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Abstract—Convex analysis and the theory of differential
inclusions with maximal monotone right-hand sides suggests

casting consensus algorithms as systems involving switching
between such differential inclusions. Convergence of solutions to

such switching systems is shown and applications to consensus
are presented. Robustness of pointwise asymptotic stability for

a single differential inclusion which has some monotonicity-
related properties, but needs not be monotone, is shown.

Index Terms—consensus, pointwise asymptotic stability,

semistability, convex analysis, monotone mapping

I. INTRODUCTION

This note is motivated by consensus algorithms for multi-

agent systems [1], [2] in continuous time and by the question

of robustness of the kind of stability they result in. Basic

consensus algorithms lead to autonomous linear dynamics

which are the steepest descent, or gradient flow, for a convex

quadratic function. Constraints and consideration of pro-

jected gradient flow can be handled using nonsmooth convex

functions and their subdifferentials. This leads to dynamics

given by maximal monotone set-valued mappings, solutions

to which are quite well-behaved and have a nonexpansive

property; see [3] for a classical exposition.

One approach to changing communication topology in

consensus problems is to consider switching between maxi-

mal monotone dynamics. The first contribution of this note

is a result which shows when such switching leads to

convergence of solutions to the set of common equilibria.

If the common equilibria represent consensus, the result

shows when a multi-agent system reaches consensus. This

contribution unifies a variety of consensus results, similar

to those in [1], [4], [5], [6], and [7], though continuously

changing weights of the communication graph are not con-

sidered here. Convex-analytic methods have been used, to an

extent, in [5], [6], and for discrete-time dynamics in [8], this

note considers more general nonsmooth convex functions.

Some related works also include applications of consensus

to distributed optimization — see the discussion in [6]. The

general idea behind the result has some parallels to results on
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common fixed points for families of nonexpansive mappings,

for example [9], and for families of mappings with common

convex Lyapunov functions, say [10]. 1

For dynamics given by a maximal monotone mapping,

including steepest descent for a convex function and the so-

called saddle-point dynamics, every equilibrium is Lyapunov

stable. If all solutions converge to the set of equilibria, the

set is pointwise asymptotically stable. This property, also

referred to as semistability, has been studied for differential

equations [12], differential inclusions [13], difference inclu-

sions [14], and hybrid systems [15], and is also present, as a

special case, in numerous convergent convex optimization al-

gorithms, under the name Fejér monotonicity. Robustness of

pointwise asymptotic stability, for a difference inclusion, was

addressed in [16], through the use of set-valued Lyapunov

functions, proposed by [17]. For a differential inclusion given

by a maximal monotone mapping, robustness was shown in

[18]. The second contribution of this note is a robustness

result generalizing that of [18], to a general differential

inclusion, with constraints, and with a local Fejér mono-

tonicity property, but not necessarily monotone. Robustness

is understood similarly to [19], for differential inclusions,

and [20], for differential inclusions with constraints.

The two contributions, discussed above, are in Section

III and Section IV, respectively. In Section II, a brief

introduction to maximal monotone mappings, to differential

inclusions involving them, and to issues of convergence of

solutions to such inclusions is provided.

II. BACKGROUND

General references for convex and set-valued analysis

are [21] and [22]. Early treatment of maximal monotone

differential inclusions is in [3], essential elements of it can be

found in [23], and a recent survey addressing both continuous

and discrete-time systems is [24]. For further discussion and

references on saddle-point dynamics, see [18].

A. Monotone mappings

A set-valued mapping M : R
n

⇒ R
n is monotone if for

every x1, x2 ∈ R
n and every y1 ∈ M(x1), y2 ∈ M(x2),

(x1 − x2) · (y1 − y2) ≥ 0, (1)

where · is the dot product. A monotone M is maximal

monotone if the graph of M cannot be enlarged without

violating monotonicity. Monotonicity is a generalization of

positive semidefiniteness to the nonlinear setting. Indeed, for

1A quite different intersection of fixed point theory and Lyapunov
analysis, for time varying systems, is in [11].



an n×n matrix R and M(x) = Rx, positive semidefiniteness

of R is equivalent to monotonicity of M . Other examples

include subdifferential mappings of convex and of convex-

concave functions, in the sense of convex analysis.

