = ji, —j, . By the definition
ness of trajectories, with invariance as used in [6]. In B], of graphical convergence;(t*, ;%) = limg_co Ti, (fik,jik)
set K is viable for a impulsive differential inclusion if for and so z(t*,j*) = z*. Now define a hybrid arcit by
each initial condition inK there exists a complete solutionz(¢,j) = Z(t +t*,j + j*). Thenz is complete, and by (B2),
that stays inK. Invariance of a set for impulsive differencei € S. Thus,z verifies weak forward invariance (at) and
inclusions is also defined and it is based on a viable set hbytsince N is arbitrary, verifies weak backward invariance, as
requires all complete solutions starting/into stay in. Sim- long as we show thai(z, j) € Q(z) for all (,7) € dom Z. By
ilarly, Lygeros et al. in [6] define invariance of a set but du n the graphical convergence of, to Z, there exist(;, , j;,) €
restrict the solutions to be complete. Requiring complesen dom Z;, , (£, ,ji,) — (f,7) such thatz;, (i, i, ) — &(t, 7).
in forward invariance and arbitrarily larg¥ > 0 in backward By constructionz;, (£i,, ji,) = 2(fi, + ti, Ji, + ji,) Where
invariance leads to the “smallest” possible invariant.s&s (¢;,,j;.) iS increasing and unbounded. Thus, the sequence
verify the forward invariance for sets of trajectories €ds (f;, -+ ti,,ji, + ji,) IN domz is increasing and unbounded,
under concatenation (see Assumption (B5) in Section M), and soz(z, j) is anw-limit point of z.
is sufficient to test every point® of M for the existence Finally, we show convergence aof to its w-limit set.
of a complete hybrid trajectory: starting atz® such that Suppose that for some > 0 there exists an increasing and
z(t,j) e Mforallt+ 5 <1, (t,7) € domz. unbounded sequende;,j;) € domz such thatz(t;,j;) ¢

Given a hybrid trajectory: € S, a sequencd (¢;,7:)}2, Q(z) + €B for i = 1,2,.... By precompactness af, there
of points indom z is unboundedf the sequence of; + j;'s exists a convergent subsequencec@f, j;)'s. Its limit is, by

is unbounded, anéhcreasingif for i = 1,2,..., (t;,j;) < definition, inQ(z). This is a contradiction. [ |
(ti+1,Ji+1) in the natural ordering odom z.

Definition 3.2 (v-limit set): For a complete hybrid trajec- IV. AN INVARIANCE PRINCIPLE INVOLVING A
tory x € 8, its w-limit set, denoted2(z), is the set of all NONINCREASING FUNCTION

w-limit points, that is pointss* € O for which there exists an  The invariance principles we formulate in this section rely
increasing and unbounded sequekig, j;)}5°, in domxz so on properties of certain functions not only on the range of
thatlim; o z(¢;, ;) = =*. the trajectory in question, but also on the neighborhood of



its range. Invariance principles relying only on the praigsr (Z,7) in domz, the fact thatV is constant along trajectories
of certain functions on the range of the trajectory will be thin M gives
subject of Section V. In what follows, given a hybrid trajegt ~ -
z with domaindom z, ¢(j) will denote the least time such t _ N
that (1, j) € dom, while j(¢) will denote the least index /t uelw(s, j(9) ds + 3 wa(e(t(i),i—1)) =0,
such that(t, j) € dom . - s
Pick anyz € M. If M is weakly forward invariant, then
there exists a nontriviakk € S(z) with rgez C M. If
(0,1) € dom z, applying the above equation t6, j) = (0,0),
We say that a functio : O — R is nonincreasing along (%,5) = (0,1) yields u4(x(0,0)) = 0, which shows that
a hybrid trajectory z if V(z(t,5)) > V(z(',5) for all z € u;'(0). If (T,0) € domz for someT > 0, then applying
(t,7), (t',j') € domz such that(t, j) < (¢, j'). The notation the equation td0,0), (T,0) yields [, u.(x(s,0)) ds = 0. As
f~*(r) will stand for ther-level set off ondom f, the domain 4, is nonpositive, it must be the case thatz(s,0)) = 0 for
of definition of f, i.e. f~'(r) :={z €dom f | f(z) =7}.  aimost alls € [0,7]. Hence,z € uz ' (0). If M is weakly
Lemma 4.1: Suppose a functibh: O — R is nonincreas- backward invariant, then there existse S(z*), z* € M,
ing along a hybrid trajectoryz. If V is lower semicontinuous, such thatz(t*, j*) = z, t* + j* > 1, andz(t, j) € M for all
then for some € R, V(Q(x)) C (—oo,r]. If V is continuous, (t,7) = (t*,5%). If (t*,7* — 1) € dom, then the inequality
then for some- € R, V(Q(z)) =r. above with(¢, j) = (t*,j* — 1), (£,j) = (t*,5*) shows that
Proof: If Q(x) = 0, there is nothing to prove. Otherwiseua(z(t*, j* — 1)) = 0 and soz = z(t*,j*) € Riol})(o)- If
pick any z € Q(x). By the definition ofQ)(z), there exists (¢* — T,j*) € doma for someT > 0, then an Cérgument
{(ts,7:)}:2 1, an increasing and unbounded sequenebin z,  similar to the one for forward invariance can be given. m
satisfying z(t;,j;) — 2. Let 7 = liminf; .o V(z(t;,]:))- The previous two lemmas allow us to establish the first
Pick any z € (), and an increasing and unboundethvariance principle for hybrid trajectories.
sequence{(i, jx) 72, in domz With z(ty, jx) — 2. There  paqrem 4 3: (V invariance principle) Suppose that there
exists a 'subsequenc{a(tki,y'ki)};’il of {_(t’“J’“)}zozl SUCh  ayist a continuous functiol’ : O — R, a setid O, and
that fori = 1,2,..., (i) = (thss Jhs)s a”_d asV IS fnctionsue, ug : O — [~o00, +0c] such that for any hybrid
nonincreasing alqng:, V(:Z?(ti-,ji))- 2 V'(:z:(tki,]k_i)). If_ 1% trajectory ¢ € § with rge ¢ C U,
is lower semicontinuous, taking limits d@s— oo yields 7 >
liminf; o V(z(tk,, jx;)) = V(2). If V is continuous, then let ue(€(t, 7)) <0, uq(€(t,5)) <0
7 =limV(z(t;, j;)) = V(2), and considering a subsequence
{(tin, Gin) 322, Of {(ts,5:)}22, so that (t,jx) = (ti,ji) for all (¢,5) € dom¢ and (2) holds for any(t, j), (t',j') €
and V (z(tg, jr)) > V(x(ti.j:,.)) yields, in the limit, that domg such that(t, j) < (¢',j').
V(z) > 7. Thus, if V is continuous} (z) = 7. ] Letx € S be a precompact hybrid trajectory such that

Lemma 4.2_: LetV : O — R, uc,uq : O — [—o00, +0] {2(t,5) | (t,7) € domw, (T, J) = (t,5)} C U,
be any functions, the sé&f C O be such thatu.(z) < 0,
ug(z) < 0 for all z € U and such that for any trajectory for some(T', .J) € dom x, which holds wheiigez C /. Then,
& e Swithrgeé C U, for somer € V(U), = approaches the largest weakly invariant

bset of
VW, 5) = V(£ H)) < subset 0

t/ J’
[ uletsitemds+ > ualetetini-1) @
t i=j+1 Proof: For any precompact trajectory, from Lemma
3.3 we know thatr approaches its-limit, which is weakly
invariant. This w-limit is the same as theu-limit of the
Let MR le Z’/{Mb? a SEtkl Squh thzv.(M). :t rthforrm;slome truncation ofz to (¢,j)'s with (7, J) < (¢,j) € domz. By
T_1€ B IS weakly forward invanant, the (2), the functionV is nonincreasing along the truncation. Thus
ue(0) U ug (0). '(foi\)/l 1S weakly((l))ala)ckward invariant, then v is constant or2(z) by Lemma 4.1. Now note tha?(z) is
M C uzt(0) U R 3oy WhefeRu;’l(O) = {2 € O|lz = a subset o/ intersected with{rge¢ | € € S,rgeé C UL, In
2(0,1),2 € S(uz'(0)),(0,1) € domz}, that is, Rr*Y js turn, this intersection meets the conditions placed on &te s
U U in Lemma 4.2. Thus, invoking Lemma 4.2, witM also

