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L2 State Estimation with Guaranteed Convergence Speed in the

Presence of Sporadic Measurements

Francesco Ferrante, Frédéric Gouaisbaut, Ricardo G. Sanfelice and Sophie Tarbouriech

Abstract—This paper deals with the problem of estimating the
state of a nonlinear time-invariant system in the presence of
sporadically available measurements and external perturbations.
An observer with a continuous intersample injection term is
proposed. Such an intersample injection is provided by a linear
dynamical system, whose state is reset to the measured output
estimation error whenever a new measurement is available.
The resulting system is augmented with a timer triggering the
arrival of a new measurement and analyzed in a hybrid system
framework. The design of the observer is performed to achieve
exponential convergence with a given decay rate of the estima-
tion error. Robustness with respect to external perturbations
and L2-external stability from plant perturbations to a given
performance output are considered. Computationally efficient
algorithms based on the solution to linear matrix inequalities
are proposed to design the observer. Finally, the effectiveness of
the proposed methodology is shown in an example.

I. INTRODUCTION

A. Background

In most real-world control engineering applications, mea-

surements of the output of a continuous-time plant are only

available to the algorithms at isolated times. Due to the use of

digital systems in the implementation of the controllers, such

a constraint is almost unavoidable and has lead researchers to

propose algorithms that can cope with information not being

available continuously. In what pertains to state estimation,

such a practical need has brought to life a new research

area aimed at developing observer schemes accounting for

the discrete nature of the available measurements. When the

information is available at periodic time instances, there are

numerous design approaches in the literature that consist of

designing a discrete-time observer for a discretized version of

the process; see, e.g., [2] where the proposed approach relies

on the results in [18]. Unfortunately, such an approach focuses

on periodic sampling and leads in general only to semiglobal

practical stability properties (extending such an approach to

aperiodic sampling should be possible via the results in [27]).

Furthermore, with such an approach no mismatch between the
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actual sampling time and the one used to discretize the plant

is allowed in the analysis or in the discrete-time model used

to solve the estimation problem. Very importantly, in many

modern applications, such as networked control systems; see

[14], [3] and the references therein, the output of the plant

is often accessible only sporadically, making the fundamental

assumption of measuring it periodically unrealistic.

To overcome the issues mentioned above, several state

estimation strategies that accommodate information being

available sporadically, at isolated times, have been proposed in

the literature. Such strategies essentially belong to two main

families. The first family pertains to observers whose state

is entirely reset whenever a new measurement is available

and that run open loop in between such events – these are

typically called continuous-discrete observers. The design of

such observers is pursued, e.g., in [8], [17]. In particular, in [8]

the authors propose a hybrid systems approach to model and

design, via Linear Matrix Inequalities (LMIs), a continuous-

discrete observer ensuring exponential convergence of the

estimation error and input-to-state stability with respect to

measurement noise. In [17], a new design for continuous-

discrete observers based on cooperative systems is proposed

for the class of Lipschitz nonlinear systems.

The second family of strategies pertains to continuous-time

observers whose output injection error between consecutive

measurement events is estimated via a continuous-time update

of the latest output measurement. This approach is pursued in

[6], [15], [22], [23], [24]. Specifically, the results in [15], [6]

show that if a system admits a continuous-time observer and

the observer has suitable robustness properties, then, one can

build an observer guaranteeing asymptotic state reconstruction

in the presence of intermittent measurements, provided that

the time in between measurements is small enough. Later,

the general approach in [15] has been also extended by

[22] to the more general context on networked systems, in

which communication protocols are considered. A different

approach is pursued in [24]. In particular, in this work, the

authors, building on a sampled-data systems approach, propose

sufficient conditions in the form of LMIs to design a sampled-

and-hold observer to estimate the state of a Lipschitz nonlinear

system in the presence of sporadic measurements.

B. Contribution

In this paper, we consider the problem of exponentially

estimating the state of continuous-time Lipschitz nonlinear

systems subject to external disturbances and in the presence of

sporadic measurements, i.e., we assume the plant output to be

sampled with a bounded nonuniform sampling period, possibly

very large. To address this problem, we propose an observer
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with a continuous intersample injection and state resets. Such

an intersample injection is provided by a linear time-invariant

system, whose state is reset to the measured output estimation

error at each sampling time.

Our contributions in the solution to this problem are as

follows. Building on a hybrid system model of the proposed

observer and of its interconnection with the plant, we propose

results for the simultaneous design (co-design) of the observer

and the intersample injection dynamics for the considered

class of nonlinear systems. The approach we pursue relies

on Lyapunov theory for hybrid systems in the framework in

[13]; similar Lyapunov-based analyses for observers are also

available in [23, Section VIII], [28], [1]. The use of the hybrid

systems framework [13] can be seen as an alternative approach

to the impulsive approach pursued, e.g., in [6]. The design

we propose ensures exponential convergence of the estimation

error with guaranteed convergence speed and robustness with

respect to measurement noise and plant perturbations. More

precisely, the decay rate of the estimation error can be specified

as a design requirement cf. [10]. In addition, for a given

performance output, we propose conditions to guarantee a

particular L2-gain between the disturbances entering the plant

and the desired performance output. The conditions in these

results are turned into matrix inequalities, which are used to

derive efficient design procedures of the proposed observer.

The methodology we propose gives rise to novel observer

designs and allows one to recover as special cases the schemes

in [15], [24].