Example 2.1: Let f : R
n → R ∪ {∞} be a proper (i.e.,

finite somewhere), lower semicontinuous (lsc), and convex

function. It’s convex subdifferential mapping is the set-valued

mapping ∂f : R
n

⇒ R
n with the value at x ∈ R

n denoted

by ∂f(x) and given by

{y ∈ R
n | f(x′) ≥ f(x) + y · (x′ − x) ∀x′ ∈ R

n} . (2)

The subdifferential mapping is maximal monotone; [21,

Theorem 24.9]. Monotonicity is easy to check directly, by

adding the inequalities f(x2) ≥ f(x1) + y1 · (x2 − x1),
f(x1) ≥ f(x2) + y2 · (x1 − x2). 4

Example 2.2: Let C ⊂ R
n be a nonempty closed convex

set, and f : R
n → R be a convex (thus continuous) and

differentiable on a neighborhood of C (thus continuously

differentiable there) function. Define fC : R
n → R ∪ {∞}

by

fC (x) =

{

f(x) if x ∈ C,
∞ if x 6∈ C.

(3)

Then fC is proper, lsc, and convex, and its subdifferential,

which is maximal monotone by Example 2.1, is given by

∂fC (x) =







∇f(x) if x ∈ intC,
∇f(x) + NC (x) if x ∈ bdry C,

∅ if x 6∈ C.
(4)

Above, intC and bdry C stand for the interior and the

boundary of C , and NC : R
n

⇒ R
n is the normal cone

mapping, given by

NC(x) = {v ∈ R
n | v · (x′ − x) ≤ 0 ∀x′ ∈ C}. 4

Example 2.3: Let h : R
n×R

m → R be a convex-concave

function: x 7→ h(x, y) is convex for every y ∈ R
m and y 7→

h(x, y) is concave for every x ∈ R
n. It is then continuous

[21, Theorem 35.1]. Suppose it is also differentiable (and

then, automatically continuously differentiable). Then

(x, y) 7→ ∇xh(x, y) × (−∇yh(x, y))

is maximal monotone. More generally, let h be as above, and

let C ⊂ R
n, D ⊂ R

m be nonempty, closed, and convex sets.

There are different ways to extend h outside of C × D by

infinite values. (Cf. (3).) The largest such extension is

hC,D(x, y) =







h(x, y) if x ∈ C, y ∈ D,
∞ if x 6∈ C,
−∞ if x ∈ C, y 6∈ D.

(5)

The convex-concave subdifferential of hC,D is the mapping

(x, y) 7→ ∂xhC,D(x, y) × ∂̃yhC,D(x, y), (6)

where ∂xhC,D(x, y) is the convex subdifferential of the

convex function x 7→ h(x, y) and ∂̃yhC,D(x, y) is the

negative of the convex subdifferential of the convex function

y 7→ −h(x, y). The set-valued mapping

(x, y) 7→ ∂xhC,D(x, y) ×
(

−∂̃yhC,D(x, y)
)

is maximal monotone. 4

B. Monotone inclusions

Differential inclusions given by a negative of a maximal

monotone operator, for example the continuous-time steepest

descent, have several favorable properties. The results date

back to [3] and before, and hold in Hilbert spaces; see [23,

Theorem 1, Section 2, Chapter 2] for details.

Theorem 2.4: Let M : R
n

⇒ R
n be a maximal mono-

tone mapping and consider the differential inclusion

ẋ ∈ −M(x) (7)

Then:

(a) For every x0 ∈ dom M there exists a unique maximal

solution to (7) with x(0) = x0 and this solution is

complete, i.e., defined on [0,∞).
(b) For any two complete solutions x(·), x′(·) to (7),

t 7→ ‖x(t) − x′(t)‖

is nonincreasing, where ‖ · ‖ stands for the Euclidean

norm. In particular, the solutions to (7) depend contin-

uously on initial conditions, in the uniform norm over

[0,∞).
(c) For every solution x(·) to (7), ‖ẋ(t)‖ is nonincreasing,

and, for almost all t ≥ 0, ẋ(t) = m (−M(x(t))), where

m(S) is the minimum norm element of the set S.