A. Sets of hybrid trajectories

Vi) n U n [ucT(O)U (u;l(o)mR%})(o))}. ©)

holds for any(¢, j), (t',j') € dom ¢ such that(t, j) < (¢, 7).

the reachable set from ' (0) in hybrid time(0,1). If M is

X ) replaced byQ(x), finishes the proof. [ ]
weakly invariant, then i
Corollary 4.4: Under the assumptions of Theorem 4.3,
M CuzH(0)U (ugl(o) N Rioj)(o)) : (a) if = is Zeno, then, for somee V (i), it approaches the
¢ largest weakly invariant subset of
Proof: For any trajectoryc € S such thatz(t, j) € M for Vi) n U0 ougt0)n RO . @)

(t,j) € domz with (t,7) < (t,7) < (¢, ) for some(t, j) and ug ' (0)’



(b) if z is s.t., for somey > 0, J € N, and all j > J, x approaches the largest weakly invariant set containedein th
ti+1—t; > v (i.e. the elapsed time between jumps is eveanion of the sets (4) and (5) (as dictated by Theorem 4.3% Thi
tually bounded below by), then, for some € V (i), =  set turns out to bege z. We note that ifRfLOj)O is not used
approaches the largest weakly invariant subset of 5 Theorem 4.3 then we must search for the largest weakly

Vi) N U A us o). (5) invariant subset 01[/*1.(1). NUnN ugl.(o) ngl(o)g. This
turns out to be the unit circle, which is larger thage . O

Proof: If = is Zeno, then the weak invariance fx) Note that the strong conclusion in the example above relies
can be verified by instantaneous Zeno trajectories. Mop@th on the strong (forward and backward) invariance notion
specifically, givenz € Q(z) with z(¢;,j;) — =z for some andthe seRiO,’})O) in (4). In contrast, the invariance principle
increasing and unbounded sequencétgfj;)’s, the sequence in [6] would only conclude that the trajectory in the example
of trajectoriesz;(t,j) = «(t + t(j;),7 + ji — 1) has a converges to the unit circle.
graphically convergent subsequence, the ligndf which has
the domain equal td0} x N (see also the proof of Lemmag Hyprid Systems

3.3) and is such tha}(0, 1) = 2. Using this limit in the proof . . . .
of Lemma 4.2 shows that & u;l(o) ﬂRiO’l) For the hybrid systems as in Section II-B, the functions

. 210" uc(z) anduq(z) of Section IV-A will be constructed from
Regarding (b), note that we can truncatgand we won't 5 | yapunov-like functionV’ and will be denoted byuc (z)
relabel it) so that, for some > 0, ;11 —1; > v for all  ang 45 (2), respectively. One will be determined by the

Jj = 0 such that(t;, j), (tj41,7) € doma. Pick z € Q(x) derivative” of V at z in directions belonging toF(z),
and an increasing and unbounded sequeiggi) with the  the other by the difference betwedn at = and at points
property thatz(¢;,7;) — Z. Suppos_e that the sequence 9IV€Relonging toG (z). These functions will be used to bound the
by ;(t,7) := (t +ti,j + ji) graphically converges, say t0 ajncrement of V" as in equatior(2). We begin by formulating
trajectoryz € S, andz(0, 0) = z (consult the proof of Lemma the infinitesimal inequality version of this. L&f : O — R
3.3). If [0,7/3] x {0} C dom Z, then usingz in the proof of e continuous o and locally Lipschitz on a neighborhood
Lemma 4.2 shows that € u:'(0). In the opposite case, aof (. Let z be any solution to the hybrid systefi, and
graphically convergent subsequence can be extracted fiemiet (¢, 5), (£,7) € domz be such that(t,j) < (Z,7). The
sequence given by;(t,j) := x(t + t; — /3,7 + ji) so that incrementV (z(Z,7)) — V(z(t, j)) is given by

its limit z’ is such thaf0,~/3] x {0} C domz’. Furthermore "

z

7'(v/3,0) = z andrgex’ C Q(z) (so z’ verifies the weak S . d .
bafgl!war()j invariancegcm(x) at ,(5),)a(nd usingz’ in the proof V{z(t,7)) = V(e(t, ) = . Ev(x(t’](tm dt +
of Lemma 4.2 shows that € uz1(0). [ 5 -
Corollary 4.4 relies on the character of the trajectories Z [V (x(t(5),7)) — V(2(t(),j — 1)), (6)
verifying the weak invariance df(z), rather that on whether =i+

2 jumps infinitely many times or whetharis not Zeno. The

example below illustrates this, among other things. which takes into account the “continuous increment” due to

. _ , the integration of the time derivative df («(¢,j)) and the
Example 4.5:Con§|der the hybrid system @an= R gveN “discrete increment” due to the differencelinbefore and after

by f(z) := [—z2 @], C = RX[Ov_OO)' 9(“7)_:: [—22 21]", the jump. The integral above expresses the desired quantity

and D := R x (=00, 0]. Any solution to this system (recall since s . 1/(x(¢, j(t))) is locally Lipschitz and absolutely

(S1) and (S2) in Section II-B) satisfigg) with V() = [|.  continuous on every interval on whigh— j(t) is constant.

Let uc(z) = 0 if 3 > 0, uc(z) = —oo if w2 < 0, and  The generalized gradient (in the sense of Clarke)/oft

ua(w) = 0 if x5 < 0, ug(r) = —oo if w2 > 0. Functions , « & denoted bydV (z) is a closed, convex, and nonempty

ue, uq are the natural bounds on the decreasd’okee(8) get equal to the convex hull of all limits of sequen&eE (z;)

and(9). For these functions,. ' (0) is the (closed) upper half where, is any sequence converging towhile avoiding an

plane,u ' (0) is the (closed) lower half plane, a 10, 18 arbitrary set of measure zero containing all the points atfwh

the (closed) right half plane. For the periodic solﬁtionegiv V' is not differentiable (ag/ is locally Lipschitz, V' ex-

by z(t, j) = (cost,sint) for ¢ € [0,7], z(m, 1) = (0,—1), and ists almost everywhere). The (Clarke) generalized diveeti

z(t,j) = x(t—m,j—2) fort >, j > 2, thew-limit set is just derivative of at = in the direction ofv can be expressed as

rge z: the (closed) upper half of the unit circle afd, —1). o

Note that the domain of this solution is unbounged in) both Vei(z,v) = ggr]g%)((z)«’w' ()

t and j directions. For this solutionV (z(t,j)) = 1 for all : : L :

(t,j) € domz. Suppose that Corollary 4.4 were applicable?(?;};;I(f(tt))fm'c properties is that for any solutief) to

Takingr = 1 andi/ = R?, the set (4) would be the unit '

circle in the closed fourth quadrant and the set (5) would be iV(z(t)) < VO(2(1), 5(t))

the unit circle in the (closed) upper half plane. In parteuk dt o ’

does not approach either of these two sets even thdughz for almost all¢t. (Note that asV is locally Lipschitz, the

is unbounded in both and ; directions, and therefore, it will derivative on the left above can be understood in the standar

not approach an invariant set included in those sets. Ofegursense.) For more details see [36].




