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Summary. The robustness of asymptotic stability with respect to measurement noise
for discrete-time feedback control systems is discussed. It is observed that, when at-
tempting to achieve obstacle avoidance or regulation to a disconnected set of points for
a continuous-time system using sample and hold state feedback, the noise robustness
margin necessarily vanishes with the sampling period. With this in mind, we propose
two modifications to standard model predictive control (MPC) to enhance robustness
to measurement noise. The modifications involve the addition of dynamical states that
make large jumps. Thus, they have a hybrid flavor. The proposed algorithms are well
suited for the situation where one wants to use a control algorithm that responds quickly
to large changes in operating conditions and is not easily confused by moderately large
measurement noise and similar disturbances.

1 Introduction

1.1 Objectives

The first objective of this paper is to discuss the robustness of asymptotic stabil-
ity to measurement noise for discrete-time feedback control systems. We focus on
control systems that perform tasks such as obstacle avoidance and regulation to a
disconnected set of points. We will compare the robustness induced by pure state
feedback algorithms to the robustness induced by dynamic state feedback algo-
rithms that have a “hybrid” flavor. Nonlinear model predictive control (MPC),
in its standard manifestation, will fall under our purview since 1) it is a method
for generating a pure state feedback control (see [14] for an excellent survey), 2)
it can be used for obstacle avoidance (see [11, 12, 18]) and regulation to a dis-
connected set of points (this level of generality is addressed in [9] for example),
and 3) dynamic “hybrid” aspects can be incorporated to enhance robustness to
measurement noise. The second objective of this paper is to demonstrate such
hybrid modifications to MPC. The proposed feedback algorithms are able to
respond rapidly to significant changes in operating conditions without getting
confused by moderately large measurement noise and related disturbances. The
findings in this paper are preliminary: we present two different hybrid modifica-
tions of MPC, but we have not investigated sufficiently the differences between
these modifications, nor have we characterized their drawbacks.
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1.2 What Do We Mean by “Hybrid MPC”?

First we discuss the term “hybrid” and consider how it has appeared before in
the context of MPC.

“Hybrid” Dynamical Systems

In the context of dynamical systems, “hybrid” usually indicates systems that
combine continuous and discrete aspects. Often “continuous” and “discrete” refer
to the time domains on which solutions are defined. See, for example, [5, 13, 22].
In this situation, a hybrid dynamical system is one in which solutions are de-
fined on time domains that combine continuous evolution and discrete evolution.
(The time domain thus may be a subset of the product of the nonnegative reals
and the nonnegative integers. See, for example, [3] and [5, 6, 7, 20]). The state
flows continuously, typically via a differential equation, as hybrid time advances
continuously; the state jumps, according to a update map or “difference” equa-
tion, as the hybrid time advances discretely. Whether flowing or jumping occurs
depends on the state. The state may or may not contain logic variables that take
values in a discrete set. If such variables exist, they do not change during the
continuous evolution. Similarly, state variables that must evolve continuously do
not change during jumps. We note here that a continuous-time control system
implemented with a sample and hold device is a hybrid dynamical system of this
type. Thus, when MPC based on a discrete-time model of a continuous-time pro-
cess is used to synthesize a state feedback that is implemented with sample and
hold, this can be thought of as hybrid control, although perhaps not as “hybrid
MPC”.

Other times, “continuous” and “discrete” refer to the domains in which the
state components take values, while the time domain is fixed to be discrete. In
other words, a hybrid system sometimes means a discrete-time system in which
some of the variables can take on any of a continuum of values while other states
can take on any values in a discrete set. This appears to be the most common
meaning of “hybrid dynamical system” as used in the MPC literature, and we
will mention specific work below.

“Hybrid” MPC

We believe that the development of MPC for hybrid systems that involve both
flowing and jumping will be a very stimulating area of research. Nevertheless,
throughout this paper, we will only consider discrete-time systems (although
they can be thought of as coming from sampled continuous-time systems). Thus,
our meaning of “hybrid MPC” must be related to the second one given above.
The main feature of the MPC that we propose is that it is dynamic, sometimes
introducing variables that take discrete values, with the aim of enhancing ro-
bustness to measurement noise. We focus on discrete-time control problems that
can be solved robustly using pure state feedback but that can be solved more ro-
bustly by adding dynamics, perhaps with variables that take on discrete values.
The idea of adding dynamics to improve robustness is not new, especially as it
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pertains to the control of continuous-time systems. See [19], [21], [2], [16]. Our
purpose is to emphasize this observation in discrete time and to present general
dynamic or “hybrid” algorithms that have potential for wide applicability, are
simple conceptually, and that improve robustness to measurement noise.