In (a), domM is the effective domain of M , namely {x ∈
R

n |M(x) 6= ∅}. The nonexpansive property in (b) comes

directly from the definition of monotonicity,

d

dt

1

2
‖x(t) − x′(t)‖2 = (x(t) − x′(t)) · (ẋ(t) − ẋ′(t)) ≤ 0,

and implies that every equilibrium of (7), equivalently, every

x such that 0 ∈ M(x), i.e., every element of M−1(0),
is Lyapunov stable for (7). A different setting where this

property holds, for systems of the form ẋ = f(x), is when

the vector field f is geodesically monotone, i.e., when there

exists a Riemannian metric with a nonpositive Lie derivative

in the directions of the vector field; see [25]. The property

that the difference between every pair of solutions to ẋ =
f(x) has a decreasing distance is also known as incremental

stability [26] and weak versions of the Lyapunov conditions

in [27] can be employed to guarantee the nonexpansivity

property.

The minimum norm property in (c) leads to solutions to

(7) being referred to as “slow” or “lazy”. In general, the

minimum norm element does not depend continuously on x:

Example 2.5: Let fC be as in Example 2.2, with C =
[0,∞)n being the nonnegative cone. For x ∈ C , for i =
1, 2, . . . , n, the i-th coordinates of points in ∂fC (x) are

[∂fC (x)]i =

{

[∇f(x)]i if xi > 0,
[∇f(x)]i + (−∞, 0] if xi = 0.

Then the minimum norm element m(∂fC (x)) depends dis-

continuously on x ∈ C: its i-th coordinate [m(∂fC (x))]i
is

{

[∇f(x)]i if xi > 0 or xi = 0, [∇f(x)]i ≤ 0,
0 if xi = 0, [∇f(x)]i > 0. 4



Above, the minimum norm element of ∂fC(x) is the

projection of ∇f(x) onto the set C . This is true in general.

The result below is from the recent [28, Corollary 2], though

some of the equivalences go back to [29], [3] and the relation

to variational inequalities in (c) can be found in [23].

Proposition 2.6: Let C ⊂ R
n be a nonempty closed con-

vex set and f : R
n → R be a convex function, differentiable

on a neighborhood of C . For any x, v ∈ R
n, the following

are equivalent:

(a) v = PTC(x) (−∇f(x))
(b) v = lim

λ↘0
[PC(x + λ(−∇f(x))) − x] /λ

(c) v ∈ −
(

∇f(x) + NTC(x)(v)
)

(d) v = −m (∇f(x) + NC (x))

Above, the projection PC(x) of x ∈ R
n onto C is the

unique c ∈ C which minimizes ‖x−c‖. The tangent cone to

C at x ∈ C is TC(x) = {z ∈ R
n | z · w ≤ 0 ∀w ∈ NC(x)}.

As a consequence of Theorem 2.4 and Proposition 2.6, for

f and C as in Example 3, the solutions to

ẋ = PTC(x) (−∇f(x)) (8)

exist from every initial condition in C , are unique, the max-

imal solutions are complete, and they depend continuously

on initial conditions. This extends to saddle dynamics, dating

back to [30]. For h, C , and D as in Example 2.3, the

solutions to

ẋ = PTC(x) (−∇xh(x, y)) , ẏ = PTD(y) (∇yh(x, y)) (9)

exist from every initial condition in C × D, are unique, the

maximal solutions are complete, and they depend continu-

ously on initial conditions.

C. Convergence and stability

If M = ∂f where f : R
n → R ∪ {∞} is proper, lsc, and

convex, then (7) is the steepest descent

ẋ ∈ −∂f(x), (10)

and the set of equilibria of (7) is the set of minimizers of

f — indeed, by (2), 0 ∈ ∂f(x) if and only if x minimizes

f . Suppose that the closed and convex, but not necessarily

bounded, set A := arg minf is nonempty. Let x∗ ∈ A. For

a complete solution x to (10),

d

dt

1

2
‖x(t) − x∗‖2 = (x(t) − x∗) · ẋ(t)

≤ f(x∗) − f(x(t))
= minf − f(x(t)) ≤ 0,

where the inequality follows from (2). Then there exists a

sequence ti ↗ ∞ such that f(x(ti)) ↘ minf . Since x is

bounded, the sequence x(ti) has a convergent subsequence,

and since f is lsc, x has a cluster point in A. Since each

a ∈ A is Lyapunov stable, x converges to that cluster point.