Consequently, the functionc : O — [—o0, +00) given by the following function can replacec in the bounds on the

max  max (C,v) z€C increase ofl:
uc(z) =4 veF(x)¢eov(a) _ (8) max (V(z),v) z € C,F(x)#0
—00 otherwise we(x) == veFL(®) therwi (12)
—00 otherwise,

can be used to bound the increaselofalong solutions to
the hybrid system. That is, for any solution to the hybrifhere Fi(z) := {v € Fr(z) | 3c s.t. {0V (2),v) = c}.
system, and any where SV (x(t,j(t))) exists, we have Clearly, wc(x) < ve(z) for all z € C. The condmon that
LV (x(t, (1)) < uc(xlt, j(1)). there existsc such_ that (0V (z),v) = ¢ means just that
oV (z) is in an affine subspace orthogonal to Note that
to make (11) resemble(8) more, we can replace (without
really changing anything) the expressiddV (x),v) above
by maxcepv(2)(¢,v). Note that equivalentlymin can be
used instead ofnax. In any case, for any solution to the
hybrid system, we havel V(z(t,j(t))) < we(z(t,j(t))) <
Even without any regularity onV/, one gets the boundyq (z(t,;(t))) < uc(z(t,j(t))) almost everywhere.
V(z(tj+1,5 +1)) = V(z(tj+1,5)) < up(z(tj+a, 7)) forany  As mentioned before, both- andw¢ can fail to be upper
solution to the hybrid system. semicontinuous. The reason for this is that the set-valued
Lemma 4.6: (upper semicontinuity of; andup) If V is mappingFr, and consequently’; , does not need to be outer
continuous orD and locally Lipschitz on a neighborhood ofsemicontinuousTc(x) is not an outer semicontinuous map).
C, thenuc andup are upper semicontinuous ap. If one defineswy () similarly to we(x), but with the maxi-
For the continuous evolution, better bounds offumoverin F(z):={v € F(z)|3es.t. {9V (z),v) = c},
%V(m(t,j(t))) can be obtained if one does not insisine fgnctlon still n_eed .not be upper semmontmgous. Indeed
on upper semicontinuity of the bounding function. w&onsider the functio” : R — R given byV(z) = || and
describe two such improvements. Both are based on ¢ Set valued mappmﬁ/: R =R given byl;“(x) =[=11]
observation that not all vectorse F(x) may be selected as'®" all € R. Then F/(O) = 0 while F'(z) = F(z)
the velocity of some solution ta@(t) € F(x()) for somet. of # # 0 (in general,F (“7/) = F(z) for all = at which
The second alternative we present also relies on the conc@pt®) = VIV(QZ))' Thlljs* F7/Is not outer semicontinuous,
of nonpathological functions. Evaluatinguwg, ngIdS.wC(O) = 0 while wc(x) = 1 for all
For any solutionz(¢) to the differential inclusion:(t) ¢ & 7 0- This function is not upper semicontinuous.
F(=(t)), whenever:(t) exists, we have:(t) € Teo(z(t)). We now state the invariance pr|nC|pI(=T for hybrld gystéﬂﬁs
Here, Tc(x) is the tangent condo C atz € C. It is the Salisfying (A0)-(A3) when a Lyapunov-like functidri is pro-
set of allv € R" for which there exists a sequence of reafided thatis locally Lipschitz and possibly nonpatholagic
numbersa; N\, 0 and a sequence; — v such that for ~ Theorem 4.7: (hybrid V invariance principle) Given a hy-
everyi = 1,2,.., z + ayv; € C. For further details see brid systent?, letV" : O — R be continuous o and locally
[37] or Chapter 6 in [34]. Hence, for any solution to thd-ipschitz on a neighborhood af'. Suppose that/ C O is
hybrid system, £V (z(t,j(t))) < ve(x(t,j(t))) for almost nonempty, and that € Sy is precompact wittrgew C U. If

rdt
all t, wherevg : O — [—00, +00) is defined by uc(z) <0, up(z) <0

To bound the “discrete contribution” to the changelin
from (6), we will use the following quantity:
max {V({) — V(x reD

(o) { e {V(Q) = V()

. )
—00 otherwise.

ve(x) = Ué%i’((z) ng%fm)@vw zeC Fr(x) #0 (10) for all z € U, then for some constante V (i), = approaches
o —0 otherwise, the largest weakly invariant set in

where Fr(z) := F(z) N Te(z). Obviously,ve(x) < uc(z).  V'(r) N U N [ug'(0) U (up'(0) N G(up'(0)))] . (12)
We note though thatc (z) = u_c(:c) for all z € int C since ¢ up(z) < 0 for all = € U and eitherve(z) < 0 for all
for suchz, Tc(z) = R™. Still, different values ofvc anduc U, or V is nonpathological on a neighborhood ¢f
on the boundary o€ may lead to different invariant sets. 5 we(z) < 0 for all z € U, then the conclusion holds

The next construction relies on a concept proposed th w=1(0 laced bvo=1(0 tivelv buo=1(0). i
Valadier [38]. A functionf : O — R is callednonpathological equaztiign((l)2)rep aced byve(0), respectively bywg(0), in

if it is locally Lipschitz and for every absolutely continus ,
z: [a,b] — O the set) (f o z) is a subset of an affine subspace Proof: The bound(2) holds withu., u4 replaced byuc,
orthogonal to:(¢) for almost everyt € [a,b]. (For recent “p: for any trajectoryx with rgew C U. Consequently, by
results involving nonpathological functions see Bactiattd 1heorem 4.3, any precompact trajectarywith rgez C U
Ceragioli [24].) Locally Lipschitz functions that are (Gke) approaches .the largest weakly invariant set in (3) 0f(l))r some
regular, semiconcave, or semiconvex are nonpathologital.” € V(¢) (with G = g), and here, the reachable L o)
particular, finite-valued convex functions are nonpatgadal. is just G(up'(0)). Since uc is upper semicontinuous and
When V' is nonpathological on an open set containitig nonpositive onl/, the setugl(o) is closed, and the closure
for any absolutely continuous : [a,b] — R™, the set of can be omitted. The same reasoning applies when assumptions
points {(dV (z(t)), 2(t))} reduces to the singletoff V (z(t)) involve vc or we, however since these functions need not be
for almost allt € [a, b]; see [38], Proposition 3. Consequentlyupper semicontinuous, the closures are necessary. H




Consequences of Theorem 4.7, similar to those of Theorémariance of L, there exists a completér,q) € S(7p)
4.3 stated in Corollary 4.4, can be given. As in Theorem 4.@jth (x(0,0),¢(0,0)) = (2°,¢°) and (z(t,j),q(t,j)) € L
Theorem 4.7 can be written for the case that, for s¢me/) €  for all (¢,5) € dom(z,q). As (z,q) € S(7p), we either

domz, {z(t,7) | (¢t,7) € domz, (T,J) <X (¢,5)} CU. have (t,0) € dom(x,q) and q(t,0) = ¢° for somee > 0
and allt € [0,¢], in which casei(t,0) € f,o(x(t,0)) and
C. Relation to previous results z(t,0) € L' for t € [0,¢], or (0,1) € dom(z,q) in which

: : . casei(t,1) € fqo,1)(x(t,1)) andx(t, 1) € L' for t € [0, 7p].
As noted in Example 2.5, continuous-time systems param- s ; .
eterized byt € R>, can be viewed as hybrid trajectorieleltherI("O) or z(, 1), with the corresponding values of

with domains inRq x {0} and that the set of all hybrid provide the needed (forward) solutions. Arguments invagvi
: . =0 7 o .~ backward invariance are similar. [ ]
trajectories corresponding to solutionsigt) = f(xz(t)) with

) . . When Vi, V5, ...V, are identical, then the condition
f continuous meets the Standing Assumption. Thus, Theor?}n _ W is triviall isfied
4.7 implies the original invariance principle of LaSalld7[ a(t.g+1) (2t ] +1)) < Vo ) (2(1,)) is trivially satisfied for

Theorem 1], by setting” = f, C = O, and D = 0. Taking any solution to the switched system. Thus, the result above

C — O andD  § but letting ¥ be a set-valued map satisfyingimp"es that any solution with a positive dwell-time (i.an
(A2) of Theorem 2.6 reduces Theorem 4.7 to the invariangement ofS(rp) for somerp > 0) approaches the sdf;

principle in [20, Theorem 2.11]. Theorem 4.3 implies hace Section V-C for further generalizations. This is esakyt

rinciple as stated by LaSalle in [18, Chapter 2, Theorerh 6 e invariance principle for switched systems as state@& [
p_ thg eneral notié/n of a derivati’ve usped in’ [18, Cha terheorem 1]; our result is stronger as the concept of invagan
5 Theo%em 6.4] can take the place @f in ine uali'; (2)_p in Proposition 4.8 involves both forward and backward parts

’ : P d Y 1€) and not forward or backward, as in [28]. See [26] for related
see [18, Chapter 2, Lemma 6.2] and the comment foIIowm% . . : .
it. Theorem 4.3 also implies [24, Proposition 3], b using sults involving multiple Lyapunov functions.