The remainder of the paper is organized as follows. Sec-

tion II presents the system under consideration and the state

estimation problem we solve. Section III illustrates the pro-

posed observer and the resulting hybrid model. Section IV is

dedicated to the design of the proposed observer and to some

optimization aspects. Finally, in an example, Section V shows

the effectiveness of the results presented.

Notation: The set N is the set of positive integers including

zero, the set N>0 is the set of strictly positive integers, R≥0

(R>0) represents the set of nonnegative (positive) reals, Rn×m

represents the set of the n ×m real matrices, and Sn+ is the

set of n×n symmetric positive definite matrices. The identity

matrix is denoted by I , whereas the null matrix is denoted by

0. For a matrix A ∈ R
n×m, AT denotes the transpose of A,

He(A) = A+A
T

, and, when A is nonsingular,A−T = (AT)−1.

For a symmetric matrix A, A > 0 and A ≥ 0 (A < 0
and A ≤ 0) mean that A (−A) is, respectively, positive

definite and positive semidefinite. In partitioned symmetric

matrices, the symbol • stands for symmetric blocks. Given

matrices A and B, the matrix A ⊕ B is the block-diagonal

matrix having A and B as diagonal blocks. For a vector

x ∈ R
n, |x| denotes the Euclidean norm. Given two vectors

x, y, we denote (x, y) = [xT yT]T. Given a vector x ∈ R
n

and a closed set A, the distance of x to A is defined as

|x|A = infy∈A |x − y|. For any function z : R → R
n, we

denote z(t+) := lims→t+ z(s) when it exists. Given a hybrid

signal u, domt u := {t ∈ R≥0 : ∃j ∈ N0 s.t. (t, j) ∈ domu}
and domj u := {j ∈ N0 : ∃t ∈ R≥0 s.t. (t, j) ∈ domu}, and

for any (s, i) ∈ domu, j(s) = min{j ∈ N0 : (s, j) ∈ domu}
and t(i) = min{t ∈ R≥0 : (t, i) ∈ domu}; see [5] for formal

definitions of hybrid arcs and hybrid signals.

II. PROBLEM STATEMENT AND OUTLINE OF PROPOSED

OBSERVER

A. System Description

We consider continuous-time nonlinear time-invariant sys-

tems with disturbances of the form

ż = Az +Bψ(Sz) +Nw, y = Cz + η (1)

where z ∈ R
nz , y ∈ R

ny , w ∈ R
nw , and η ∈ R

ny are,

respectively, the state, the measured output of the system, a

nonmeasurable exogenous input, and the measurement noise

affecting the output y, while ψ : Rnq → R
ns is a Lipschitz

function with Lipschitz constant ℓ > 0, i.e., for all v1, v2 ∈
R
nq

|ψ(v1)− ψ(v2)| ≤ ℓ|v1 − v2| (2)

The matrices A,C,B, S, and N are constant and of appropri-

ate dimensions and such that the pair (A,C) is detectable. The

output y is available only at some time instances tk, k ∈ N>0,

not known a priori. We assume that the sequence {tk}∞k=1 is

strictly increasing and unbounded, and that (uniformly over

such sequences) there exist two positive real scalars T1 ≤ T2
such that

0 ≤ t1 ≤ T2, T1 ≤ tk+1 − tk ≤ T2 ∀k ∈ N>0 (3)

The lower bound in condition (3) prevents the existence of ac-

cumulation points in the sequence {tk}∞k=1, and, hence, avoids

the existence of Zeno behaviors, which are typically undesired

in practice. In fact, T1 defines a strictly positive minimum

time in between consecutive measurements. Furthermore, T2
defines the Maximum Allowable Transfer Time (MATI) [22].

Given a performance output yp := Cp(z − ẑ), where ẑ is

the estimate of z to be generated, the problem to solve is as

follows:

Problem 1. Design an observer providing an estimate ẑ of z,

such that the following three properties are fulfilled:

(P1) The set of points where the plant state z and its estimate

ẑ coincide (and any other state variables1 are bounded)

is globally exponentially stable with a prescribed con-

vergence rate for the plant (1) interconnected with the

observer whenever the input w and η are identically zero;

(P2) The estimation error is bounded when the disturbances

w and η are bounded;

(P3) L2-external stability from the input w to the performance

output yp is ensured with a prescribed L2-gain when η ≡
0.

B. Outline of the Proposed Solution

Since measurements of the output y are available in an

impulsive fashion, assuming that the arrival of a new measure-

ment can be instantaneously detected, inspired by [15], [22],

1The observer may have extra state variables that are used for estimation.
In our setting, the sporadic nature of the available measurements of y will be
captured by a timer with resets.
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[24] to solve Problem 1, we propose the following observer

with jumps

˙̂z(t) = Aẑ(t) +Bψ(Sẑ(t)) + Lθ(t)

θ̇(t) = Hθ(t)

}
∀t 6= tk, k ∈ N>0

ẑ(t+) = ẑ(t)
θ(t+) = y(t)− Cẑ(t)