Regarding results on hybrid MPC that have appeared in the literature pre-
viously, it is tempting to try to make distinctions between hybrid MPC for
nonhybrid systems and (nonhybrid) MPC for hybrid systems. However, the dis-
tinction can be blurred easily by treating logic variables from the controller as
part of the state of the plant to be controlled. The class of discrete-time hybrid
systems to which MPC is most often applied is the class of so-called piecewise
affine (PWA) control systems. The equivalence of this type of hybrid model to
several other classes of hybrid models has been established in [10]. Model predic-
tive control for PWA systems has been discussed in [1], where the optimization
problems to generate the MPC feedback law are shown to be mixed integer mul-
tiparameter programs. In other work, the authors of [16] propose a hybrid MPC
strategy for switching between a predetermined robust stabilizing state feedback
controller and an MPC controller aimed at performance. An early result in [17]
used a “dual-mode” approach that involved switching between MPC and a local
controller.

2 Control Systems and Measurement Noise

2.1 Introduction

We consider the analysis and design of control algorithms for discrete-time sys-
tems of the form

x+ = f(x, u) , (1)

where x ∈ R
n denotes the state, x+ the next value of the state, and u ∈ U

the control input. The function f is assumed to be continuous. At times we will
re-write the system (1) as x+ = x + ˜f(x, u), where ˜f(x, u) := f(x, u) − x, to
emphasize that the discrete-time control system may represent the sampling of
a continuous-time control system and that the next state value is not too far
from the current state value, i.e., ˜f is not very large.

In this paper we consider two types of feedback control algorithms: 1) pure
state feedback, i.e., u = κßPSF(x), where κßPSF : R

n → U is not necessarily con-
tinuous, and 2) dynamic state feedback, i.e., u = κßDSF(x, ξ), ξ+ = gßDSF(x, ξ),
where ξ ∈ N and κßDSF : R

n × N → U and gßDSF : R
n × N → N are not

necessarily continuous, where N := {0, 1, . . .}. We are especially interested in
the effect of measurement noise. In the case of pure state feedback, this means
that u = κ1(x + e), where e represents measurement noise. In the case of dy-
namic state feedback, this means u = κ2(x+ e, ξ), ξ+ = g(x+ e, ξ). We focus on
control problems where pure state feedback will have small measurement noise
robustness margins, regardless of the control algorithm used. We will show be-
low that problems of this type include controlling continuous-time systems using
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small sampling periods while attempting to achieve obstacle avoidance and/or
regulation to a disconnected set of points.

We frame the discussion around three prototypical control tasks for the
continuous-time control system ẋ = v, where x ∈ R

2 and v ∈ B ⊂ R
2 (B denotes

the closed unit ball and δB denotes the closed ball of radius δ). The problems
are to use sample and hold control with a relatively small sampling period to
achieve 1) global regulation to a point, 2) global regulation to a set consisting
of two (distinct) points, and 3) global regulation to a target while avoiding an
obstacle. In each case, the discrete-time control system is x+ = x + u, where
u ∈ δB and δ > 0 represents the sampling period.
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Fig. 1. Global regulation to attractors

2.2 Global Regulation to a Point

Suppose we have designed a (family of) continuous feedback(s) κδ : R
2 → δB to

achieve stability of and global asymptotic convergence to a point x∗ which we
take to be the origin without loss of generality. For example, suppose δ ∈ (0, 1]
and we take

κδ(x) =
−δx

max {1, |x|} . (2)

To analyze the behavior of the system with measurement noise, define, for each
(s, δ) ∈ R≥0 × (0, 1],

γ(s, δ) =
max {1, s} − δ

max {1, s} . (3)

Note that γ(s, δ) < 1 for all (s, δ) ∈ R≥0 × (0, 1] and γ(·, δ) is nondecreasing.
Then note that

|x + κδ(x + e)| ≤ |x| (max {1, |x + e|} − δ) + δ|e|
max {1, |x + e|} (4)

so that when |e| ≤ 0.5|x| we have |x + κδ(x + e)| ≤ |x|γ(1.5|x|, 0.5δ). It follows
that the state trajectory will converge to a neighborhood of the origin that is
proportional to the worst case size of the measurement noise, regardless of how
small δ is. In other words, fast sampling does not make the system more and
more sensitive to measurement noise.
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2.3 Global Regulation to a Set Consisting of Two Distinct Points