) . phie ' P Y g Regarding hybrid systems, a result closely related to our
the nonpathological derivative of the Lyapunov function asork in particular to Theorem 4.7, is [6, Theorem IV.1]. [6
gcefli?wit(ii)naSr}d t:)eg;:gf; r:):?e;tz?‘lgit;onzscslzijrzoaroperty, [2 heorem IV.1] assumes continuous dependence of solutions o

' 9 pron. initial conditions, properties quite hard to verify by ldog

SettingC =0, G = g Whereg IS a f‘%”c“on’ andD - O. at the data (see [39] and [40] for some results in that
reduces Theorem 4.7 to a discrete-time systems mvanarF\%pe

o irection). Theorem 4.7 of this paper relies on semicormtirsu
principle [18, Theorem 6.3, Chapter 1]. Indeed, the tergependence, both weaker and easier to verify (recall Theore

G(up'(0)) in (12) is irrelevant for discrete-time systems, bu . : ) . 3
ok i . . .6). Another difference is the sharper notion of invar@anc
itis important in truly hybrid systems; see Example 4.5, S%/\(/Pich includes backward invariance) used in Theorem 4.7

Theorems 4.3, 4.7 and their corollaries can also be u %5 the presence of the teri(up,! (0)) in (12) which leads

to dgduce convergence of trajectories of switched systerpos ‘a tighter characterization of the set to which trajee®ri
Let &(t) = fow(2(t), at) € Q@ = {1,2,....m} be a converge; recall Example 4.5

switched system an@{ be a corresponding hybrid system, ' "
as in Example 2.11. Le§(7p) be the set of all solutions to

this hybrid system with dwell-timep (recall Example 2.10). V. A MEAGRE-LIMSUP INVARIANCE PRINCIPLE

Proposition 4.8: For eachy € @ let f, : R* — R™ be a Below, we use the concept of a weakly meagre func-
continuous function and, : R” — R, be a continuously tion. A function f : R, — R is weakly meagreif
differentiable function such tha@V,(z) - f,(z) < 0 for all  lim, o (infier, |f(2)]) = 0 for every family {,, | n € N}

r € R". Let S* C S(rp) for somerp > 0 be such that of nonempty and pairwise disjoint closed intervajsin Rxg
Standing Assumption holds holds ot and V,; ;1) (z(t, j+  With infnen pu(1) > 0. Here,u stands for the Lebesgue mea-
1)) < Vi) ((t, 7)) for all solutions(x,q) € S*. Then each sure. Weak meagreness was used previously by Logemann et
precompact solutiofiz, ¢) € S* approaches the largest subsegl. in [21] to formulate extensions of the Barbalat’s lemma a

K of U {VV,(z) - f,(x) = 0} that is invariant in the resulting invariance principles. Following [21], is weakly

=1

foIIowing sense: for each® € K there existss > 0 and: i) meagre if for some- > 0,

¢ € Q and a solution to &(t) = f,(z(t)) such thatz(0) = z° M+

and z(t) € K for all ¢ in [0,¢); ii) ¢ € @ and a solutionz lim |f(@®)|dt = 0. (13)
to (t) = f,(z(t)) such thatz(0) = 2° and z(¢) € K for all M=too Jm

tin (—¢,0]. In particular, anyL! function is weakly meagre.

Proof: The bound (2) holds for eacliz,q) € S*
with ue(z,q) = VVy() - fo(z) and ua(z,q) = 0 for all A case of a general hybrid trajectory
(x,q) € R™ x Q. Corollary 4.4 implies thafz, ¢) approaches
L, the largest weakly invariant (with respect$s, and thus ~ Lemma 5.1 (meagre-limsup conditions) Letbe a com-
with respect to the larger sg{(rp)) subset of ., {VV,(x)- Plete hybrid trajectory such that
fq(z) = 0} x {q}. Thus = approaches the projectioh’ (*) Foreachz € Q(z) ande > 0 there exisb > 0 andT" > 0
of L onto R™. It remains to show that this projection is such that, ifx(¢,j) € z + ¢B for some(t,j) € doma
invariant in the sense stated in the proposition. Pick any thenxz(¥,j) € z+eB forall ¢’ € [t —T,t+ T] such that
2% € L' and a correspondin@?, ¢°) € L. By weak forward (t',7) € dom .
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Furthermore, suppose that for some &ett O withrgex C U for anyz € U, £(x) = liminf,, ., £(z;). In this terminology,
there exist functiong,, £, : U — [0, +o0] that, for the hybrid E, , is the zero-level set of the lower semicontinuous closure
trajectory z, satisfy the meagre-limsup conditions given by of the function? truncated torge x.) In particular, if both?,
(a) if the projection ofdom 2 onto R, is unbounded then and ¢4 are lower semicontinuous, an@ez C U, then the
t— Lo(x(t, (1)) is weakly meagre, conclusion of Lemma 5.1 implies th&(z) is a subset of
(b) if the projection ofdom 2 onto N is unbounded then for —_ _ . _
all large enoughj there exists? € [t(j), t(j + 1)] such {z €80T | Le(z) = 0} U {z € T80% | Lu(2) = OF.

thatlimsup;_, ., £a(x(t3, j)) = 0. However, if the assumption thdt, ¢; are nonnegative was
Then Q(z) C E,y. U E,,, where E,,, and E,,, are weakened to say that they are nonnegative onlygen, the
respectively defined by - o o last conclusion above may fail.

Let 2 be a precompact hybrid trajectory for which there exist
functionsu,, uq : O — [—o00,0] andV : O — R such that(2)
holds for the hybrid trajectory for all (¢, 5), (¢',7’) € dom=z
such that(¢,5) < (¢',j'). Thent, = —u,, {q = —uy satisfy
conditions (a) and (b) of Theorem 5.1. In fact, there exists a
constantM > 0 for which

{z etgez |z — 2z,2; € rgex, liminf; o £.(2;) = 0},
{z eTgex | 2; — 2, 2z; € rgex,liminf; . £4(2;) = 0}.
Proof: Suppose otherwise, that for somé € Q(x) and

6,7 >0, £(2) := min{l.(2),04(2)} >~ for all z € z* + €B,
z € rge z. By definition ofw-limit point, there is an increasing
and unbounded sequengg, j;) € dom z with x(¢;, j;) — =* . ;
asi — oo. We can assume that for all ¢; + j; + 1 < t;41 + . . . .
Jiv1. Letd, T > 0 be related tor*, € as in condition (*) and, /O le(x(t, 5(t))) dt < M, Zéd(m(t(j +1).5)) < M,
without loss of generality, suppose that< 1. Ignoring initial 7=0
terms if necessary, we havét;, j;) € 2* + 6B for all i ¢ N. for any (T, J) € dom (this shows that.(t, j(t)) is inte-
Consequentlyz(t, j;) € =* + 6B for all t € [t; — T,t; + T], 9rable on[0,00) and thus weakly meagre, while to satisfy

(t,5;) € dom z. For eachi, either of the two conditions holds: (b), one can take; = t(j + 1)).
(1)) eithert(j;) < t; — T or t(j; + 1) > t; + T (= flows for Based on the previous discussion, the next result shows

time T either before; or aftert;) that, when a functiorl” with the right properties exists, the
() ;) > t; — T andt(j; + 1) < t; + T (z jumps within conditions (a) and (b) of Lemma 5.1 are guaranteed.
time T before and aftet;) Corollary 5.2: Letx € S be a precompact hybrid trajec-

Either (1°) or (2°) has to occur for infinitely mangs. Suppose tOry- Suppos_e that there exists a continuous functionD —
it is (1) and thatt(j;) < t; — T for suchi’s (the other case is R, and functionsic, uq : O — [—o0, +-oc] such that for some
treated similarly). Thendom x must be unbounded in the (T,J) € domz,
direction. The fact tha(x(t, j(1))) > v for anyt € [t;— T %] ue(z(t, 7)) <0, uq(x(t,j)) <0
for infinitely manyi's contradicts weak meagreness tof—
l.(x(t, (1)) (note that intervalst; — T, t;] are disjoint). If (2) for all (¢,) € domz with (T',J) < (¢, ), and (2) holds for
holds for infinitely manyi's, thendom z is unbounded in the the hybrid trajectoryx for all (¢, 5), (¥', ') € doma such that
j-direction, and for infinitely many's and allt € [t(j;), t(ji+ (T>J) = (t,7) = (',5'). ThenQ(z) C E*" U E*"*, where
1)] we havely(x(t, j;)) > ~. This contradicts (b). m L£7¢ and E©" are respectively defined by

The condition (*) in Lemma 5.1 can be viewed as a sort {z €T1ge® | J2; — 2, 2; € rgew, limsup;_, o uc(z;) = 0},
of continuity of z(t,7) in ¢, uniform “near each point of {2 €T8T | z; — 2,2 € rgew,limsup,_,, ua(z;) = 0}.
Q(z)". The condition automatically holds if is a solution  More precise results can be obtained if the domain of the
to a hybrid system that satisfies (S1) and (S2) in Exampigbrid trajectory is bounded in one of the directions.

