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Abstract: This paper proposes a hybrid observer for the estimation of the state of a plant over
a realistic network. The network provides delayed measurements of the output of the plant at
time instants that are not necessarily periodic and are accompanied by timestamps provided by
a clock that eventually synchronizes with the clock of the observer. The proposed observer, along
with the plant and communication network, are modeled by a hybrid dynamical system that has
two timers, a logic variable, and two memory states to capture the mechanisms involved in the
events associated with sampling and arrival of information, as well as the logic in the estimation
algorithm. The hybrid model also includes a generic clock synchronization scheme to cope with
a mismatch between the clocks at the plant and the observer. Convergence properties of the
estimation error of the system are shown analytically and supported by numerical examples.
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1. INTRODUCTION

Digital communication networks have become ubiquitous
in the fields of control systems and estimation, due to
their low cost and ease of configuration. The union of
these technologies has created the interdisciplinary field
of Networked Control Systems (NCSs) that specifically
refers to the study of distributed dynamical systems that
communicate via data packets over a shared network,
see Hespanha et al. (2007). The use of such networks
in control system applications presents unique challenges.
These challenges stem from the fact that control theorists
have traditionally treated interconnections between sys-
tems as ideal, while network theorists often assume that
communication channels are subject to unknown distur-
bances, and therefore imperfect, Hespanha et al. (2007).
Network disturbances in the form of packet delays and
dropouts can often degrade control system performance
and may, in some cases, destabilize the system if not taken
into account Zhang et al. (2001). Network disturbances
are traditionally addressed by implementing network-level
protocols designed to minimize such disturbances (e.g.,
CAN, FlexRay, TTP, etc.) to negligible levels. However,
in cases were such protocols prove impracticable, a model-
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based design of the system that includes assumptions
about network disturbances may be the only approach.
This paper addresses this scenario.

Treating the system as a traditional aperiodic sampled
system with regular sensor sampling intervals, despite a
variable delay on its transmission, constitutes one of the
model-based approaches presented in the literature for
packet dropout and delay disturbances. Results on such
systems have been well characterized as shown in Nesic
and Teel (2004) and Montestruque and Antsaklis (2003).
Of particular interest are the results that utilize hybrid
systems modeling as exhibited in the works by Zhang et al.
(2001), Nesic and Teel (2004), and Li and Sanfelice (2013).
Jungers et al. (2017) shows a method of abstracting the
time-varying delay problem as a controllability problem
with packet losses. The inability to apply the aforemen-
tioned results to an NCS that has both aperiodic sampling
and variable delays in the transmission of the sampled data
constitutes a noted discrepancy and motivates the work in
this paper. Moreover, we are not aware of any such result
that considers the inclusion of a clock synchronization
scheme.

This paper presents a hybrid observer for the estimation
of the state of a plant over a network subject to latency
delays. Measurements of the output plant are given at
aperiodic time instants and incur a variable delay during
their transmission. The measurements are accompanied
by timestamps provided by the clock of the plant that
is not synchronized with the clock of the observer. More



specifically, building on the results in Ferrante et al.
(2016), this paper introduces a hybrid system model of an
NCS that possesses the ability to capture aperiodic sensor
sampling with communication delays and desynchronized
node clocks utilizing the framework presented in Goebel
et al. (2012). Furthermore, we demonstrate the model’s
flexibility to implement clock synchronization schemes
in the case of drifting clocks in the subsystems of an
NCS and provide results for global attractivity. This
paper is organized as follows: Section 2 presents the
system being studied; an outline of the algorithm under
consideration for the observer law; and the associated
hybrid modeling of the system interconnected with the
observer. Section 5 details the main results, while section
6 provides numerical examples. In particular, the IEEE
1588 clock synchronization protocol (see IEEE (2008)) is
considered and analyzed within the hybrid model. Due to
space constraints, the proof of the results along with other
details will be published elsewhere.