Suppose we have designed a pure state feedback control algorithm κ : R
2 → δB to

achieve stability of and global asymptotic convergence to the set A := {xa, xb},
where xa �= xb. Stability implies that if the system starts close to one of the
points it will stay close to that point forever. Let Ha, respectively Hb, denote
the set of points that produce trajectories converging to xa, respectively xb. An
illustration is given in Figure 1(a). By uniqueness of solutions, these sets are well
defined and disjoint. By global asymptotic stability they cover R

2, and because
of the stability property each set is nonempty. We define H to be the intersection
of the closures of Ha and Hb, i.e., H = Ha ∩Hb. Note that for each point x ∈ H
there exists a neighborhood of x intersecting both Ha and Hb. Again, using
stability, it follows that H does not include neighborhoods of A. Now, due to
the nature of dynamical systems, the sets Ha and Hb are forward invariant. In
particular

za ∈ Ha , zb ∈ Hb =⇒ za + κ(za) ∈ Ha , zb + κ(zb) ∈ Hb . (5)

It can be shown that this fact has the following consequence (in the statement
below, H + δB denotes the set of points having distance less than δ from H):

If x ∈ H+ δB then there exists e with |e| < δ such that x+κ(x+ e) ∈ H+ δB.

In turn it follows that, for each initial condition x ∈ H+δB there exists a noise
sequence e := {ek}∞k=0 such that |ek| < δ for all k and such that φ(k, x, e) ∈
H + δB for all k, where φ(k, x, e) denotes the trajectory starting from x at the
kth step under the influence of the measurement noise sequence e. This (small
when δ is small) noise sequence does not allow the trajectory to approach the
attractor A.

The above statement has the following explanation: Without loss of generality,
suppose x ∈ Ha. Since x ∈ H + δB, there exists z such that |x − z| < δ and
z ∈ Hb. In particular, z +κ(z) ∈ Hb. Pick e = z −x and consider x+κ(x+ e). If
x+κ(x+ e) ∈ Hb then x+κ(x+ e) ∈ H + δB since there must be a point on the
line connecting x to x+κ(x+e) that belongs to H and since the length of this line
is less than δ since |κ(x+e)| < δ. If x+κ(x+e) ∈ Ha then x+κ(x+e) ∈ H+δB

since there must be a point on the line connecting x+κ(x+e) and x+e+κ(x+e)
that belongs to H and the length of this line must be less than δ since |e| < δ.

To summarize, no matter how we build our pure state feedback algorithm,
when δ is small there will be small noise sequences that can keep the system
from converging toward the attractor.

2.4 Global Regulation to a Target with Obstacle Avoidance

Suppose we have designed a pure state feedback control algorithm κ : R
2\N →

δB to achieve stability of and “global” convergence to a point x∗ while avoiding
an obstacle covering the set N . The situation is depicted in Figure 1(b). For
simplicity, we assume that the set A is made stable and attractive. Basically,
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this says that if the control finds that the vehicle is nearly past the obstacle it
moves in the direction of the target. Let Ha, respectively Hb, denote the set of
points that produce trajectories converging to A by crossing into the set A above
the obstacle, respectively below the obstacle. By uniqueness of solutions, these
sets are well defined and disjoint. By “global” asymptotic convergence they cover
R

2\(N ∪A), and because of stability and attractivity of A each set is nonempty.
We define H to be the intersection of the closures of Ha and Hb. Again using
stability of A it follows that H does not include neighborhoods of A. Because
of this (5) holds, at least when δ is small enough. Using the same reasoning as
in the previous subsection, we conclude that measurement noise of size δ can
be used to keep the trajectories close to H, which is on the “wrong” side of the
obstacle, or else make the vehicle crash into the obstacle.

2.5 A General Principle

We point out here that the ideas put forth above in the discussion about sta-
bilization of an attractor consisting of two distinct points and the discussion
about obstacle avoidance generalize. Indeed, let O ⊂ R

n be open and consider
the discrete-time system

x+ = x + ˜f(x) . (6)

Let h̄ ∈ N≥2 and let the sets Hi, for i ∈ {1, . . . , h̄}, satisfy
⋃

i Hi = O. Define
H =

⋃

i,j,i�=j Hi ∩ Hj .