These arguments motivate the next definition.

A maximal monotone M : R
n

⇒ R
n is called demiposi-

tive, following [31], if there exists a ∈ M−1(0) such that, for

every convergent sequence xi and every bounded sequence

vi ∈ M(xi), if (xi − a, vi) → 0 then limi→∞ xi ∈ M−1(0).

The original definition, given in a broader setting, considered

weak convergence of xi. Here, since the graph of a maximal

monotone M is closed, the definition reduces to: there exists

a ∈ M−1(0) such that, if v · (x−a) = 0 for some v ∈ M(x)
then x ∈ M−1(0). For a proper, lsc, and convex f , ∂f
is demipositive, and arguments very similar to those above

show that if a maximal monotone M is demipositive, with a

nonempty set of equilibria, then every complete solution to

(7) converges to an equilibrium.

For a convex-concave function, like h or hC,D in Example

2.3, the gradient or subdifferential (6) need not be demipos-

itive. It is if h is strictly convex in x, strictly concave in y,

but not in general: for example, consider h(x, y) = x2 +xy.

Consequently, solutions to saddle-point dynamics

ẋ ∈ −∂xhC,D(x, y), ẏ ∈ ∂̃yhC,D(x, y), (11)

need not, in general, converge to the set of equilibria of (11),

which is exactly the set of saddle points of hC,D. Recall that

(x∗, y∗) is a saddle point of hC,D if

hC,D(x∗, y) ≤ hC,D(x∗, y∗) ≤ hC,D(x, y∗)

for all (x, y) ∈ R
n×R

m, equivalently, due to the construction

of hC,D, for all (x, y) ∈ C ×D. Recall too that solutions to

saddle-point dynamics (11) are the same as solutions to the

projected gradient dynamics (9).

The following result is [32, Theorem 4.1]. It extends

to nondifferentiable h, see [18], but is stated here in the

differentiable case for simplicity.

Theorem 2.7: In the setting of Example 2.3, suppose that

the set X∗ × Y ∗ of saddle points of hC,D is nonempty, and

either

(a) for every (x∗, y∗) ∈ X∗ × Y ∗ and every y 6∈ Y ∗,

hC,D(x∗, y) < hC,D(x∗, y∗),

or

(b) for every (x∗, y∗) ∈ X∗ × Y ∗ and every x 6∈ X∗,

hC,D(x∗, y∗) < hC,D(x, y∗),

then every complete solution to (11) converges to a saddle

point of hC,D.

The result is proven using an invariance argument. Thanks

to Theorem 2.4, a standard invariance principle applies, for

example [33, Lemma 4.3, Theorem 4.4] in Khalil’s textbook.

In contrast, [34] used a hybrid system invariance principle

for saddle-point dynamics; incorrectly, as pointed out in [35].

In turn, [35] used a projected dynamics result from [36].

III. SWITCHING BETWEEN MONOTONE INCLUSIONS AND

APPLICATION TO CONSENSUS

Consider the switching system

ẋ ∈ −Mq(x), q(·) ∈ S (12)

where S is a set of switching signals.

Assumption 3.1:

(a) Q = {1, 2, . . . , p} for some p ∈ N. For every q ∈ Q,

Mq : R
n

⇒ R
n is a demipositive maximal monotone

mapping with closed domMq .



(b) For every q(·) ∈ S there exists a dwell-time τD > 0.

(c) For every complete q(·) ∈ S there exists T > 0 such

that, for every t ∈ [0,∞),

q ([t, t + T ]) = Q.

(d) A :=
⋂

q∈Q

Aq 6= ∅, where Aq := M−1
q (0).

Switching signals are considered to be piecewise continu-

ous and right-continuous. The dwell time assumption in (b)

means that, for each q(·) ∈ S, there exists τD > 0 so that

discontinuities of q(·) occur at times t1, t2, . . . (dependent

on q(·)), where 0 < t1 < t2 < . . . and ti+1 − ti ≥ τD

for i = 1, 2, . . . . The assumption in (c) means that each

switching signal q(·) “visits” every q ∈ Q during every

interval of length T , and T can depend on q(·).
Directly from Theorem 2.4, one obtains that under As-

sumption 3.1 (a), (b), for every q(·) ∈ S and every x0 ∈
domMq(0) there exists a unique maximal solution to (12).