}
∀t = tk, k ∈ N>0

(4)

where L and H are real matrices of appropriate dimensions

to be designed and ẑ represents the estimate of z provided

by the observer. The operating principle of the observer in

(4) is as follows. The arrival of a new measurement triggers

an instantaneous jump in the observer state. Specifically, at

each jump, the measured output estimation error, i.e., ey :=
y−Mẑ, is instantaneously stored in θ. Then, in between con-

secutive measurements, θ is continuously updated according

to continuous-time dynamics, and its value is continuously

used as an intersample correction to feed a continuous-time

observer. At this stage, we introduce the following change

of variables ε := z − ẑ, θ̃ := C(z − ẑ) − θ, which defines,

respectively, the estimation error and the difference between

the output estimation error and θ. Moreover, by defining as

a performance output yp = Cpε, where Cp ∈ R
nyp×nz , we

consider the following dynamical system with jumps:




ż(t) = Az(t) +Gψ(Sz(t)) +Nw(t)[
ε̇(t)
˙̃
θ(t)

]
= F

[
ε(t)

θ̃(t)

]
+Qζ(z(t), ε(t)) + T w(t)

∀t 6= tk





z(t+) = z(t)[
ε(t+)

θ̃(t+)

]
= G

[
ε(t)

θ̃(t)

]
+Nη(t)

∀t = tk

yp(t) = Cpε(t)
(5)

where for each v1, v2 ∈ R
nz , ζ(v1, v2) := ψ(Sv1)−ψ(S(v1−

v2)) and

F :=

[
A− LC L

CA− CLC −HC CL+H

]
, T :=

[
N

CN

]

Q :=

[
B

CB

]
, G :=

[
I 0
0 0

]
, N :=

[
0
−I

] (6)

Our approach consists of recasting (5) and the events at

instants tk satisfying (3) as a hybrid system with nonunique

solutions and then applying hybrid systems theory to guarantee

that (5) solves Problem 1.

III. CONSTRUCTION OF THE OBSERVER AND FIRST

RESULTS

A. Hybrid Modeling

The fact that the observer experiences jumps when a

new measurement is available and evolves according to a

differential equation in between updates suggests that the

updating process of the error dynamics can be described

via a hybrid system. Due to this, we represent the whole

system composed by the plant (1), the observer (4), and

the logic triggering jumps as a hybrid system. The proposed

hybrid systems approach also models the hidden time-driven

mechanism triggering the jumps of the observer.

To this end, in this work, and as in [8], we augment the state

of the system with an auxiliary timer variable τ that keeps

track of the duration of flows and triggers a jump whenever

a certain condition is verified. This additional state allows

to describe the time-driven triggering mechanism as a state-

driven triggering mechanism, which leads to a model that can

be efficiently represented by relying on the framework for

hybrid systems in [13]. More precisely, we make τ decrease

as ordinary time t increases and, whenever τ = 0, reset it

to any point in [T1, T2], so as to enforce (3). After each

jump, we allow the system to flow again. The whole system

composed by the states z, ε and θ̃, and the timer variable

τ can be represented by the following hybrid system, which

we denote by He, with state x = (z, ε, θ̃, τ) ∈ R
nx where

nx := 2nz+ny+1, input u = (w, η) ∈ R
nu , nu := nw+ny,

and output yp:
{

ẋ = f(x,w) x ∈ C, w ∈ R
nw

x+ ∈ G(x, η) x ∈ D, η ∈ R
ny

yp = Cpε

(7a)

where

f(x,w) =




Az+Bψ(Sz)+Nw

F





ε

θ̃



+Qζ(z,ε)+T w

−1


 ∀x ∈ C, w ∈ R

nw

(7b)

G(x, η) =




z

G





ε

θ̃



+Nη

[T1,T2]


 ∀x ∈ D, η ∈ R

ny (7c)

and the flow set C and the jump set D are defined as follows

C = R
2nz+ny × [0, T2], D = R

2nz+ny × {0} (7d)

The set-valued jump map allows to capture all possible sam-

pling events occurring within T1 or T2 units of time from

each other. Specifically, the hybrid model in (7) is able to

characterize not only the behavior of the analyzed system for

a given sequence {tk}∞k=1, but for any sequence satisfying (3).

Concerning the nature of solution pairs to2 (7), observe that

given any maximal solution pair (φ, u) to (7), the definition

of the sets C and D ensures that domφ = domu =⋃
j∈N

([tj , tj+1]) × {j} with t0 = 0, 0 ≤ t1 ≤ T2, and for

all j ∈ N>0, T1 ≤ tj+1 − tj ≤ T2. In addition, notice that if

(φ, u) is maximal then it is also complete; see [9] for more

details.

To solve Problem 1 our approach is to design the matrices

L and H in the proposed observer in (7) such that without

disturbances, i.e., w ≡ 0, η ≡ 0, the following set3

A = R
nz × {0} × {0} × [0, T2] (8)

is globally exponentially stable and, when the disturbances are

nonzero, the system He is input-to-state stable with respect to

A. These properties are captured by the notions defined below:

2A pair (φ, u), where φ is a hybrid arc and u is a hybrid signal, is a
solution pair to He if domφ = domu and it satisfies its dynamics; see [5]
for more details.

3By the definition of the system He and of the set A, for every x ∈
C ∪D ∪G(D), |x|A = |(ε, θ̃)|.
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Definition 1. (L∞ norm) Let u be a hybrid signal and T ∈
R≥0. The T -truncated L∞ norm of u is given by

‖u[T ]‖∞ := max

{
ess. sup |u(s, k)|

(s,k)∈domu\Γ(u),s+k≤T
, sup |u(s, k)|
(s,k)∈Γ(w),s+k≤T

}

where Γ(u) denotes the set of all (t, j) ∈ domu such that

(t, j + 1) ∈ domu; see [5] for further details. The L∞ norm

of u, denoted by ‖u‖∞ is given by limT→T⋆ ‖u[T ]‖∞, where

T ⋆ = sup{t + j : (t, j) ∈ domu}. When, in addition, ‖u‖∞
is finite, we say that u ∈ L∞.