Notation: In this paper the following notation and defini-
tions will be used. N denotes the set of natural numbers,
i.e., N = {0, 1, 2, ..}. N>0 denotes the set of natural num-
bers not including 0, i.e., N>0 = {1, 2, ..}. R denotes the
set of real numbers. R≥0 denotes the set of non-negative
real numbers, i.e., R≥0 = [0,∞). Rn denotes n-dimensional
Euclidean space. Given topological spaces A and B, F :
A ⇒ B denotes a set-valued map from A to B. For a
matrix A ∈ Rn×m, AT denotes the transpose of A. Given
a vector x ∈ Rn, |x| denotes the Euclidean norm. Given
two vectors x ∈ Rn and y ∈ Rm, (x, y) = [xT yT ]T. Given

a matrix A ∈ Rn, |A| := max{
√
|λ| : λ ∈ eig(ATA)}. For

two symmetric matrices A ∈ Rn and B ∈ Rn, A � B
means that A − B is positive definite, conversely A ≺ B
means that A− B is negative definite. Given a closed set
A ⊂ Rn and closed set B ⊂ A, the projection of A onto B
is denoted by ΠB(A). Given a function f : Rn → Rm, the
range of f is given by rge f := {y | ∃ x with y ∈ f(x)}.

2. MOTIVATIONAL EXAMPLE

In this paper, we consider linear plants given by
ż = Az, y = Mz (1)

where z ∈ Rn is the state and y ∈ Rm is the output.
The matrices A and M are constant and of appropriate
dimensions. To reconstruct z from measurements of y,
consider a networked observer receiving measurements y
sampled and broadcast at times tk, k ∈ Im, k > 0 where
Im := {2i+ 1 : i ∈ N}. Moreover, the network experiences
varying transmission delays such that the measurements
y(tk) are available only at times tk, k ∈ Id, k > 0,
where Id := {2i : i ∈ N}. The resulting sequence of
times {tk}∞k=0 capturing the sampling and arrival of the
measurements are described by a strictly nondecreasing
unbounded sequence of instants {tk}∞k=0 with t0 = 0.
Following Ferrante et al. (2016), we assume that there exist
scalars 0 < T d ≤ TN1 ≤ TN2 such that each such sequence
satisfies

0 ≤ t1 ≤ TN2 , TN1 ≤ tk − tk−2 ≤ TN2 ∀k ∈ Im, k > 0

0 ≤ tk − tk−1 ≤ T d ∀k ∈ Id, k > 0
(2)

Plant

ż = Az
y = Cz

Network Observer
y(tk) y(tk+1)

Dedicated Clock Synchronization Channel

Fig. 1. Block diagram of the system.
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Fig. 2. The evolution of the estimation error with respect
to real time for T d = 0.2 (left) and T d = 0.02 (right).
The vertical dashes represent the resets of ẑ according
to ẑ+.

The scalars TN1 and TN2 define the minimum and max-
imum allowable transfer interval (MATI), respectively,
while T d is an upper bound on the transmission delay.

Now, consider the impulsive observer proposed in Ferrante
et al. (2016)

˙̂z = Aẑ ∀t /∈ {tk}+∞0
ẑ(t+k ) =

{
ẑ(tk) + L(y(tk−1)−Mẑ(tk)) ∀k ∈ Id
ẑ(tk) ∀k ∈ Im

(3)
where L is a gain matrix designed to guarantee that the
estimation error ε := z − ẑ converges to zero.

From Ferrante et al. (2016), we review the example given
by the following system data: A = 1, M = 1 with chosen
constants T1 = T2 = 1 and L = 1 − e−1 designed such
that the sufficient conditions in Ferrante et al. (2016), for
convergence of ε to zero under the presence of delays, are
satisfied. Then, let T d = 0.2. Simulating the observer in
(3), Figure 2 shows that the norm of the estimate error
ε = z− ẑ for the given data diverges due to the small delay
introduced on the measurements. Figure 2, also shows
the divergence of the estimation error for the case where
T d = 0.02. The observer proposed in this work solves this
problem.