This solution is complete under additional assumptions on

domains of Mq , for example if dom Mq are equal to each

another, over all q ∈ Q.

Theorem 3.2: Under Assumption 3.1, every solution to

(12) has x(·) bounded, and every complete solution is such

that limt→∞ x(t) exists and belongs to A.

The proof relies on V (x) := ‖x − a‖2 which is nonin-

creasing along every solution, for any a ∈ A. Considering

Mq = ∂fq in Theorem 3.2, where fq are convex functions,

yields convergence to common minimizers of fq .

Corollary 3.3: For q ∈ Q, let fq : R
n → R ∪ {∞} be a

proper, lsc, and convex function. Let

A :=
⋂

q∈Q

Aq where Aq := arg minfq .

If A 6= ∅ and Assumption 3.1 (b), (c) holds, then every

complete solution to

ẋ ∈ −∂fq(x), q(·) ∈ S, (13)

converges to a point in A.

The nonexpansive property ensures that in Theorem 3.2

and in Corollary 3.3, every a ∈ A is Lyapunov stable and

thus A is pointwise asymptotically stable. Similarly, in the

setting of Theorem 2.7, the set of saddle point is pointwise

asymptotically stable. The formal definition of this property

is postponed until Section IV.

Remark 3.4: A nice and related result appears in [37].

There, the system

ẋ = −m (NC (x) + con{∂g1(x), ∂g2(x), . . . , gp(x)}) (14)

is studied, where m is the minimum norm element, C
is a closed convex set and gq are finite-valued convex

functions on a Hilbert space, and con stands for the

convex hull. Convergence to Pareto points of gq in C is

concluded, and such points reduce to common minimizers,

if the latter exist. For comparison, recall that solutions

to (13) satisfy ẋ = −m(∂fq(x)), and one can consider

fq constructed from gq and C through (3). Then (14) is

ẋ = −m (con{∂f1(x), . . . , ∂fp(x)}). The set of velocities

con{∂f1(x), . . . , ∂fp(x)} can be related to arbitrary switch-

ing between velocities in ∂fq(x), but the minimum norm

selection destroys this relationship.

The breadth of the setting of Corollary 3.3 is illustrated

through the following examples, often related to the ques-

tions of consensus. Let n = km, where k represents the

number of m-dimensional agents. For convenience, x ∈ R
n

is (x1, x2, . . . , xk), with xi ∈ R
m. Let M ⊂ R

n be the

consensus subspace:

CS = {x ∈ R
n | x1 = x2 = · · · = xk}.

It is said that a complete solution to (13) reaches consensus

if limt→∞ x(t) exists and belongs to CS; in other words if

the limits limt→∞ xi(t) are the same, for i = 1, 2, . . . , k.

Then, under the assumptions of Corollary 3.3,

• If A is nonempty and A ⊂ CS, then complete solutions

reach consensus for every initial condition.

• If A is nonempty and there exists a point a ∈ A such

that a 6∈ CS, then, for some initial conditions, complete

solutions do not reach consensus.

For the conclusions of the examples below, let Assumption

3.1 (b), (c) hold.

Example 3.5: For q ∈ Q, let aij(q) = aji(q) ≥ 0 for

i, j = 1, . . . , k. Let

lq(x) =
1

4

k
∑

i,j=1

aij(q)(xi − xj)
2, (15)

which is a convex quadratic function. Then ẋ ∈ −∂lq(x)
reduces to ẋ = −∇lq(x), which, for a given q ∈ Q, becomes

ẋi =

k
∑

j=1

aij(q) (xj − xi) , i = 1, . . . , k. (16)

By (15), CS ⊂ arg min lq for every q ∈ Q. Complete

solutions reach consensus if ∩q∈Q arg min lq ⊂ CS. 4
In the setting of Example 3.5, let the symmetric matri-

ces {aij(q)}i,j=1,2,...k represent undirected communication

graphs Gq between agents, where an edge between agents

i and j in the q-th mode is represented by aij = aji > 0.