Definition 2 (Exponential input-to-state stability). Let A ⊂
R
nz+ny+1 be closed. The system He is exponentially input-

to-state-stable (eISS) with respect to A if there exist κ, λ > 0
and ρ ∈ K such that each maximal solution pair (φ, u) to He

is complete and if u ∈ L∞ it satisfies

|φ(t, j)|A ≤ max{κe−λ(t+j)|φ(0, 0)|A, ρ(‖u‖∞)} (9)

for each (t, j) ∈ domφ.

When u ≡ 0, the bound (9) yields global exponential

stability as defined by [26].

B. Sufficient conditions

In this section we provide sufficient conditions to solve

Problem 1. To this end, let us consider the following assump-

tion, which is somehow driven by [12, Example 27] and whose

role will be clarified later via Theorem 1.

Assumption 1. Let λt, γ ∈ R>0 be given. There exist

two continuously differentiable functions V1 : R
nz → R,

V2 : R
ny+1 → R, positive real numbers α1, α2, ω1, ω2 such

that

(A1) α1|ε|2 ≤ V1(ε) ≤ α2|ε|2 ∀x ∈ C;

(A2) ω1|θ̃|
2 ≤ V2(θ̃, τ) ≤ ω2|θ̃|

2 ∀x ∈ C;

(A3) the function x 7→ V (x) := V1(ε) + V2(θ̃, τ) satisfies for

each x ∈ C, w ∈ R
nw

〈∇V (x),




Az +Bψ(Sz) +Nw

F

[
ε

θ̃

]
+Qζ(z, ε) + T w

−1


〉 ≤ −2λtV (x)

− εTCT

pCpε+ γ2wTw

(10)

△

The following theorem shows that if there exist matrices

L ∈ R
nz×ny and H ∈ R

ny×ny such that Assumption 1 holds,

then such matrices provide a solution to Problem 1.

Theorem 1. Let Assumption 1 hold. Then:

(i) There exists ϑ ∈ R>0 such that for each maximal solution

to (7) of the form (φ, 0), one has

|φ(t, j)|A ≤ ϑe−λtt|φ(0, 0)|A ∀(t, j) ∈ domφ

(ii) The hybrid system He is eISS with respect to A;

(iii) There exists α > 0 such that any solution pair (φ, u) to

He with η ≡ 0 satisfies
√∫

I |yp(s, j(s))|
2ds ≤ α|φ(0, 0)|A + γ

√∫
I |w(s, j(s))|

2ds

where I := [0, supt domφ] ∩ domt φ.

Proof. Consider the following Lyapunov function candidate

for the hybrid system (7), R2nz+ny × R≥0 ∋ x 7→ V (x) :=
V1(ε) + V2(θ̃, τ). We prove (i) first. Set ρ1 = min{α1, ω1}
and ρ2 = max{α2, ω2}. Then, in view of the definition of the

set A in (8), one gets

ρ1|x|
2
A ≤ V (x) ≤ ρ2|x|

2
A ∀x ∈ C ∪ D ∪G(D) (11)

Moreover, from Assumption 1 item (A3) one has

〈∇V (x), f(x,w)〉 ≤ −2λtV (x)+γ2wTw ∀x ∈ C, w ∈ R
nw

(12)

and for each g =

(
z,G

[
ε

θ̃

]
+Nη, v

)
∈ G(x, η), x ∈ D, η ∈ Rny

one

has

V (g)− V (x) = −V2(θ̃, 0) + V2(−η, v) ≤ ω2|η|
2 (13)

Pick u = (w, η) ∈ L∞, let (φ, u) be a maximal solu-

tion pair to (7), and pick (t, j) ∈ domφ. Furthermore, let

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tj+1 = t be such that

domφ ∩ ([0, t]× {0, 1, . . . , j}) = ∪ji=0 ([ti, ti+1]× {i}). By

integrating (t, j) 7→ V (φ(t, j)), thanks to (12) and (13), one

gets4

V (φ(t, j)) ≤ e−2λttV (φ(0, 0))+

γ2e−2λtt

∫

[0,t]∩domt φ

e2λts|w(s, j(s))|2ds

+ ω2

j∑

i=1

e−2λt(t−ti)|η(ti, i− 1)|2 ∀(t, j) ∈ domφ

(14)

By bounding the integral term in (14), thanks to [9, Lemma

2], one gets for each (t, j) ∈ domφ

V (φ(t, j) ≤ e−2λttV (φ(0, 0))+ γ2

2λt
‖w‖2∞

+ω2
e4λtT1

e2λtT1−1
‖η‖2∞

which, thanks to (11), implies that

|φ(t, j)|2A ≤
ρ2

ρ1
e−2λtt|φ(0, 0)|2A +

γ2

2λtρ1
‖w‖2∞

+
e4λtT1

(e2λtT1 − 1)ρ1
ω2‖η‖

2
∞ ∀(t, j) ∈ domφ

(15)

Hence, for each (t, j) ∈ domφ one has

|φ(t, j)|A≤
√

ρ2
ρ1
e−λtt|φ(0, 0)|A + γ√

2λtρ1
‖w‖∞

+
√
ω2

e4λtT1

e2λtT1−1
‖η‖∞

≤ max
{
2
√

ρ2
ρ1
e−λtt|φ(0, 0)|A, 2max{ γ√

2λtρ1
,

√
ω2

e4λtT1

e2λtT1−1
}‖u‖∞

}

(17)

which gives (i) with ϑ =
√

ρ2
ρ1

.