2.1 Proposed Observer Algorithm

Given the inability of the observer in (3) to compensate
for the delays with the original observer law, we propose
the following strategy:

• Measurements y broadcast at times tk, k ∈ Id, are
accompanied by a time-stamp `t(tk) = tk.
• When the subsequent measurements arrive at times
tk, k ∈ Im, the current state estimate ẑ(tk) is
backward propagated to tk−1, to get

ẑ(tk−1) = e−Aδk ẑ(tk)

where δk = tk − `t(tk−1).
• With the estimate ẑ(tk) retrieved, the reset law in

Ferrante et al. (2014) is applied to ẑ(tk−1), leading to
the auxiliary quantity



ẑ∗(t+k−1) = ẑ(tk−1) + L
(
y(tk−1)−Mẑ(tk−1)

)
= e−Aδk ẑ(tk) + L

(
y(tk−1)−Me−Aδk ẑ(tk)

)
• The quantity ẑ∗(t+k−1) is then propagated forward in

time, up to tk via

ẑ∗(tk) = eAδk ẑ∗(t+k−1)

= ẑ(tk) + eAδkL
(
y(tk−1)−Me−Aδk ẑ(tk)

)
which is the actual quantity that ẑ is reset to.

Note that the associated clock synchronization scheme
to ensure synchronized plant and observer clocks for the
propagation of the state estimate is done separately. Thus,
the proposed hybrid observer law can be summarized as
follows:

˙̂z = Aẑ ∀t /∈ {tk}∞0

ẑ(t+k )=

{
ẑ(tk) + eAδkL

(
y(tk−1)−Me−Aδk ẑ(tk)

)
∀k ∈ Id

ẑ(tk) ∀k ∈ Im
(4)

3. PRELIMINARIES ON HYBRID SYSTEMS

The continuous and discrete nature of the system under
consideration is an ideal candidate for the hybrid systems
modeling framework in Goebel et al. (2012). We recall that
a hybrid system H in Rn is composed by the following
data: a set C ⊂ Rn, called the flow set; a set-valued
mapping F : Rn ⇒ Rn with C ⊂ dom F , called the flow
map; a set D ⊂ Rn, called the jump set; a set-valued
mapping G : Rn ⇒ Rn with D ⊂ dom G, called the jump
map; Then a hybrid system H := (C,F,D,G) written in
its compact form is given by

H
{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D (5)

where x is the state vector. Solutions to hybrid systems
are parameterized by (t, j) where t ∈ R≥0 defines ordinary
time and j ∈ N defines the jump time. The evolution of
φ is described by a hybrid arc on a hybrid time domain
Goebel et al. (2012). A hybrid time domain is given by
dom φ ⊂ R≥0 × N if, for each (T, J) ∈ dom φ, dom φ ∩
([0, T ]× {0, 1, ..., J}) is of the form

⋃J
j=0([tj , tj+1]× {j}),

with 0 = t0 ≤ t1 ≤ t2 ≤ tJ+1. A solution φ is said to
be maximal if it cannot be extended by a period of flow
or a jump and complete if its domain is unbounded. A
hybrid system is well-posed if it satisfies the hybrid basic
conditions in (Goebel et al., 2012, Assumption 6.5).

4. PROBLEM STATEMENT AND HYBRID
MODELING

The problem addressed in this paper is as follows:

Problem 1. Given system (1) and positive constants 0 <
T d ≤ TN1 ≤ TN2 , design a hybrid algorithm including
the hybrid observer in (4) with an associated clock syn-
chronization scheme such that the resulting closed-loop
system H is such that ẑ(t, j)− z(t, j) converges to zero as
t+ j →∞.

To solve this problem, we employ the hybrid observer in
(4), which requires finding a proper choice of the matrix
L. The algorithm proposed in this paper also includes a
synchronization scheme for the clocks that determine time

Ha Hb
ẑ

(ẑ,`y,`τP ) (τP , τO)

Fig. 3. Diagram of the observer and clock synchronization subsys-
tem interconnection.

at both the plant and the observer. The details of the
proposed hybrid algorithm are given in Section 4.1.