If the union of the communication graphs, over all q ∈ Q,

is connected, equivalently, if it has a spanning tree, then

∩q∈Q arg min lq = CS, and consequently, A = CS.

Corollary 3.6: With the notation above, if the union of

communication graphs Gq over all q ∈ Q is connected and

Assumption 3.1 (b), (c) holds, then every complete solution

to (16) reaches consensus.

The connectedness assumption combined with Assump-

tion 3.1 (c) is similar to “periodic connectedness” assump-

tions often made in the consensus literature. Thus, Corol-

lary 3.6 essentially recovers results reaching consensus for

switching and periodically connected communication graphs

in the literature; e.g., [4, Theorem 3.12]. For the purpose of

finite-time consensus, one can take, in (15), powers of xi−xj

in [1, 2), which also leads to a convex function; c.f. [38].



Example 3.7: For i = 1, 2, . . . , k, let Ci ⊂ R
n be a

nonempty, closed, convex set, and let di : R
n → R be

di(xi) :=
1

2
(distCi

(xi))
2

=
1

2
(xi − PCi

(xi))
2
.

Above, PCi
(xi) is the projection of xi onto Ci. Then di is

a differentiable convex function, with arg mindi = Ci and

∇di(xi) = xi−PCi
(xi). With lq as in Example 3.5, consider

fq(x) = lq(x) +

k
∑

i=1

di(xi).

Then ẋ = −∇fq(x) becomes, for i = 1, 2, . . . , k,

ẋi =
k
∑

j=1

aij(q) (xj − xi) + PCi
(xi) − xi. (17)

Such systems were analyzed, for example, in [5]; similar

ones are in [7]. In both [5], [7] a different time dependence

of aij was considered. Consensus here corresponds to finding

the intersection of the sets Ci. A generalization of (17), to

ẋi =
k
∑

j=1

aij(q) (xj − xi) −∇gi(xi), (18)

where gi : R
m → R is a differentiable convex function

with nonempty arg mingi, and ẋi = −∇gi(xi) is the local

dynamics of the i-th agent, was considered in [6]. This case

still fits in the framework of Corollary 3.3. 4
Example 3.8: Let aij(q) be as in Example 3.5, let Ci be

as in Example 3.7. Consider, for i = 1, 2, . . . , k,

ẋi = PTCi
(xi)





k
∑

j=1

aij(q) (xj − xi)



 , (19)

which is the dynamics (16) projected onto the convex set Ci.

These dynamics are discontinuous. As explained in Section

II-B, solutions to (19) are the same as solutions to ẋ ∈ −∂fq ,

where C = C1 × C2 × · · · × Ck and fq is obtained from lq
in Example 3.5 by the construction (3), i.e.,

fq(x) =

{

lq(x) if x ∈ C,
∞ if x 6∈ C.

Consequently, for every initial condition in C , and every

switching signal q(·) ∈ Q, there exists a unique complete

solution x(·). If

∅ 6=





⋂

q∈Q

arg min lq



 ∩

(

k
⋂

i=1

Ci

)

⊂ CS

complete solutions to (19) reach consensus. 4

IV. ROBUSTNESS OF PAS THROUGH FEJÉR

MONOTONICITY

In the setting of Theorem 3.2, the set of common equilibria

of Mq is pointwise asymptotically stable (PAS). This section

shows that the PAS property is robust, if, locally around

the attractor, a nonexpansive property similar to what is

guaranteed by monotonicity, holds. The setting is that of a

constrained differential inclusion

ẋ ∈ F (x), x ∈ C, (20)

where F : R
n

⇒ R
n is a set-valued mapping and C ⊂ R

n.

A generalization to the switching case should be possible. A

solution to (20) is a locally absolutely continuous function

x : I → R
n, where I is an interval containing and beginning

at 0, such that ẋ(t) ∈ F (x(t)) for almost all t ∈ I and

x(t) ∈ C for all t ∈ I.

A set A ⊂ R
n is PAS for (20) if

• every a ∈ A is Lyapunov stable: for every ε > 0 there

exists δ > 0 so that, for every solution x(·) to (20), if

‖x(0)−a‖ < δ then ‖x(t)−a‖ < ε for all t ∈ domx(·);
and

• every solution x(·) to (20) is bounded, and if it is

complete, then it is convergent and limt→∞ x(t) ∈ A.