II-B and subject to (A0)-(A3). In fact, sincé” is locally  corollary 5.3: Letz be a complete hybrid trajectory for
bounded,z(t, j) is Lipschitz int, locally “near each point \yhich (*) holds.

of Q.(I)”' AIS(.)’ (*) holds if v s precompact, ang is any (a) If the projection ofdomz onto N is bounded and there
family satisfying our standing assumption. Indeed, suppos exists a functior’,. : rgex — [0,400] such thatt —
that in such a case, for somec Q(z) ande > 0 there exist 0ot (1)) is W(acakly meagre Eheﬂ(:v) CE,,.

increasing and unbo/unded sequen(z‘@syi),/(t.;,yi) €doma 1y it ihe projection oflom z onto R~ is bounded and there
with @(t;,ji) — 2, t; =t — 0, anda(t;,j;) & = + €B. exists a functiorty : rge z — [0, +oc] such that, for all

By passing to a sgbsequencg, we can _su_pposet;thgt bi large enoughy, there existg?* € [¢(j), t(j+ 1)] such that

(the opposite case is treated similarly). Sincis precompact, limsup,_, La(z(t5, 7)) = 0, thenQ(z) C By e,

the sequence of trajectories(t,j) := z(t + t;,j + j;) IS Jeo 7 ’ hd

locally eventually bounded. Let € S be the graphical limit Proof: For (a) use/q(z) = r > 0 for all z in the Theorem
of z;’s. Then&(0,0) contains both: and some pointy with ~above, for (b) use.(z) = r > 0. u
|z — w| = e. This is impossible. If, for a hybrid trajectory, the time between jumps is uni-

In Lemma 5.1,E, . C {z € Tgex | L(z) = 0}, where(, formly positive then only (&) of the meagre-limsup condiso
function? : U — [—o0, +00], its lower semicontinuous closure  Corollary 5.4: Letz be a complete hybrid trajectory such
£: U — [~oo,+0c0], is the greatest lower semicontinuoughat (*) holds andt;; —¢; > v > 0 for all j = 1,2,....
function defined o/, bounded above b§oni/. Equivalently, If there exists a functiorf, : rgex — [0,400] such that
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condition (a) of the meagre-limsup conditions holds, then 5.1 hold. Letx € S be a precompact hybrid trajectory.
Q(z) C Eyp,. Thenz converges to the largest weakly invariant subset

Proof: In the proof of Lemma 5.1 can be chosen of £z1(0) U £;(0).

arbitrarily small. Pickingl" < 3 shows that (2’) in the proof This turns out to be impossible. Such a conclusion is not a
of Lemma 5.1 cannot hold; hence (1) has to hold for infinitelipyproduct of the trajectories considered here being hybrid
many times. The proof follows that of Lemma 5.1. B rather, it is caused by not being lower semicontinuous. We

If multiple instantaneous jumps can occur “only on the zeriflustrate this with an example in continuous time.
level set of¢;” (for a hybrid system, this is equivalent to Example 5.7:Consider the nonlinear system given by =
lq(G(D)ND) = 0) andz € S is precompact, then only o) (x2 — 21(|z| = 1)), G2 = ¢(x)(—2z1 — z2(|2| — 1)),
(a) of the meagre-limsup conditions needs to be checked\{Rare . .— [z1 22]7 € R2, ¢ : R? — Ry, is any smooth
draw the conclusion of Lemma 5.1. This is because undghction such thaty(0,1) = 0, ¢(z) > 0 whenz # (0, 1).
such assumption on the jumps, on each compact set a¥3¢ept for the trajectorys(t) = (0,0) for all ¢ > 0, the
from the zero level set of, the elapsed time between juMPSaiectories with initial points not on the unit circle rtgaand
is uniformly bounded below by a positive constant. get closer to the unit circle (while “slowing down” in the

Corollary 5.5: Given the functiod; : O — R, assume neighborhood 0of(0, 1)). In particular, their omega limit set
that forallz € S, if (t,j —1),(¢,7),(t,j+1) € dom Z, then s the unit circle. The trajectories originating on the wiitle
q(%(t,5)) = 0. Letx € S be a precompact hybrid trajectory. converge to(0, 1) (and so their omega limit set {9, 1)). Let
Suppose that there exists a function rgex — [0, +oc] such ¢ : R? — R be given by/(z) = (|z| — 1)> when|z| # 1
that condition (a) of the meagre-limsup conditions hold®eM andz # 0, ¢(z) = 0 when|z| = 1 andz, > 0 or z = 0,
the conclusion of Lemma 5.1 is true. {(z) = 1 when|z| = 1 andz2 < 0. One can verify that for all

Proof: The first paragraph of the proof of Lemma 5.1 catrajectories of the systemi(z(t)) is weakly meagre. However,

be repeated. Then, we claim that there exists (0, 7] such it is not true that the omega limit of any nonzero trajectory

that for all large enougli's, the following holds: originating not on the unit circle (such omega limit is thetun
(1) eithert(j;) < t; — 7 ort(j; + 1) > t; + 7 (« flows for circle) is in the closure of the zero level setfwhich is the
time 7 either beforet; or aftert,) union of the upper unit semicircle and the origin). O

Otherwise, for some sequence of \, 0 and a subse-

quencet;, there is a jump at_(k) € [t;, — 7k, %, ] and at B. Case of a solution to a hybrid system

tt(k]z e,[tik’tik +Tk]|,| .S’Odthat(t‘l\l(k)’]ik B 1d) (tiy, jir. ), and ¢ For hybrid systems, the natural counterparts ¢of ¢4,
(t+(k), ji, +1) are all indom . Now, consider a sequence ofy,¢ is the functionsuc: and up, as defined by(8), (9),

trgjkectoneshgwe”n by (t, ) :tx(thr t—(k),j +Fjik E}l)'_ af‘d are upper semicontinuous. This does not lead to significant
pick a graphically convergent subsequence. For the limie improvements over the results in the previous subsection.

must have that0,0), (0,1), and(0,2) are indom z, while ) i
Corollary 5.8: Given a hybrid syster, letV : O — R

z(0,1) = z*. This contradicts the assumption. Now, as (1’ : . - ]
§ continuous or®) and locally Lipschitz on a neighborhood

has to occur infinitely many times, the proof can be complet : )
as for Lemma 5.1. of C. Suppose thd ¢ O is nonempty and is a precompact

Based on the results stated so far in this section, variotution o7 with rgea C U. If
invariance principles can be stated. uc(z) <0, up(z) <0
Corollary 5.6: (meagre-limsup invariance principle) Let
x € S be a precompact hybrid trajectory. Suppose that fcfﬁ
U C O, rgex C U, there exist functionsg,, ¢, : U — [0, +o0] t
for which the meagre-limsup conditions hold. Thencon- Vi (r) N U N (B5YC U E5Up) . (14)

verges to the largest weakly invariant subset of
If up(z) < 0 for all z € U and eithervez(z) < 0 for all

{zel]l(z)=0tU{z el | Lu(z) = 0}. z € U or V is nonpathological on a neighborhood 6fN U/
If fgexz C U and /., {4 are lower semicontinuous, then all theand wc(z) < 0 for all z € U, then E*"< in (14) can be
closure operations above can be removed. replaced byE*-Yc (respectivelyE**¢), defined analogously,