4.1 Hybrid Modeling

The hybrid model to solve Problem 1 is constructed such
that the observer defined in (4) is recast with the dynamics
of the network as a hybrid system with a set-valued jump
map. Moreover, provisions are included to facilitate the
inclusion of a clock synchronization strategy to ensure
proper function of the hybrid observer. To build such a
model, we treat the observer and clock synchronization
strategy as individual but interconnected subsystems. Fig-
ure 3 describes such architecture, where Ha is the observer
subsystem and Hb is the clock synchronization subsystem.

To model the aperiodic sampling, a timer variable τN is
used. Between measurement sampling events the timer
flows with dynamics given by τ̇N = −1 and when τN = 0,
the state τN is reset to a value in the interval [TN1 , T

N
2 ].

To model the transmission delay, an additional timer τδ
with dynamics τ̇δ = −q is used. Here q ∈ {0, 1} is
a discrete variable used to control the dynamics of τδ
such that the timer is active only following measurement
broadcast events. More precisely, q = 1 denotes an active
measurement in the network and q = 0 denotes the absence
of such a measurement in the network. Thus, when τN = 0,
τδ is reset to a point in the interval [0, T d] and q is reset
to 1. When τδ = 0, indicating measurement arrival, τδ is
reset to −1 and q is reset to 0. Having the timers τN and
τδ defined in this way, with the addition of q, enforces the
constraints defined in (2) for broadcast and arrival events.
Additionally, we let `y and `τP represent memory states
that define the plant measurement data and associated
timestamp, respectively. The states τP and τO represents
the global clocks for the respective plant and observer.
The vector µ represents the state variables for a clock
synchronization algorithm. Then, we define the state

x := (xa, xb) ∈ Xa ×Xb
where xa := (z, ẑ, τN , τδ, q, `y, `τP ) ∈ Xa, xb := (τP , τO, µ) ∈
Xb,
Xa := Rn × Rn × [0, TN2 ]×

(
{−1} ∪ [0, T d]

)
× {0, 1}
× Rm × R≥0

Xb := R≥0 × R≥0 ×M
and M is a closed set defining possible values of µ. The
flow map is given by

F (x) =

[
Fa(xa)

Fb(ẑ, `y, `τP , xb)

]
∀x ∈ C

where
Fa(xa) =

(
Az,Aẑ, 1,−q, 0, 0, 0

)
and

Fb(ẑ, `y, `τP , xb) =
(
1, 1, Fs(ẑ, `y, `τP , xb)

)
with Fs governing the continuous dynamics of µ. The flow
set C is defined as C := Ca ∩ Cb where Ca := Ca1 ∪ Ca2
and



Ca1 := {x ∈ X : q = 0, τN ∈ [0, TN2 ], τδ = −1}
Ca2 := {x ∈ X : q = 1, τδ ∈ [0, T d]}

and Cb is the flow set defined by the clock synchronization
algorithm. The jump map is given by

G(x) =

[
Ga(xa, τP , τO)
Gb(ẑ, `y, `τP , xb)

]
∀x ∈ D

where

Ga(x) =



G1(xa, τP ) if x ∈ Da1 \Db

G2(xa, τO) if x ∈ Da2 \Db

xa if x ∈ Db \ (Da1 ∪Da2)

{xa, G1(xa, τP )} if x ∈ Da1 ∩Db

{xa, G2(xa, τO)} if x ∈ Da2 ∩Db

G1(xa, τP ) =



z
ẑ

[TN1 , T
N
2 ]

[0, T d]
1
Mz
τP


G2(xa, τO) =



z
ẑ?