Lemma 1. Suppose that for each z ∈ H there exist i, j ∈
{

1, . . . , h̄
}

with i �= j

and for each ρ > 0 there exist points zi, zj ∈ {z}+ρB so that zi + ˜f(zi) ∈ Hi and
zj + ˜f(zj) ∈ Hj. Let ε > 0. If x ∈ H + εB, {x} + 2εB ⊂ O, and | ˜f(x + e)| < ε

for all |e| < ε then there exists e such that |e| < ε and x + ˜f(x + e) ∈ H + εB.

In turn, we have the following result.

Corollary 1. Let ε > 0. Let C ⊂ O be such that, for each ξ ∈ C, ξ + 2εB ⊂ O
and | ˜f(ξ + e)| < ε for all |e| < ε. Then, for each x0 ∈ C ∩ (H + εB) there
exists a sequence {ek} with |ek| < ε such that the sequence generated by xk+1 =
xk + ˜f(xk + ek) satisfies xk ∈ H + εB for all k such that xi ∈ C for all i ∈
{0, . . . , k − 1}.

A similar result applies to systems of the form x+ = x + ˜f(x, κ(x + e)) and long
as ˜f(·, u) is locally Lipschitz uniformly over u’s in the range of κ. The ideas used
to establish a result for such systems parallels the main idea in the proof of [4,
Proposition 1.4]. We omit this result because of space limitations.

3 Standard MPC

In this section we review “standard MPC”. In standard MPC a pure state feed-
back function is generated as the mapping from the state x to the solution to
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an optimization problem, parametrized by x, that uses continuous functions and
does not use hard constraints. It has been shown in [15] that standard MPC
yields a closed loop with some robustness to measurement noise. (This is in con-
trast to the situation where the MPC optimization involves hard constraints.
Examples have been given in [8] to show that hard constraints can lead to zero
robustness margins.) However, as suggested by the discussion in the previous sec-
tion, the robustness margins may be quite small, especially if the discrete-time
plant is coming from a discrete-time model of a continuous-time system using
a relatively small sampling period and the control task is obstacle avoidance or
regulation to a disconnected set of points.

The control objective is to keep the state in the open state space X ⊂ R
n and

stabilize the closed attractor A ⊂ X. MPC can be used to achieve this objective.
The MPC algorithm is described as follows:

We denote an input sequence {u0, u1, . . .} by u where ui ∈ U for all i ∈ N.
Let E≥0 denote [0, ∞]. Let σ : R

n → E≥0 be a state measure with the following
properties: (i) σ(x) = 0 for x ∈ A, σ(x) ∈ (0, ∞) for x ∈ X\A, and σ(x) = ∞ for
x ∈ R

n \ X, (ii) continuous on X, (iii) σ(x) blows up as either x gets unbounded
or approaches to the border of X. We let 
 : R

n × U → E≥0 be the stage
cost satisfying 
(x, u) ≥ σ(x) and g : R

n → E≥0 the terminal cost satisfying
g(x) ≥ σ(x). Given a horizon N ∈ N, let us define the cost function and the
value function, respectively, as

JN (x, u) :=
N−1
∑

k=0


(ψ(k, x, u), uk) + g(ψ(N, x, u)), VN (x) := infu JN (x, u) (7)

where ψ(k, x, u) is the solution to system (1) at time k, starting from the initial
condition x, evolved under the influence of the input sequence u. The above
optimization is over the set of admissible input sequences, i.e. input sequences
with each element residing in U . In order to keep the discussion simple, we make
the following assumption. (A less restrictive set of assumptions for a more general
setting can be found in [9].)

Assumption 3.1 For all N ∈ N and x ∈ X a minimizing input sequence u
satisfying VN (x) = JN (x, u) exists. VN is continuous on X and there exists
L > 0 such that VN (x) ≤ Lσ(x) for all x ∈ X and N ∈ N.

Given a horizon N , for x ∈ X we let the MPC-generated feedback κN (x) := u0
where u0 is the first element of an input sequence satisfying VN (x) = JN (x, u).
In this setting the following result ensues (see [9] for details).

Theorem 1. Under Assumption 3.1 there exists L > 0 such that, for all horizon
N , the value function VN is continuous and satisfies

σ(x) ≤ VN (x) ≤ Lσ(x) ∀x ∈ X .

Moreover, for each ρ ∈ (0, 1) there exists n◦ ∈ N such that

VN (f(x, κN (x))) − VN (x) ≤ −ρσ(x) ∀x ∈ X , N ≥ n◦ .
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In particular, for N sufficiently large, the set A is asymptotically stable with
basin of attraction X .