The difference between Theorem 4.3 and Corollary 5With vo (respectivelyuwe) replacinguc.
is that, in the latter, properties dof.,¢; are only relevant If, in Corollary 5.8, we havé&gez C U, then E** can be
on the range of the hybrid trajectory in question. In the replaced by{z € tgex | uc(z) = 0}, based only on upper
former, we require properties af., u4, and V' to hold for semicontinuity arguments; similarly fag*-*». The resulting
other trajectories than the one in question (in particiar, conclusion for locally LipschitzV/ (about the invariant set
the trajectories verifying forward invariance 6f(x)). One approached by) is the same as that of Corollary 4.7. Fur-
may ask whether the conclusions of Corollary 5.6 can lleermore, iftgez C U then E*v¢ C {z € U | Tc(z) = 0},
strengthened if assumptions were made on all trajectarées; and, if V' is nonpathologicalE**< C {z € U | we(z) = 0}
whether the following is true: (here,vc (we) is the upper semicontinuous closure of
Suppose that there exist functiofs?; : O — [0,+00] (respectivelywc)). The resulting conclusion is weaker than
such that, for allz € S, conditions (a) and (b) of LemmaCorollary 4.7, wherevgl(o) (and wgl(o)) appears. This

rall z € U, then for some constantc V (i), x approaches
e largest weakly invariant set in
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shows that relying on properties &f along all trajectories and the distance tgl is observable relative té&" for the sets
in U, rather than just along, leads to stronger results wherof hybrid trajectoriess:

continuity or _semipontingity (obc andw¢) can not be used. (@) the largest weakly invariant set i is a subset of4;

567 N u=l(0) simi : . :
rgeT Nug (0); similarly for B2, EP, and B¢, function with respect td<, = € S is precompact, and the
A similar result to Corollary 4.4 can be written when a  meagre-limsup conditions hold farwith ¢, ¢, replaced

single trajectory is considered. by w, thenz converges taA.

Corollary 5.9: Let the assumptions of Corollary 5.8 hold.

(@) If = is Zeno, then, for some constant e V(U), it

. _ . B. Relative stability and detectability
approaches the largest weakly invariant set in

) _ In differential equations, detectability is the properhat
Vo) nu n BT when the output is held to zero, complete solutiansatisfy

(b) If z is such that, for some > 0, J € N, and all j > J, lim;, o |2(t)|.4 = 0. Below, we generalize this notion.

tigy1 —t; > v (i.e. the elapsed time between jumps is Definition 6.2 (detectability):Given sets A, K C O, the
eventually bounded below by a positiye then, for some distance to.A is detectable relative tok for the set of
r € V(U), = approaches the largest weakly invariantrajectoriess if for every complete trajectory: € S such
subset of thatrgex C K we haveliminf,; ;. |2(t,7)|4 = 0.
Vir)y nU n EYve. As discussed in [41], this detectability condition can be
o ) understood as having anw-limit point at .A. As for ob-
Proof: Part (a) is just a restatement of (b) in Corollargeryapility, if K = h=1(0) for some functionh : O — RF,
5.3. Part (b) follows from Corollary 5.4. ® then we say that the distance tbis detectable through.
forOtL(Caocuar:z’ tﬁ;nst; Ciﬂaznatgr’ chr:qo;;ryﬁ'i gz?nt;e written Definition 6.3 (relative stability):Given setsd, K € O, A
’ ' is stable relative toK for the set of trajectories if for any

_ _ e > 0 there existsy > 0 such that any trajectory € S(z°)
C. Relation to previous results with rgez ¢ K andz® € A+ 6B is such thatge z C A+ €B.

A reduction of the results of this section to continuousetim = Stability of A is the same as stability relative . When
systems, much like what we noted in Section IV-C, is alsgetectability (as in Definition 6.2) is combined with releti
possible. Lemma 5.1 implies [20, Theorem 2.10] (which istability, the usual detectability is recovered.

turn_impli_es_the result O_f [19)) be_cause _cor_1ditior? ) of_anm Lemma 6.4: (detectability and relative stability) Let
5.1 is satisfied for solutions of differential inclusionsclissed A K C O be compact. If the distance td is detectable

in [20] and the sett,, is exactly {2 € TgeT |lc(2) = 0} (ojative to K and A is stable relative tok, then each
when/, is lower semicontinuous, as assumed in [20, Theore&implete trajectoryr € S with rgez C K converges toA.
2.10]. Furthermore, results of this section can also beiegpl

to switched systems. For example, via Corollary 5.4 and aExample 6.5:For = € R", A;, A, € R"*", and closed
simple trick of building a solution with dwell-timep, > 0 C, D C R", consider the hybrid systefi given by

from what [26] calls a p-dwell solution with parametets >
0,7 > 0, we can recover results like [26, Theorem 4 and 8].

For simplicity, assume thaf’ U D = R™. The motivation

&= Az when x € C, 2% = Az when z € D.

VI. L OCATING WEAKLY INVARIANT SETS USING for this type of systems comes from many applications, like
OBSERVABILITY, OR STABILITY AND DETECTABILITY sample-data control, reset systems, etc. Suppose that:
Now we extend results on stability and convergence, and) Let C € R™*" pe such that there exists matrices, Lo,
the implications of observability and detectability, froatif- and P = PT > 0 that satisfy

ferential equations to sets of hybrid trajectorigs r
zT ((Al-f—Llé) P+ pPT (A1+Llé))x<0,
A. Observability

T
T A A —
Definition 6.1 (observability)Given setsA, K C O, the v ((A2 + LZC) P (A2 + LZC) P) z <0,

distance to.A is observable relative toK for the set of
trajectoriess if for every nontrivial trajectoryx € S such
thatrgex C K we havejz(t,5)|4 = 0 for all (¢,7) € dom .

Classically, (zero-state) observability means that if dog
put of a system is zero, the state is identically zero. If,dor
certain (output) functiorh : O — R¥, K = h=1(0), we say
that the distance tol is observable through (the output)

Basic properties based on observability are stated belo ,Let Sn
under the assumption that and K are compact subsets of |z € R"

where the first inequality is for alt € C'\ {0} and the
second one for alk € D\ {0}.

This assumption holds in particular when the pa(itfs Aq)
and (C,A;) are detectable (in the linear sense) and the
detectability of both pairs can be verified with a common
Lyapunov function (which is quadratic and given BY.

be the set of solutions t@{, K any subset of

Cz= O}, and A = {0} c R". By definition of
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K, trajectories that remain il are also trajectories of theC. Uniform Convergence

output injected hybrid systerfo defined as Stability and detectability of the distance to a compact set
i=(A+ L)z z€C, 2t =(Ay+ L)z x € D. A relative to a compact sét’ leads to uniform convergence.

- . Theorem 6.8: (uniform convergence) Ldt K C O be
to K) can be easily verified with the use of the commogjstance to.A is detectable relative tok. Then, for each
quadratic Lyapunov functioV(z) = x Pxz. Moreover, by . - ¢ there existsM > 0 such that for each complete

Corollary 4.7 witht/ = R™ and V(x), every trajectory that trajectory 2 € S with rgez © K we havelz(t, j)|4 < ¢

stays in K converges toA. Hence, the distance tol is for all (¢, /) € domw, t +j > M.

detectable relative td for the set of hybrid trajectorieSy. y

We point out though thato] is not a necessary condition forexist a sequence of complete trajectoriese § such that

detectability ofH relative to K, it is only sufficient. . : C
Note that for LTI svst th s of relative stabilit#¢ % < K and a sequencg;, j;) € domx; with t; + j; >4

ote that for Systems the concepts ot refative S1ablitycn that|z;(¢;,7:)].a > €. By relative stability of A, there

and detectability introduced above reduces to the starmtad XiStS5 > 0 ;ugh lthat for e.achf 1 9 it 7)| > 5 for

in the literature. For instance, for the continuous-time LTzll 147 < i, (L, §) € dom; Sincelk is com Zacvtjth/el sequence

systemi = Az with outputy = Cz, detectability of the J =%\ ' pact q

pair (C', A) is equivalent to the distance td :— ‘\?} being {z;}32, is locally eventually bounded, and, by the Standing

Proof: Suppose otherwise. Then, for some> 0, there

) o |~ Assumption, it has a graphically convergent subsequetse. |
detectable relative to subsets ‘{’f eRr ‘ Cz=0; U Jimit, let us call itz, is complete (since each; is complete;

Theorem 6.6: (detectability and invariance principle) Lefe® [11, Lemma 3.5]) and such thgtz C K. Furthermore,
A, K c O be compact, and suppose théis stable relative to for all (¢,j) € domuz, |z(f,j)|4 = 4. This contradicts the
K for the set of trajectories. Then the following statementsdetectability assumption. =
are equivalent:

1) The distance tod is detectable relative tds.