To show (ii) is suffices to notice that thanks to [9, Lemma

1], (17) gives (9) with λ ∈
(
0, λtT1

1+T1

]
, κ = 2

√
ρ2
ρ1
eω, where

ω ≥ λ, and

s 7→ ρ(s) := 2max
{

γ√
2λtρ1

,
√
ω2

e4λtT1

e2λtT1−1

}
s

4Given a sequence {ak}, we adopt the convention
∑b

k=a ak = 0 if a > b.
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M(τ) =




He(P1(A− LC)) + 2λtP1 + CT

pCp + χℓ2STS P1L+ eδτ (CA − CLC −HC)TP2 P1N P1B

• eδτ (He(P2(CL+H)) + (2λt − δ)P2) eδτP2CN eδτP2CB

• • −γ2Inw
0

• • • −χIns


 (16)

Hence, since every maximal solution to He is complete, (ii)
is established.

To establish (iii), we follow a similar approach as in [19].

Pick u = (w, 0) and let (φ, u) be a maximal solution pair to

He. Pick t > 0, from Assumption 1 item (A3), since, as shown

in (12), V is nonincreasing at jumps, by integrating V ◦φ one

gets∫

I(t)
ε(s, j(s))TCT

pCpε(s, j(s))ds ≤ V (φ(0, 0))

+ γ2
∫

I(t)
|w(s, j(s))|2ds

where I(t) := [0, t] ∩ domt φ. By taking the limit for t

approaching supt domφ, thanks to (11), one gets (iii) with

α = ρ2.

Remark 1. Notice that since (iii) holds for any solution

pair (φ, u) with η ≡ 0 and w any hybrid signal, it

holds in particular when the hybrid signal w is obtained

from a continuous-time signal of the original plant (1).

Passing from hybrid signals w and yp to right continuous

signals ũ, ỹp, respectively, (see [16]), item (iii) leads to√∫
I |yp(s, j(s))|2ds = ‖ỹp‖2 ≤ α|(ε0, θ̃0)|+ γ‖w̃‖2.

C. Construction of the functions V1 and V2 in Assumption 1

A possible construction for the functions V1 and V2 is

illustrated by the result given next.

Theorem 2. Let λt, γ ∈ R>0. If there exist P1 ∈ Snz

+ , P2 ∈
S
ny

+ , δ, χ ∈ R>0, and two matrices L ∈ R
nz×ny , H ∈

R
ny×ny , such that

M(0) ≤ 0, M(T2) ≤ 0 (18)

where the function [0, T2] ∋ τ 7→ M(τ) is defined in (16) (at

the top of the page). Then, the functions ε 7→ V1(ε) := εTP1ε

and (θ̃, τ) 7→ V2(θ̃, τ) := eδτ θ̃TP2θ̃ satisfy Assumption 1.

Proof. Pick α1 = λmin(P1), ω1 = λmin(P2), α2 = λmax(P1),
and ω2 = λmax(P2)e

δT2 . Then, items (A1) and (A2) of

Assumption 1 are satisfied. Define for each x ∈ C, w ∈ R
nw ,

Ω(x,w) := 〈∇(V1(ε) + V2(θ̃, τ)), f(x,w)〉 + εTCT

pCpε +

2λt(V1(ε) + V2(θ̃, τ)). Then, thanks to (2), for any χ ∈
R>0, one has that for each x ∈ C, w ∈ R

nw Ω(x,w) ≤
Ω(x,w)−χ(ζ(z, ε)Tζ(z, ε)− ℓ2εTSTSε) =: Π(x,w). There-

fore, by defining Ψ(x,w) = (ε, θ̃, w, ζ(z, ε)), straightforward

calculations show that for each x ∈ C, w ∈ R
nw one has

Π(x,w) = Ψ(x,w)TM(τ)Ψ(z, w), where the symmetric

matrix M(τ) is defined in (16). Hence, one has Ω(x,w) ≤
Ψ(x,w)TM(τ)Ψ(z, w). To conclude the proof, notice that it

is straightforward to show that there exists λ : [0, T2] → [0, 1]
such that for each τ ∈ [0, T2], M(τ) = λ(τ)M(0) + (1 −
λ(τ))M(T2); see [9]. Therefore, it follows that the satisfaction

of (18) implies M(τ) ≤ 0 for each τ ∈ [0, T2], that is item

(A3) of Assumption 1 is fulfilled, concluding the proof.

IV. LMI-BASED OBSERVER DESIGN

In the previous section, sufficient conditions turning the

solution to Problem 1 into the feasibility problem of certain

matrix inequalities were provided. However, condition (18)

is nonlinear in the variables P1, P2, δ,H , and L; so further

work is needed to derive a computationally tractable design

procedure for the observer. While from a numerical standpoint

the nonlinearities involving δ are easily manageable in a

numerical scheme, the other nonlinearities present in (18) need

to be properly handled. To this end, in the sequel, we provide

several sufficient conditions to solve Problem 1 via the solution

to some LMIs.