4 Modified MPC to Decrease Sensitivity to Measurement
Noise

4.1 MPC with Memory

Introduction

When using MPC for stabilization, one simple remedy to the robustness problem
discussed in Section 2 seems to be to increase the so called execution horizon.
That is, instead of applying the first element of an optimal input sequence and
then measuring the state after one step to compute a new optimal input se-
quence for the new initial condition, one could apply the first Ne ≥ 2 elements
of an optimal input sequence (in an open-loop fashion) before taking a new
measurement and optimization. By doing so, if the state is close to where it is
most vulnerable to measurement noise, before the next measurement it can be
carried sufficiently far away (by choosing a large enough Ne) from that location.
However, this method may be deleterious for certain applications where the con-
ditions change quickly. This presents a trade-off between wanting to be robust
to measurement noise and wanting to react quickly when conditions actually
change. A compromise can be attained if one augments the state of the system
with a memory variable that keeps record of previous decisions (calculations).
With memory, the algorithm can be made to have preference over its previous
decisions and the state can still be monitored at each step in order to take action
against that preference if necessary or profitable.

Algorithm Description

To be more precise, choose the buffer gain μ > 1 and a memory horizon
M ∈ N. Define Ω := {ω1, . . . , ωM}, ωi ∈ U . Given x ∈ X, let (admissi-
ble) input sequences v = {v0, v1, . . .} and w = {w0, w1, . . .} be defined as
v := argmin

u
JN (x, u) and

w := argmin
u

JN (x, u) subject to ui−1 = ωi ∀i ∈ {1, . . . , M} .

Define

WN (x, Ω) := inf
u

JN (x, u) subject to ui−1 = ωi ∀i ∈ {1, . . . , M}

and

κ̄N(x, Ω) :=

{

v0 if WN (x, Ω) > μVN (x)
w0 if WN (x, Ω) ≤ μVN (x)

,πN (x, Ω)

:=

{

{v1, . . . , vM} if WN (x, Ω) > μVN (x)
{w1, . . . , wM} if WN (x, Ω) ≤ μVN (x)
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Note that when WN (x, Ω) ≤ μVN (x), we have κ̄N (x, Ω) = ω1 and πN (x, Ω) =
{ω2, ω3, . . . , ωM , wM}. The closed loop generated by this algorithm is

x+ = f(x, κ̄N (x, Ω)) (8)
Ω+ = πN (x, Ω) . (9)

We use ψ(k, x, Ω, κ̄N ) to denote the solution to (8).

Theorem 2. Let Assumption 3.1 hold. For each ρ ∈ (0, 1) there exist n◦ ∈ N

and positive real numbers K and α such that for all x ∈ X and Ω

WN (f(x, κ̄N (x, Ω)), πN (x, Ω)) − WN (x, Ω) ≤ −ρσ(x) (10)
σ(ψ(k, x, Ω, κ̄N )) ≤ Kσ(x) exp(−αk) ∀k ∈ N (11)

for all horizon N and memory horizon M satisfying N ≥ M + n◦.

Robustness with Respect to Measurement Noise

Let us now comment on the possible extra robustness that the MPC with mem-
ory algorithm may bring to the stability of a closed loop. Suppose the stability of
the closed loop obtained by standard MPC has some robustness with respect to
(bounded) measurement noise characterized as (perhaps for x in some compact
set)

VN (f(x, κN (x + e))) − VN (x) ≤ −σ(x)/2 + αv|e|

where N is large enough and αv > 0. Let us choose some μ > 1. Let us be given
some Ω = {ω1, . . . , ωM}. Then it is reasonable to expect for M and N − M
sufficiently large, at least for systems such as that with a disjoint attractor, that

WN (f(x, ω1), πN (x + e, Ω)) − WN (x, Ω) ≤ −σ(x)/2 + αw|e|

with αw > 0 (much) smaller than αv as long as WN (x, Ω) is not way far off from
VN (x), say WN (x, Ω) ≤ 2μVN (x). Now consider the closed loop (8)-(9) under
measurement noise. Suppose WN (x+ e, Ω) ≤ μVN (x+ e). Then κ̄N (x+ e, Ω) =
ω1. For μ sufficiently large it is safe to assume WN (x, Ω) ≤ 2μVN (x). Therefore
we have

WN (f(x, κ̄N (x + e, Ω)), πN (x + e, Ω)) − WN (x, Ω) ≤ −σ(x)/2 + αw|e| .