If A is a singleton, then PAS the same as asymptotic stability.

If A is compact, PAS implies asymptotic stability. If A is

unbounded, the two properties are not comparable.

The inclusion (20) is Fejér monotone with respect to a set

A ⊂ R
n if, for every solution x to (20), for every a ∈ A,

‖x(t) − a‖ ≤ ‖x(0) − a‖ ∀t ∈ domx(·). (21)

The inclusion (20) is locally Fejér monotone with respect to

A if there exists a neighborhood U of A such that (21) holds

for every solution x with x(0) ∈ U and every a ∈ A. The

terminology is borrowed from optimization [39], where it is

usually applied to discrete-time dynamics.

A set A ⊂ R
n is robustly PAS for (20) if there exists a

continuous function ρ : R
n → [0,∞), with ρ(x) = 0 if and

only if x ∈ A, such that A is PAS for

ẋ ∈ Fρ(x), x ∈ Cρ, (22)

where the set-valued mapping Fρ : R
n

⇒ R
n is

Fρ(x) = conF (x + ρ(x)B) + ρ(x)B ∀x ∈ R
n

and Cρ = {x ∈ R
n | (x + ρ(x)B) ∩ C 6= ∅}. The perturba-

tion of F , given by Fρ, is what was considered by [19].

The perturbation of C , given by Cρ, is what was considered,

for example, in [20].

Theorem 4.1: Suppose that

(a) A ⊂ R
n is nonempty, compact, and PAS for (20);

(b) (20) is locally Fejér monotone with respect to A;

(c) C is nonempty and closed, F is locally bounded and

outer semicontinuous relative to C and for every x ∈ C ,

F (x) is nonempty and convex.

Then A is robustly PAS.

In fact, in the setting of Theorem 4.1, the local Fejér

monotonicity can be almost preserved — the perturbation

ρ can be small enough to ensure that for every solution x(·)
to (22) with x(0) ∈ W , for every a ∈ A,

‖x(t) − a‖ ≤ (1 + ε) ‖x(0) − a‖ ∀t ∈ domx(·). (23)



Example 4.2: Consider the setting of Example 3.8, but

with no q-dependence of the dynamics. That is, consider

ẋi = PTCi
(xi)





k
∑

j=1

aij (xj − xi)



 . (24)

Suppose that arg min l = CS, where l is the quadratic

function (15), and that A := CS∩
⋂k

i=1 Ci is nonempty and

compact. Then A is PAS for (24), as concluded in Example

3.8, and the property is robust, thanks to Theorem 4.1.

The theorem cannot be applied directly to (24), as the

dynamics need not be continuous. However, for C = C1 ×
C2 × · · · × Ck, let lC be the convex function obtained

from l, where l is the right-hand side of (15), and C via

the construction (3). Then (24) has the same solutions as

ẋ ∈ −∂lC (x) and, in fact, ẋ = m(−∂lC (x)), by Proposition

2.6. Theorem 4.1 cannot be applied to the inclusion, as −∂lC
is not locally bounded at the boundary of C . However, since

projections are nonexpansive, ‖m(−∂lC (x))‖ ≤ ‖∇l(x)‖ ≤
L‖x‖ for all x ∈ C and some L ≥ 0. Consider

F (x) = −∂lC (x) ∩ L‖x‖B,

which defines a set-valued mapping that satisfies the assump-

tions of Theorem 4.1, and m (−∂lC (x)) ∈ F (x) for every

x ∈ C . Theorem 4.1 can be applied to F . 4
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equivalence between complementarity systems, projected systems and
differential inclusions. Systems Control Lett., 55(1):45–51, 2006.

[29] C. Henry. An existence theorem for a class of differential equations

with multivalued right-hand side. J. Math. Anal. Appl., 41:179–186,
1973.

[30] K. Arrow and L. Hurwicz. A gradient method for approximating

saddle points and constrained maxima [reprint of RAND Corporation,
June 13, 1951, paper P-223]. In Traces and emergence of nonlinear
programming, pages 45–60. Birkhäuser/Springer Basel AG, Basel,
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