2) The largest weakly invariant set iR is a subset o

VII. ASYMPTOTIC STABILITY
4. A. Definitions and a&CLL-characterization

For results on uniform convergence without a priori restric
n of the trajectories to a compact set, we need an addition
condition. Besides the Standing Assumption, from now on we
also suppose the following:

(B4) any sequencez;}2, of hybrid trajectories inS for
which initial pointsz;(0,0) converge to a point’ where
every maximal solution: € S(z°) is complete, is locally

Proof: (1 = 2) Let M be the largest weakly invariant set[io
in K. Suppose that there existse M\ A. Lete = |z|4. By
stability of A relative to K, there exist® > 0 such that every
hybrid trajectoryé € S with rgeé C K and&(0,0) € A+ 0B
satisfiesrge { C A+ §B. By weak backward invariance a1,
there exists a trajectory; € S such that for sométy, j1) €
domxq, 1 —|—j1 >1, xl(tl,jl) =z anda:l(t,j) € M for all
(t,5) = (t1,41), (t,4) € domz; (in particularz;(0,0) € M). even.tually bound.ed. i )

Note that by stability, since:; (t1,71) ¢ A + <B, we have For solutions to hypnd systems, this property _reqwrealloc
21(t,j) € M\ (A + dB) for all (t,5) € domay, (t,5) < boundedness af. With the other growth properties éf and

(t1,71). In this way, we can construct a sequengee S the fact thatz maps to0, its local boundedness is equivalent
such that for every > 0, there existgt;, j;) € domz;, t; + to local bou_ndedness with respectd for any compact< C

i > i with zi(t;, ;) = 2 and ;(t,§) € M\ (A + 6B) O there exists a compadt’ C O such thatG(K) C K'.

for all (t,5) = (ti,7:), (t,5) € domz;. As K is compact, = Theorem 7.1: ([11], Theorem 4.6) If the hybrid systém
the sequencdz;}$°, is locally eventually bounded. By thewith state space) satisfies (A0)-(A3) andr : O = O is
Standing Assumption, it has a subsequence (that we woleally bounded, thets,, satisfies (B4).

relabe_l) converging to “s_omee S \,I,Vith_ zi(0,0) — S_C(O’ 0) € Definition 7.2 (attractivity): A set.4 C O is attractive for
M. Since dom_xi are ‘increasing’,z is complete; see [11, the set of trajectories if there existsp > 0 such that for any
Lemma 3.5]. Finallyxgex C M\ (A+0B), and alsagex C 0 ¢ 41 )B, each maximal trajectory € S(z°) is complete
K. The second inclusion, by detectability of relative to 4 satisfiegim, . ; l2(t, )4 = 0

]— 00 3 — .

K, relative stability of A, and Lemma 6.4, implies that : .
converges tod. This is a contradiction with the first inclusion.. We denote byB 4 the basin of attraction of a compact sét

@2 = 1) Any trajectory z € S with rgez C K is i.e. the set of all points® for which $(z°) is nonempty, each

0\ i : i : _
precompact, by compactness &f and as such, it converges® < (") is complete and such théitn, .o |2(t, 7)|4 =

to its w-limit. Since thew-limit is invariant and a subset of (t)) t:;het ‘E’)?tA '(‘;’ Stétl'd :0 beFasymptcE)tlcglly ?tattt)left.'t IS f
K, it must be a subset ofl. Hence,z converges toA. oth stable and atlractive. or thé basin of attraclion of an

) asymptotically stable set to be forward invariant, another
Corollary 6.7: LetA, K be compact subsets 6f, with A

. . ; assumption needs to be placed n
stable relative toX and with the distance tol detectable on %BS) For anyz, € S, any (T,J) € domas, and anyzs €

K, and letw : O — R>( be a continuous and positive definit . : .

) ! = ) T,J)), the hybrid t t defined
function with respect tdX. If z € S is precompact and the S(@1(T, 7)), the hybrid trajectory: defined on
meagre-limsup conditions hold far with ¢., ¢, replaced by domz :={(¢,j) € domuay | (¢,5) X (T,J)}

w, thenz converges toA. U{t+T,5+J)]|(tj) € dommzy}
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is given byx(t, j) = z1(¢,7) for (¢,j) € domzy, (t,7) X meet the assumptions (BO)-(B5). Indeed, the only potential
(T,J), andz(t,j) = x2(t —T,75—J) for (¢,7) such that “trouble” is the sequence of solutions with z;(0) — 2. For

(t—T,5—J) € domas is an element ofs. example, taker;(0) = 2 + 1/i. Thenz;(1) = 5 —1/i, and
The assumption means that a concatenation of two solutongi(2+k) = (1 —1/i)2_k fork =0,1,.... The graphical limit
still a solution. (Recall that assumption (B2) required tadls Of:ZUCh a sequence is given by0) = 2, z(1) = 5, z(2+k) =
of solutions be solutions.) It automatically holds for thetid 2" for k=0,1,.... Clearly,z ¢ S. However, the sequence

systemH as in Section II-B, and here, it guarantees that fif #:'s is not locally eventually bounded (as(2) — 5 as

x € S(B.4) then for any(t, j) € domz we havex(t, j) € B4. ¢ — o0), so (B3) is not violated. The fact that;'s are not
Given an open seX ¢ O and a compact setl ¢ X, a locally eventually bounded does not violate (B4), as theee a

proper indicatorw : X — Rso for A on X is a continuous NO Solutions starting fror2 at all.

function that is positive definite with respect toand proper ~ Now, notice that fors, A = {0} is asymptotically stable,
with respect toX. A function 3 : Ry x R>g x N — R andB4 = D (and thusB 4 = OND). However, there is né&CL

is said to belong to clask£L if it is continuous,3(-, , §) bound ifw isqproperindicatoroﬂwith respect ta). Indeed,

is zero at zero and nondecreasifigs, -, j) and 3(s, t,-) are any KL function 3 such that(z;(1)) < B(w(x:(0)),1) for
nonincreasing and converge to zero tagespectively,j go ¢ = 1,2,... would need to satisfyj(s,1) = oo for all
to co. We say that the set of hybrid trajectorigsis forward § = «(2), which is impossible. In common words, trajectories
complete onk if for all z° € K, everyz € §(z°) is complete. ©Originating far from the boundary @ get arbitrarily close to

I . the boundary (before approaching).
Definition 7.3: (LLL stability) Letw : K — Rs( be
continuous. The set of hybrid trajectorigss said to beCLL- In order to makeD (and thus, the range of;) closed, one

stable with respect ta if it is forward complete onk and ﬁg?lgol:flllé (tjee) ?réotzzgfrg))tiznzs' (:CES(é))(TBé)5aE?2;IIIrr']5 zil'éisk#; d
there exists3 € KLL such that, for each® € K, every b ) b '

0) satisfies The setR now equals[0,1] U {1.5} U [2,3] U [4,5), but B4
v € §(a7) satisf remains unchanged. Any open sétsuch thatB4, = X N'R
w(z(t,§)) < Bw(z®),t,§) for each(t, ) € domz. must not contair2. The solutionse; considered above are now
such thatz;(0) approach the boundary of asi — oo, and
sow(z;(0)) — oo for any proper indicator of4 with respect

Theorem 7.4: (asymptotic stability impli&€sCL stab.) Sup-  X. For suchw. a .z bound can be written down =

pose that, for the set of trajectorie$, the compact set is

locally asymptotically stable, and its basin of attractiéy

can be expressed a§NY whereX C O is open andy’ C O B. Lyapunov and Krasovskii theorems for hybrid systems

is closed relative ta). Then, for each proper indicatay for In what follows, we work with hybrid system&{ with

Aon X, S is KLL-stable with respect to. data(F, G, C, D, 0) as described in Section II-B. We replace

Proof: The proof follows that of Theorem 6.5 in [11]_the Standing Assumption by the following assumptions: ¢A0)

The expressiotk NY for B4 is used to conclude that the sefA3), G locally bounded (see Theorem 7.1), and

{z € Ba|w(z) < r} is compact for any- > 0, while with (VC) for eachz® € C and for some neighborhodd of

(B5), the reachable set from any subsetif is a subset of a°, for everys’ e UNC, To(a') N F(x') # 0,

B.4. Other arguments, including those leading to Propositions(VD) for eachz’ € D, G(2°) c C U D.