Now consider the other case where WN (x + e, Ω) > μVN (x + e). Then define
˜Ω := {v0, . . . , vM−1} where {v0, v1, . . .} =: v and VN (x + e) = JN (x + e, v).
Note then that WN (x+ e, ˜Ω) = VN (x+ e) and it is safe to assume WN (x, ˜Ω) ≤
2μVN (x) as well as WN (x, ˜Ω) ≤ WN (x, Ω) for μ large enough. Note finally that
κ̄N (x + e, Ω) = κ̄N (x + e, ˜Ω) = v0 and πN (x + e, Ω) = πN (x + e, ˜Ω) in this
case. Hence
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WN (f(x, κ̄N (x + e, Ω)), πN (x + e, Ω)) − WN (x, Ω)

= WN (f(x, κ̄N (x + e, ˜Ω)), πN (x + e, ˜Ω)) − WN (x, Ω)

≤ WN (f(x, κ̄N (x + e, ˜Ω)), πN (x + e, ˜Ω)) − WN (x, ˜Ω)
≤ −σ(x)/2 + αw|e| .

The robustness of the closed loop is therefore enhanced.

4.2 MPC with Logic

Algorithm Description

The modification of the algorithm explained in the previous section aims to make
the control law more decisive. In this section we take a different path that will
have a similar effect. We augment the state with a logic (or index) variable q
in order for the closed loop to adopt a hysteresis-type behavior. We begin by
formally stating the procedure.

For each q ∈ {1, 2, . . . , q̄} =: Q let σq : R
n → E≥0 be a state measure with

the following properties: (i) σq(x) ∈ (0, ∞) for x ∈ Xq \ A, and σq(x) = ∞
for x ∈ R

n \ Xq, (ii) is continuous on Xq, (iii) σq(x) blows up either as x gets
unbounded or approaches to the border of Xq, and finally (iv) σq(x) ≥ σ(x). We
then let 
q : R

n × U → E≥0 be our q-stage cost satisfying 
q(x, u) ≥ σq(x) and
gq : R

n → E≥0 q-terminal cost satisfying gq(x) ≥ σq(x). We let
⋃

q∈Q Xq = X.
Given a horizon N ∈ N, we define, respectively, the q-cost function and the
q-value function

Jq
N (x, u) :=

N−1
∑

k=0


q(ψ(k, x, u), uk) + g(ψ(N, x, u)), V q
N (x) := inf

u
Jq

N (x, u) .

We make the following assumption on V q
N which is a slightly modified version of

Assumption 3.1.

Assumption 4.1 For all N ∈ N, q ∈ Q, and x ∈ Xq a minimizing input
sequence u satisfying V q

N (x) = Jq
N (x, u) exists. V q

N is continuous on Xq. For
each q ∈ Q there exist Lq > 0 such that V q

N (x) ≤ Lqσq(x) for all x ∈ Xq and
N ∈ N. There exists L > 0 such that for each x ∈ X there exists q ∈ Q such that
V q

N (x) ≤ Lσ(x) for all N ∈ N.

Let μ > 1. Given x ∈ X, let the input sequence vq := {vq
0 , vq

1 , . . .} be

vq := argmin
u

Jq
N (x, u) .

Let q∗ := argmin
�∈Q

V �
N (x). Then we define

κ̃N (x, q) :=

{

vq∗

0 if V q
N (x) > μV q∗

N (x)

vq
0 if V q

N (x) ≤ μV q∗

N (x)
, θN (x, q) :=

{

q∗ if V q
N (x) > μV q∗

N (x)

q if V q
N (x) ≤ μV q∗

N (x)
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Let the closed loop generated by the algorithm be

x+ = f(x, κ̃N (x, q)) (12)
q+ = θN (x, q) . (13)

We use ψ(k, x, q, κ̃N ) to denote the solution to (12).

Theorem 3. Let Assumption 4.1 hold. For each ρ ∈ (0, 1) there exist n◦ ∈ N

and positive real numbers K and α such that for all x ∈ X and q ∈ Q

V
θN (x, q)
N (f(x, κ̃N (x, q))) − V q

N (x) ≤ −ρσ(x) (14)
σ(ψ(k, x, q, κ̃N )) ≤ Kσ(x) exp(−αk) ∀k ∈ N (15)

for all horizon N ≥ n◦.