τN
−1
0
`y
`τP


where

ẑ? := ẑ + eA(τO−`τP )L
(
`y −Me−A(τO−`τP )ẑ

)
and

Da1 = {x ∈ X : τN = 0, q = 0}
Da2 = {x ∈ X : τδ = 0, q = 1}

In the definitions above, Gb and Db, respectively, define
the jump map and jump set for the clock synchronization
algorithm. The resulting jump set is

D = Da1 ∪Da1 ∪Db

The hybrid system data (C,F,D,G) above define H as
described in (5). With the chosen design of H, the system
can be viewed as the interconnection of two hybrid sub-
systems. Separating the clock synchronization from the
system, one has a subsystem that is comprised only of
the plant, observer, and network dynamics, denoted by
Ha = (Ca, Fa, Da, Ga). Conversely, the clock synchroniza-
tion hybrid subsystem is denoted byHb = (Cb, Fb, Db, Gb).

Definition 4.1. Let SH represent the set of maximal solu-
tions to H. We say that a solution φ ∈ SH is a nominal
maximal solution if it belongs to the subset of maximal
solutions defined by

SnomH :=
{
φ ∈ SH : rge φτδ ⊂ {0,−1}

}
(6)

where φτδ is the τδ component of φ. Additionally, we say
that a solution φ ∈ SH is a delay maximal solution if
it belongs to the subset of maximal solutions defined by
SδH := SH \ SnomH .

Qualitatively, one can interpret solutions belonging to
SnomH as a representation of the scenario where the mea-
surements are free of transmission delays. For a given
φ ∈ SH, when the timer τN expires (i.e., τN = 0) the
state jumps according to G1. As a consequence of (6), the
τδ component of the respective φτδ trajectory is mapped to
0 following the construction of G1. Under such a scenario,
observe that G1 maps solutions to D2, thus resulting in a
subsequent jump according to G2. In particular, there is
no flow in between the two jumps.

Remark 4.2. Observe that Definition 4.1 applies to both
H and Ha, thus for the subsystem Ha, we let SnomHa denote

the set of nominal solutions to Ha and SδHa = SHa \ SnomHa
denote the set of delay solutions.

5. MAIN RESULTS

In this section, results guaranteeing convergence of the
error ε = z − ẑ to zero with the proposed algorithm
are given. This is accomplished through a trajectory-
based analysis to show convergence towards a set in
which the system state and its estimate coincide. The
results are broken into three parts. First, attractivity is
shown for nominal solutions through a comparison to
the exponentially converging trajectories given for the
hybrid system in Ferrante et al. (2016). The result that
follows utilizes a Lyapunov-like approach to compare the
observer trajectories of a delay solution against those of
a corresponding nominal solution. Finally, we present a
result on the convergence of the error ε for the case
where the plant and observer clocks are mismatched but
eventually synchronize due to the presence of a clock
synchronization algorithm. This last result is illustrated
by Examples 6.1 and 6.2 featuring a widely used clock
synchronization algorithm, the IEEE 1588 protocol, see
IEEE (2008) for details.

5.1 Attractivity for nominal solutions

Starting with the attractivity for nominal solutions, in the
result that follows, we show that the nominal solutions to
Ha are such that the estimation error converges to zero.
We prove this claim by showing that the trajectories of
ẑ for Ha are equivalent to the hybrid model presented in
Ferrante et al. (2016) for a given set of parameters and
initial conditions. To this end, let us consider the hybrid
system in Ferrante et al. (2016) written in plant-observer
coordinates, xr := (z, ẑ, τN ) ∈ R2n × R≥0

F r(xr) =

[
Az
Aẑ
−1

]
Gr(xr) =

 z
ẑ + LM(z − ẑ)

[TN1 , T
N
2 ]


Cr = {(z, ẑ, τ) ∈ Rn × Rn × R≥0 : τN ∈ [0, TN2 ]}
Dr = {(z, ẑ, τ) ∈ Rn × Rn × R≥0 : τN = 0}

leading to Hr = (Cr, F r, Dr, Gr)

The following property holds for Hr.
Proposition 5.1. Let the matrix L be such that the set

Ar:=
{

(z, ẑ, τN ) ∈ Rn × Rn × [0, TN2 ] : z = ẑ, τN∈[0, TN2 ]
}

is globally attractive for Hr. Then, the set

Aa := Ar ×
(
{−1} ∪ [0, T d]

)
× {0, 1} × Rm × R≥0 (7)

is globally attractive for the hybrid system Ha for T d = 0
with inputs φτP ≡ φτO .