Proposition 1. Let λt, γ be given positive real numbers. If

there exist P1 ∈ Snz

+ , P2 ∈ S
ny

+ , positive real numbers δ, χ,

matrices J ∈ R
nz×ny and Y ∈ R

ny×ny such that M̂(0) ≤ 0

and M̂(T2) ≤ 0, where the function [0, T2] ∋ τ 7→ M̂(τ)
is defined in (19) (at the top of the next page). Then, L =
P−1
1 J,H = P−1

2 Y T − CL is a solution to Problem 1.

Proof. By setting H = P−1
2 Y T −CL and L = P−1

1 J in (18)

yields (19), thus by the virtue of Theorem 2, this concludes

the proof.

Remark 2. By selecting Y = 0, the above result leads to the

predictor-based observer in [15], though written in different

coordinates. Indeed, whenever H = −CL, up to an invertible

change of variables, (4) yields the same observer as in [15].

The main idea behind the above result consists of selecting

the design variable H so as to cancel out the terms CLC

and the term involving the product of P2 and L (which is

hard to handle in an LMI setting). Next, we present other

design procedures, whose derivation is based on an equivalent

condition to (18) that is formulated following an approach

inspired by [20].

A. Slack Variables-Based Design

Theorem 3. Let P1 ∈ Snz

+ , P2 ∈ S
ny

+ , H ∈ R
ny×ny , L ∈

R
nz×ny , and λt, γ, δ, χ ∈ R>0. The following statements are

equivalent:

(i) The matrix inequalities in (18) are satisfied with strict

inequalities;

(ii) There exist matrices X1, Y1, X3, Y3 ∈ R
nz×nz ,

X2, X4, Y2, Y4 ∈ R
nz×ny X5, Y5, X7, Y7 ∈ R

ny×nz ,

X6, X8, Y6, Y8 ∈ R
ny×ny such that




He(S1(X)) S2(X) + P S3(X) S4(X)
• N +He(S5(X)) S6(X) S7(X)
• • −γ2I 0
• • • −χI


 < 0




He(S1(Y )) S2(Y ) + P S3(Y ) S4(Y )
• NT2

+He(S5(Y )) S6(Y ) S7(Y )
• • −γ2I 0
• • • −χI


 < 0

(20)



6

M̂(τ) =




He(P1A− JC) + 2λtP1 + CT

pCp + ℓ2χSTS J + eδτ (ATCTP2 − CTY ) P1N P1B

• (He(Y ) + (2λt − δ)P2)e
δτ eδτP2CN eδτP2CB

• • −γ2I 0
• • • −χI


 (19)

where

P = P1 ⊕ P2,PT2
= P1 ⊕ P2e

δT2

N = (λtP1 + CT

pCp + χℓ2STS)⊕ ((−δ + 2λt)P2)

NT2
= (λtP1 + CT

pCp + χℓ2STS)⊕ ((−δ + 2λt)e
δT2P2)

X =
[
X1 X2 X3 X4

X5 X6 X7 X8

]
Y =

[
Y1 Y2 Y3 Y4

Y5 Y6 Y7 Y8

]
(21)

and for each X =
[X1 X2 X3 X4

X5 X6 X7 X8

]
, where the matrices Xi, for

i = 1, 2, . . . , 8, have suitable dimensions

S1(X )=
[
−X1+C

TX5 −X2+C
TX6

−X5 −X6

]

S2(X )=
[
XT

1 (A−LC)−XT

5HC−X3+C
TX7 −X4+C

TX8+XT

1L+XT

5H

XT

2 (A−LC)−XT

6HC−X7 −X8+XT

2L+XT

6H

]

S3(X )=
[
XT

1N

XT

2N

]
S4(X )=

[
XT

1B

XT

2B

]

S5(X )=
[
(A−LC)TX3−CTHTX7 (A−LC)TX4−CTHTX8

LTX3+H
TX7 LTX4+H

TX8

]

S6(X )=
[
XT

3N

XT

4N

]
S7(X )=

[
XT

3B

XT

4B

]

Proof. Let us define

B =




F T Q
I 0 0
0 I 0
0 0 I


 Q1 :=

[
0 P
• N

]
⊕

[
−γ2I 0
• −χI

]

Q2 :=

[
0 PT2

• NT2

]
⊕

[
−γ2I 0
• −χI

]

where F and T are defined in (6). Then, one has M(0) =
BTQ1B and M(T2) = BTQ2B. Moreover, by defining

U =

[
02(nz+ny)×(nw+ns)

I

]
, it turns out that item (i) in our

statement is equivalent to
{

UTQ1U < 0 BTQ1B < 0
UTQ2U < 0 BTQ2B < 0

(22)

Moreover, by the projection lemma; (see [11]) (22) holds iff

there exist two matrices X,Y such that
{
Q1 + B⊥T

r XU⊥
r + U⊥T

r XTB⊥
r < 0

Q2 + B⊥T

r Y U⊥
r + U⊥T

r Y TB⊥
r < 0

(23)

where B⊥
r and U⊥

r are some matrices such that B⊥
r B =

0 and U⊥
r U = 0. Specifically, by noticing that F =

( I 0
C I )︸ ︷︷ ︸
Fl

(
A−LC L
−HC H

)
︸ ︷︷ ︸

Fr

, where Fl is nonsingular, one can select

B⊥
r =

[
−F−1

l Fr F−1
l T F−1

l Q
]

while U⊥
r =

[
I2(nz+ny) 02(nz+ny)×(nw+ns)

]
. Thus, accord-

ing to partitioning of X and Y in (21), relation (23) turns into

(20), hence (i) ⇐⇒ (ii), concluding the proof.