Robustness with Respect to Measurement Noise

We now discuss the robustness of stability of closed loops generated by MPC with
logic. By Assumption 4.1, for some large enough fixed horizon N and for all q ∈ Q
and x ∈ Xq it can be shown that V q

N (f(x, κ̃N (x, q))) − V q
N (x) ≤ −σq(x)/2. For

the analysis it makes no difference whether V q
N is coming from an optimization

problem or not. Therefore we might just as well consider the case where we have
a number of control Lyapunov functions V q active on sets Xq with associated
feedbacks κq satisfying

V q(f(x, κq(x))) − V q(x) ≤ −σq(x)/2

for each x ∈ Xq. Suppose each of the closed loops x+ = f(x, κq(x)) has some
degree of robustness characterized by (maybe for x in some compact set)

V q(f(x, κq(x + e))) − V q(x) ≤ −σq(x)/2 + αq|e|

where αq > 0. Now let us compound all these individual systems into a single
one by picking μ > 1 and with a switching strategy q+ = θ(x, q) where θ is
defined parallel to θN above. In the presence of measurement noise, the closed
loop will be

x+ = f(x, κθ(x+e, q)(x))

q+ = θ(x + e, q) .

Suppose at some point x we have θ(x + e, q) = p �= q. That means V q(x +
e) > μV p(x + e). When μ > 1 is large enough it is safe to assume, thanks to
the continuity of the Lyapunov functions, that V q(x) ≥ V p(x) since e will be
relatively small. Therefore

V p(f(x, κp(x + e))) − V q(x) ≤ V p(f(x, κp(x + e))) − V p(x)
≤ −σp(x)/2 + αp|e|
≤ −σ(x)/2 + ᾱ|e|
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where ᾱ := maxq{αq}. Therefore if we adopt V (x, q) := V q(x) as the Lyapunov
function for our closed loop generated by the logic algorithm we can write

V (f(x, κθ(x+e, q)(x + e)), θ(x + e, q)) − V (x, q) ≤ −σ(x)/2 + ᾱ|e|

for all x and q. Roughly speaking, the strength of robustness of the compound
closed loop will be no less than that of the “weakest” individual system, provided
that the buffer gain μ is high enough.

Figure 2 depicts the level sets of two Lyapunov functions with minima at two
distinct target points. The sets {x : V 1

N (x)/V 2
N (x) = μ} and {x : V 2

N (x)/V 1
N (x) =

μ} are indicated by dotted curves. The robustness margin with respect to mea-
surement noise is related to the separation between these curves. A possible
closed-loop trajectory in the absence of measurement noise is indicated by the
dashed curve. Note that there is more than one switch before the trajectory gets
close to one of the two target points.

−8 −6 −4 −2 0 2 4 6 8
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Level sets of V
N
1

Switching from 2 to 1

Switching from 1 to 2
Level sets of V

N
2

Fig. 2. Level sets of V q
N for q ∈ {1, 2}. The dotted curves are the sets {x :

V 1
N(x)/V 2

N(x) = μ} and {x : V 2
N(x)/V 1

N (x) = μ}. The triangles represent the state
at the instants when a switching occurs. The dashed line represents a piece of the
solution starting at x = (4.5, 2.1), the rightmost triangle.

4.3 Discussion

The two schemes offered have different advantages and disadvantages. Preference
would depend on the particular application. However, MPC with memory is
easier to employ in the sense that it is a minor modification to the standard
algorithm. The difficulty is the determination of the design parameters M and
μ; this determination is not obvious. For example, it is not true in general that
the larger μ or M are, the more robustness the system has. It may be best to
choose them from a range and that range possibly depends on the system and
the other MPC related design parameters such as 
, g, and N . In the logic case,
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it is in general not trivial to obtain functions V q, but it is true that a larger μ
will yield more robustness to measurement error, or at least it will not degrade
robustness. However, the larger μ, the longer it may take for the closed loop to
converge to the desired attractor. Also, a very large μ could make the system
incapable of adapting to large changes in conditions.