Results for the design of L that guarantee the property in
Proposition 5.1 are given in Ferrante et al. (2016).

5.2 Attractivity for delay solutions w/ synchronized clocks

Proposition 5.1 allows for a trajectory based comparison
to be made between nominal and delay type solutions
through a trajectory-based approach using a Lyapunov-
like function. Consider the function from Ferrante et al.
(2016) defined for every xa ∈ Rn × R≥0 as

V (xa) = εTeA
TτNPeAτN ε



where ε = z − ẑ and P = PT � 0. Moreover, if

(I−LM)TeA
TvPeAv(I−LM)−P ≺ 0 ∀v ∈ [TN1 , T

N
2 ] (8)

holds for given matrices L and P then global exponential
stability of Ar for Hr is guaranteed; see Ferrante et al.
(2016). Then, any φδa ∈ SHδ(Ca ∪ Da) and φnoma ∈
SHnom(Ca ∪ Da) converge to the set Aa in (7). More
formally, we have the following result.

Theorem 5.1. Given constants TN1 < TN2 and matrices
L and P such that condition (8) holds, then for each
T d ∈ [0, TN1 ] the set Aa is attractive for the hybrid system
Ha with inputs φτP ≡ φτO . In particular, for some positive
constants α and β, each φδa ∈ SδHa with inputs φτP ≡ φτO
satisfies

α|φδa(t, j)|Aa ≤ V
(
φδa(t, j)

)
≤V
(
φnom(t, sφ(j))

)
+ βεnom(t, j)Tεnom(t, j)

(9)
for each (t, j) ∈ dom φδa for associated φnom.

5.3 Attractivity for delay solutions with mismatched clocks

In this next result, we consider the case where the clock
inputs τP and τO are mismatched, but eventually synchro-
nize due to a finite time clock synchronization algorithm
(like the one in Example 6.1). Before presenting the result,
we introduce the following property that is required by the
clock synchronization algorithm.

Assumption 5.2. For each φ to H there exists T ∗ ≥ 0 such
that limt+j↗T∗ |φτP (t, j) − φτO (t, j)| = 0 and |φτP (t, j) −
φτO (t, j)| = 0 for all (t, j) ∈ dom φ, t+ j ≥ T ∗.

We are ready to present our main result.

Theorem 5.2. Let Assumption 5.2 hold and every maximal
solution to Hb is complete. Moreover, assume matrices
L and P are such that (8) holds. Then, the closed set
A := Aa × Ab is globally attractive for H where Ab :=
R≥0 × R≥0 ×M.

6. EXAMPLES

Example 6.1. In this example we present results for finite
time convergence of the clock synchronization algorithm.
Since, the synchronization algorithm depends solely on
the reduced state vector xb, consider the reduced hybrid
system Hb, restated here

Hb
{
ẋb = Fb(xb) xb ∈ Cb
x+b ∈ Gb(xb) xb ∈ Db

and the closed set Ab := {xb : τP = τO}. Given the
reduced state vector xb with associated flow and jump
maps F and G, the included vector µ allows for the
implementation of various clock synchronization schemes
to be considered for system analysis. In this section, we
will present how the IEEE 1558 Precision Clock Synchro-
nization Protocol for Networked Measurement and Control
Systems Hetel et al. (2017) is modeled and incorporated
into the system as an example. Per the standards of the
protocol, we have the following assumptions:

• One-step clock nodes, that is clock nodes that gener-
ate and broadcast timestamps in one step.
• A dedicated communication channel between nodes

with a fixed symmetrical transit time d.

• A fixed residence time c, representing the duration of
time for a node to respond to a protocol message.