The above result yields an equivalent condition to (18) that

can be exploited to derive an efficient design procedure for the

proposed observer. To this end, one needs to suitably manip-

ulate (20) to obtain conditions that are linear in the decision

variables. Specifically, the two results given next provide some

possible approaches to derive sufficient conditions that, when

δ is selected, are genuinely LMIs.

Proposition 2. Let λt, γ ∈ R>0. If there exist P1 ∈
Snz

+ , P2 ∈ S
ny

+ , positive real numbers δ, χ, matrices X ∈
R
nz×nz , U,W ∈ R

ny×ny , J ∈ R
nz×ny such that




He(Z1) Z2 + P Z3 Z4

• N +He(Z5) Z6 Z7

• • −γ2I 0
• • • −χI


<0




He(Z1) Z2 + PT2
Z3 Z4

• NT2
+He(Z5) Z6 Z7

• • −γ2I 0
• • • −χI


<0

(24)

where P ,PT2
,N ,NT2

are defined in (21) and

Z1 =

[
−X CTU

0 −U

]
, Z2 =

[
−X +XTA− JC J

−WC W

]

Z3 =

[
XTN

0

]
, Z4 =

[
XTB

0

]
, Z5 =

[
ATX − CTJT 0

JT 0

]

Z6 =

[
XTN

0

]
, Z7 =

[
XTB

0

]

then L = X−TJ and H = U−TW solve Problem 1.

Proof. By selecting in (20) X1 = X3 = Y1 = Y3 = X,X2 =
Y2 = 0, X4 = Y4 = 0, X5 = Y5 = 0, X6 = Y6 = U,X7 =
Y7 = 0, X8 = Y8 = 0, XTL = J, UTH = W , one gets

(24). Thus, thanks to Theorem 2 and Theorem 3 the result is

proven.

Remark 3. In Proposition 2, to obtain sufficient conditions in

the form of (quasi)-LMIs, the following constraint is enforced

X8 = Y8 = 0. Although this allows to obtain numerically

tractable conditions, enforcing such a constraint, for a given

λt, restricts the range of values of δ for which feasibility is

not lost. Indeed, when X8 = Y8 = 0, a necessary condition

for (24) to be feasible is5 −δ + 2λt < 0.

Sample-and-hold Implementation: Whenever H = 0, the

general observer scheme presented in this paper reduces to

the zero order holder (ZOH) sample-and-hold considered,

e.g., in [24]. Although such an observer is perfectly captured

by our scheme, the implementation of ZOH sample-and-hold

observer schemes only requires to store the last measured

output estimation error and hold it in between sampling times.

Thus, such schemes may be preferable in some applications.

For this reason, it appears useful to derive computationally

tractable design algorithms in which H = 0. This is realized

through the following result.

Proposition 3 (Sample-and-hold Implementation). Let λt, γ

be given positive real numbers. If there exist P1 ∈

5A way to overcome this limitation is illustrated in [9].
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Snz

+ , P2 ∈ S
ny

+ , positive real numbers δ, χ, a nonsingu-

lar matrix X ∈ R
nz×nz , and matrices X5, Y5, X7, Y7 ∈

R
ny×nz , X6, Y6, X8, Y8 ∈ R

ny×ny , J ∈ R
nz×ny such that




He(Q1) Q2 + P Q3 Q4

• N +He(Q5) Q6 Q7

• • −γ2I 0
• • • −χI


 <0




He(Q̂1) Q̂2 + PT2
Q3 Q4

• NT2
+He(Q5) Q6 Q7

• • −γ2I 0
• • • −χI


<0

(25)

where P ,PT2
,N ,NT2

are defined in (21) and

Q1 =

[
−X + CTX5 CTX6

−X5 −X6

]

Q2 =

[
−X +XTA− JC + CTX7 J + CTX8

−X7 −X8

]

Q3 =

[
XTN

0

]
Q4 =

[
XTB

0

]
Q5 =

[
ATX − CTJT 0

JT 0

]

Q6 =

[
XTN

0

]
, Q7 =

[
XTB

0

]
, Q̂1 =

[
−X + CTY5 CTY6

−Y5 −Y6

]

Q̂2 =

[
−X +XTA− JC + CTY7 J + CTY8

−Y7 −Y8

]

then L = X−TJ and H = 0 are a solution to Problem 1.

Proof. By selecting in (20) H = 0, X1 = X3 = Y1 = Y3 =
X,X2 = Y2 = 0, X4 = Y4 = 0, XTL = J one gets (25).

Thus, thanks to Theorems 2 and 3 the result is proven.

Remark 4. The applicability of the above result requires the

matrix X to be nonsingular and such a constraint cannot be

directly imposed in an LMI setting. Nonetheless, if one wants

to ensure the nonsingularity of X , at the expense of some

additional conservatism, then the following constraint can be

included XT +X > 0.