6.2 and 6.3 in [11], carry over essentially without chan@e. The conditions (VC) and (VD) guarantee existence of solu-
A particular case when a basin of attraction can be d#ens; see [11, Proposition 2.4]. A particular consequenice

scribed as in the theorem above is when the rangs,dfe. them is that any maximal solution # is either complete or

R :={rgez | x € S}, is closed relative t@® and when every eventually leaves any compact subsetof

maximal solution inS is complete. Indeed, then it can be Theorem 7.6: (hybrid Krasovskii) Given a hybrid system

shown thati3 4 is open relative taR (related result for hybrid gyppose that

systemsH is in Proposition 6.4 of [11]). Then one can take

Y = R and an appropriate opel exists by the definition

of a relatively open set. We add that by (B2) of the Standing

Assumption,R = {z(0,0) | z € S}, and by (B3),R is closed

whenever it _is bm_mded with respegt(tb For hybrid systems up(z) <0 forall z € U,

‘H as described in Section II-BR is always closed under

(A0)-(A3). We conclude this section by illustrating the deeThenA IS stgble. Suppose additionally that
for some closedness assumptions&n (x%) there exists* > 0 such that for allr € (0, 7*) the largest

. . weakly invariant subset in (12) is empty.
Example 7.5:Let S be the set of all solutions to the hybrld_l_h Ais locall totically stabl
system given ol = (—o0, 5) by D = [0, 1]U(2, 3]U[4,5) and enA Is locally asymptotically stable.
G(z)=2/2if 2 €[0,1], Glx) =T—=x if z € (2,3], G(z) = Proof: Assume £) and lete > 0 be small enough so that
z—4if z € [4,5). (Such hybrid system can be identified with4 + 2¢B C U. We claim that there exists such that
a difference equation, and thus in what follows we do noty (z) < ¢,z € (A + 2€eB) N (C' U D)

mentiont). Note that such a system does not meet (A0)-(A3x » ¢ (A+eB)N(CUD),G(z) C(A+eB)N (CUD).
since D is not closed relative t@. However, the se§ does (15)

(*) A C O is compactld C O is a neighborhood of4,
V : O — Ry is continuous orD, locally Lipschitz on
a neighborhood ofC, and positive definite o’ U D
with respect toA, and uc and up satisfyuc(z) < 0,
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Certainly, asV is positive definite onC' U D with respect  Theorem 7.8: For the hybrid syste, suppose thatx) of
to A, there exists” > 0 so that forz € (A+2eB)N(C'UD), Theorem 7.6 holds. Suppose that either
V(z) < r¢ impliesz € (A+ eB) N (C'U D). Now note that (3) 4 (z) < 0 for eachz € U \ A,
asup(z) < 0 forall z € A andV is positive definite on (b) any instantaneous Zeno solutiento H with rge z C U
C'UD with respect tad, G(AN(CUD)) C AN(C'UD). By converges to4;
outer semicontinuity and local boundedness, the map;fi,lngOr
is “upper semicontinuous”, in particular there exists- 0 so i
that G(A 4+ yB) C A + B. Using positive definiteness of (a,) up(z) <0 foreachz €U\ A, ,
again, one can find” > 0 so thatz € (A + 2¢B) N (C' U D) (b") any complete continuous solutianto H with rgex C U
andV (z) < " imply z € (A+~B) N (C UD). To make the ~ CONVerges tod.
implication (15) true, one now takes, = min{r’,r”}. Then A is locally asymptotically stable.

Based on(15), we claim that the set Proof: Stability of A is guaranteed by Theorem 7.6. To
show attractivity, pickd > 0 as in the last paragraph of the
N={z€A+B)N(CUD) | V() <re} (16) proof of Theorem 7.6. Pick any € A + /B and anyx €
is (strongly) forward invariant fof{, that is for anyz € S(z) S(z). ThenQ(x) C N, where N is given by (16), and in
with z € N, rgex C N. Indeed, pick any: € A/ and let particular,Q(x) C Y. Given anyz’ € Q(z), let{ € S(z') be
z € S(2).1f (0,1) € dom z, thenz(0,1) € G(z) C (A+eB)n any solution taH verifying the forward invariance d(x), i.e.
(CUD). If [0,T] x {0} € domz and for some’ € (0,T], rge&§ C Q(z). By Lemma 4.1V is constant along. Suppose
z(t',0) ¢ N, then by continuity oft — z(t,0), for some thatV({(t,5)) = d > 0 for all (¢, ) € dom¢, so in particular
t" € (0,'], z(t",0) € N butz(t”,0) € (A+eB)N(CUD)and (z) N.A = 0. If assumptions (a) and (b) hold, then by (a)
V(z(t",0)) < r. (the latter is true a¥ is nonincreasing along and Lemma 4.1¢ is instantaneously Zeno siné¥z) C N.
x). By equation(15), x(t”,0) € N. This is a contradiction. Hence, by (b), it converges td. But this contradictd” being
Thus 2([0,77],0) C N. The facts just shown are enough teonstant along. If assumptions (a’) and (b’) hold, then by
conclude that\ is forward invariant. (&) and Lemma 4.1£ has no jumps, i.e. it is a complete
Finally, by continuity ofV/, given any small enough> 0 continuous solution. Hence, by (b’), it convergesAo This
andr, > 0 so that(15) holds, we can find € (0, ¢) so that again contradict¥” being constant along Thus,V ({(t,5)) =
z € (A+0B)N(CUD) impliesV (z) < r.. Relying on forward 0 for all (¢,j) € dom¢ and consequenthy(z) C A. This

invariance of\, each maximak € S(z) with z € A+ 6B is implies thatz converges toA. =
so thatrgex C A + eB. Thus, A is stable.
Now assume«) and &x). To show attractivity, note that VIIl. CONCLUSIONS

givene > 0 with A+2¢B C U, we can findr. € (0,r), r asin
condition gx) so that\V in (16) is forward invariant (i.e. one
can pickr, in the proof of stability ofA arbitrarily small). In

particular, if 0 is associated witla as in the paragraph above, i f hvbrid svst A lication. th .
any z € S(z) with z € A+ éB is precompact. As such,Se ing of ybrid Systems. As an applcation, tNese ex !

by Theorem 4.7, it converges to the largest weakly invaria(@ﬁmh the set of tools available for establishing asympia-

subset of the set given Ky 2). It must be the case that < . tltg'r(:f comp:cact sets Il_n hybrid (?ontrt(_)l systtﬁr?sd. Theglspe?rm
asV is nonincreasing along, and then’ < r*. As Q(x) is stability proofs using Lyapunov functions that do not styic

nonempty,x converges to the largest weakly invariant subng crease along both flows and Jumps, and also trajectomebas .

of (12) with r = 0 which, by positive definiteness df, is a proofs, perhaps based on small-gain theorems expressed in

subset ofd. Hence A is attractive. terms c_)f detectable c_>utputs. These to_ols can be used_ tdyregd|
We note that in Theorem 7.6, the functier: could be ‘fs'? n the ?)n?llyS's of mNany ph}/SlcaIdIexam%les, _mcludmg

replaced byve, or we if V' is also nonpathological, as Iongt € bouncing ba system, Newton's cradie, and swing-up o

1 . . — — an inverted pendulum on a cart.

asu (0) in equation(12) is replaced by (0) or ws" (0).

(In fact, the result could be stated in terms of any functions
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