The residence and transit times affecting the clocks nodes
at the plant (master) and observer (slave) are captured by
two timers, τM and τS , respectively. Vectors m and s repre-
sent memory buffers to store the received and transmitted
timestamps for the respective master and slave nodes. In
addition, two discrete variables p and n are used to track
the protocol state and set the dynamics of the node timers
respectively. Finally, a timer τt is used to periodically
initialize and start the synchronization protocol. Then, µ
can be defined as µ := (τt, τM , τS ,m, s , p, n) ∈ M where
M := [0, T ∗]× [0, d]× [0, d]× R6 × R6 × {0, 1, 2, 3, 4, 5} ×
{0, 1, 2} We assume the transit time d to be larger than
the residence time c, i.e., we assume the constraint d > c
in order to preserve the bounds of M.

In order to prove convergence of Hb to Ab, we utilize a
trajectory-based approach to show that a solution φ ∈
SHb , where SHb is the set of solutions belonging to Hb,
converges to Ab in finite time. More formally, the result is:

Theorem 6.1. For each φb ∈ SHb , there exists T ∗ > 3d +
2c such that |φ(t, j)|Ab = 0 for all (t, j) ∈ dom φ with
t+ j ≥ 2T ∗.

In light of this result, the IEEE protocol guarantees
Assumption 5.2. The next example illustrates its use in
our hybrid observer.

Example 6.2. Consider an oscillatory autonomous system

given by A =

[
0 1
−1 0

]
and matrix M = [1 0] with

timer bounds T d = TN1 = 0.2, TN2 = 1. Using the
design algorithm outlined in Ferrante et al. (2016) for
the given parameters, the gain matrix is given by L =

[1.0097 0.6015]
T

. Furthermore, let T ∗ = 3, c = d =
0.5. Starting with the case of synchronized clocks, i.e.
φ(0, 0) ∈ C1∪D1 such that φτP (0, 0) = φτO (0, 0), Figure 5
depicts the error in each state component for φnoma and
φδa. Figure 5 also shows the norm of the error for the
two solutions, in addition the bound in (9) is plotted to
demonstrate the asymptotic attractivity of φδa. The two
trajectories flow together from the initial condition, at the
first jump the error on the estimate for φnoma decreases
due to the measurement arrival at broadcast while φδa
continues flowing. At the next jump the error for φδa
decreases due to the arrival of the delay measurement and
then resumes flowing with φnoma . This behavior repeats
until both solutions converge on the estimate.

Fig. 5. Plot of state component errors (left) and error norm (right)
of φnoma and φδa for synchronized clocks with the bound (9).

Figure 4 presents the error norm trajectories for the case
when the clock nodes are not synchronized, i.e., φ(0, 0) ∈
C1∪D1 such that φτP (0, 0) 6= φτO (0, 0) but with the IEEE
protocol present, for both φnoma and φδa. In both figures, the



Fig. 4. Plot of the state component error (left) and error norm (center) for φnoma and φδa for mismatched clocks τP and τO. Plot (right)
gives the error norm for the case when τO drifts, the vertical lines marked ‘sync’ indicate the instants when τP and τO synchronize.

trajectories flow together from the initial condition, at the
first jump the estimate error for φnoma decreases while φδa
continues flowing. In the sequence of jumps that follow,
the error norm of φnoma converges to zero. The error norm
of φδa however, increases until the clocks synchronize as
marked by the dashed line denoted ‘sync’. In the jumps
that follow the synchronization point, the error norm of φδa
converges toward zero. Now consider the same system with
a drifting observer clock, i.e., τ̇O = 1 + γ where γ = 0.001.
In Figure 4, the error norm of the two trajectories for the
simulation is given. Note the periodic synchronization of
the plant and observer clocks prevents the drift in the
observer clock from adversely affecting the norm of the
error on the estimate for the delay solution. 1

7. CONCLUSION

In this paper, we modeled an NCS with aperiodic sampling
and network delays in a state estimation setting using
the hybrid systems framework. We proposed an algorithm
for state estimation with the inclusion of a clock syn-
chronization scheme. Results for attractivity to a set of
interest were given for the case of aperiodic sampling with
and without network delays for both synchronized and
mismatched clocks. Numerical simulations validating the
results were also given.
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