B. Optimization aspects

So far, we assumed γ to be given. Nonetheless, most of

the time one is interested in designing the observer to reduce

the effect of the exogenous signal w. This can be realized

in our setting by embedding the proposed design conditions

into suitable optimization schemes aimed at minimizing γ. In

particular, by setting γ2 = µ, the minimization of the L2 gain

from the disturbance w to the performance output yp can be

achieved, for a given λt > 0, by designing the observer via

the solution to the following optimization problem:

minimize
P1,P2,L,H,µ,δ,χ

µ

s.t.

P1 ∈ Snz

+ , P2 ∈ S
ny

+ , µ > 0, δ > 0, χ ≥ 0

M(0) ≤ 0,M(T2) ≤ 0

(26)

Clearly the above optimization problem is hardly tractable

from a numerical standpoint due to nonlinear constraints in the

decision variables. However, whenever δ is given, the results

given in Section IV allows to obtain sufficient conditions in the

form of linear matrix inequalities for the satisfaction of (18).

Thus, a suboptimal solution to the above optimization problem

can be obtained via semidefinite programming (SDP) software

by performing a grid search for the scalar δ. Analogously, also

the maximum transfer time T2 can be considered as a design

parameter within an optimization scheme as the one outlined

above. In particular, when one is interested in simultaneously

minimizing γ and maximizing T2, our design conditions can

be used to obtain a tradeoff between these two objectives via

semidefinite programing tools; see [4, Chapter 4.7].

V. NUMERICAL EXAMPLE

Consider the following model of the flexible one-link ma-

nipulator [25]

ż =

[
0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

]
z +

[
0
0
0

−3.33

]
sin(z3) +

[
0
2
0
0

]
w

y = [ 1 0 0 0
0 1 0 0 ] z

where z1 and z2 are, respectively, the motor shaft angle and the

motor shaft angular speed, while z3 and z4 are, respectively,

the link angle and the link angular speed. The exogenous

input w represents a disturbance torque acting on the motor

shaft. Assuming the output y can be measured sporadically,

0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

T2

γ

Fig. 1: Tradeoff curves obtained by considering different

relaxations: Proposition 1 (dashed line), Proposition 2 (solid

line) and, Proposition 3 (dotted line).

we want to design an observer providing an estimate ẑ of

z while reducing the effect of the exogenous signal w on

the estimate of the unmeasured link variables z3 and z4.

By setting B = ( 0 0 0 −1 )
T

, S = ( 0 0 1 0 ), ℓ = 3.33,

Cp = ( 0 0 1 0
0 0 0 1 ), the considered plant can be rewritten as (1),

so that the methodology proposed in the paper can be applied.

Figure 1 shows the tradeoff curves of the two objective γ and

T2 obtained via the the relaxations issued from Proposition 1,

Proposition 2, and Proposition 3; in this example λt = 0.01,

and δ and T2 are selected over a grid, respectively, on [1, 100]
and on [0.01, 0.3]. In [24], sufficient conditions in the form of

LMIs are given for the design of a sample-and-hold observer

that solves item (P1) of Problem 1. In particular for this

example, the conditions given in [24] are feasible for T2
up to 0.1. Figure 1 shows that our methodology not only

ensures robustness with respect to external inputs and L2-gain

performance, but also leads to a larger allowable value for T2.
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Specifically, T2 can be selected up to 0.3, i.e., an improvement

of 200% with respect to [24].

Before concluding, we want to show how our approach

compares with other methodologies not relying on LMIs in

terms of conservatism in the estimation of the largest allowable

value of T2 for a given design. In particular, we focus on the

observer in [15] for which the results in [22] can be used to

estimate the largest allowable value T2 for a given gain L. Such

an observer, as pointed out in Remark 2, can be recovered

in our setting by selecting H = −CL. Specifically, let us

consider the following gain from [21, Chapter 6.6.2]

L =

[ 9.328 1
−48.78 22.11
−0.0524 3.199
19.41 −0.9032

]

and set H = −CL. An estimate of the largest allowable

value T2 for the given gains can be obtained by determining

the largest value of T2 for which the conditions in (18) are

feasible. Notice that when L,H , and δ are given, (18) are

LMIs, thus feasibility of those can be checked via semidef-

inite programming software. By picking λt = 0.01, and by

performing a line search on the scalar δ, it turns out that the

conditions in (18) are feasible for T2 up to 0.1016. In [21,

Chapter 6.6.2], the authors show that the approach in [22]

leads to an estimate of the largest allowable value of T2 equal

to 1.08× 10−8. This shows how our approach allows one to

get less conservative estimates of the largest allowable value

of T2–the improvement is an increase in T2 by about 9.5×106

times.

VI. CONCLUSION

This paper proposed a novel methodology to design, via lin-

ear matrix inequalities, an observer with intersample injection

to exponentially estimate, with a given decay rate, the state of a

continuous-time Lipschitz nonlinear system in the presence of

sporadically available measurements. Moreover, the observer

is robust to measurement noise, plant disturbances, and ensures

a given level of performance in terms of L2-gain between

plant exogenous disturbances and a performance output. Sev-

eral design methodologies to design the observer based on

semidefinite programming have been provided. Two of them

lead back respectively to the observer proposed in [15] and to

the zero order sample-and-hold in [24], while the remaining

lead to completely novel schemes. Several suboptimal design

algorithms based on SDP programming are presented for the

observer. Numerical experiments underlined the significance

of the proposed suboptimal design.
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