5 Illustrations of Modified MPC Algorithms

5.1 Pendulum Swing Up

Here we consider the problem of swinging up a pendulum and stabilizing its
inverted equilibrium. The continuous-time model of the system after an input
feedback transformation (ẋ = F (x, v) where x ∈ R

2, v ∈ R) and normalization
is ẋ1 = x2; ẋ2 = sin(x1) − cos(x1)v, where x1 is the angle of the pendulum (0
at the upright position) and x2 is the angular velocity. Following [20, Ex. 8.3],
we design three different feedback laws v1(·), v2(·), v3(·) for the system. In [20],
each of these control laws are activated in a different prespecified region of the
state space to perform the swing-up (the design purpose of v1(·), v2(·), v3(·) is
to kick the system from the resting condition, to pump energy into the system,
and to stabilize the inverted pendulum to the upright position, respectively).
Given a sampling period T > 0, for each u ∈ {1, 2, 3} let x+ = f(x, u) be the
discrete-time model of the closed loop ẋ = F (x, vu(x)) obtained via integration
over an interval of length T , i.e. f(x, u) = φ(T ) where φ(·) is the solution of
ẋ = F (x, vu(x)) starting at φ(0) = x. We can now use MPC to decide the swing
up strategy.

We construct the stage cost for standard MPC by adding the kinetic and
potential energy of the pendulum. We also include a term in the stage cost
that penalizes the control law during the continuous-time horizon to avoid large
control efforts. The cost function is periodic in x1 with period 2π and therefore,
there exists a surface on the state space x1 −x2 where on one side the algorithm
tries to reach the upright position rotating the pendulum clockwise and on the
other side rotating the pendulum counterclockwise. For one such particular cost,
the surface and two different trajectories in opposite directions starting close to
the surface are given in Fig. 3(a). As discussed in Section 2, the closed-loop
system is vulnerable to small measurement noise in the vicinity of that surface
when T is small.

The vulnerability to measurement noise mentioned above can be resolved
via the approach discussed in Section 4.2. Despite the fact that x1 = 2πk,
k ∈ {0, ±1, ±2, . . .}, correspond to the same physical location, one can construct
two stage costs, namely 
q for q ∈ {1, 2}, that are not periodic in x1 such
that 
1 vanishes at x = (0, 0, 0, 0) and positive elsewhere and 
2 vanishes at
x = (2π, 0, 0, 0) and positive elsewhere. By doing so we can attain a robustness
margin that does not depend on the size of sampling period T but on μ only,
which can be increased to enhance robustness. Fig. 3(b) shows the switching lines
for several values of μ for both possible switches (q = 1 → 2, q = 2 → 1). For a
particular value of μ, the robustness margin is related to the separation of the
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Fig. 3. Swing-up with standard MPC and MPC with memory

lines. The margin is independent of the sampling time T as long as NT remains
constant, N being the horizon for MPC with logic. The design of an MPC with
memory controller and the extension to the case of swinging up the pendulum
on a cart follows directly, but due to space limitations we do not include them
here.

5.2 Obstacle Avoidance with Constant Horizontal Velocity

Consider a vehicle moving on the plane x+ = x + δ, y+ = y + uδ where δ > 0
and u ∈ {−1, 1} (note that this system can be thought of as sampling the
system ẋ = 1, ẏ = u). Suppose that the goal for the vehicle is to avoid hit-
ting an obstacle defined by a block of unit height centered about the hori-
zontal axis at x = 0 (i.e. the vehicle must leave the region y ∈ [−0.5, 0.5]
before x = 0). We design a controller using MPC with logic. Let q ∈ {1, 2},

1([x, y]T , u) = 
2([x, −y]T , u) = exp(y), and g(·) = 0. Since the costs are in-
variant on x and symmetric about the x axis, the decision lines defined by μ
turn out to be horizontal lines. Let the spacing between these lines be s(μ). In
this case, s(μ) = ln(μ), since V 1

N ([x, y]T ) = μV 2
N ([x, y]T ) when y = ln(μ)

2 and
V 2

N ([x, y]T ) = μV 1
N ([x, y]T ) when y = − ln(μ)

2 for any N .
Note that when μ = 1 (or s(μ) = 0) MPC with logic is equivalent to

the standard MPC algorithm implemented using the stage cost 
([x, y]T , u) =
min{
1([x, y]T , u), 
2([x, y]T , u)}. As μ is increased, the spacing s(μ) increases.
Table 1 shows the average number of switches and the total number of crashes for
50, 000 runs of the system. The initial conditions are set to be x(0) = −1.5 and
y(0) normally distributed (though kept within (−1, 1)) around y = 0. The noise
is uniformly distributed in [−0.8, 0.8]. The key variables of comparison are the
spacing of the decision lines s(μ) and the sampling time δ. With the increased
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Table 1. Simulations of system with differing decision line spacing and sampling time
for uniformly distributed measurement noise e ∈ [−0.8, 0.8]. Each datum is generated
by 50,000 runs starting at x(0) = −1.5 and y(0) normally distributed constrained to
(−1, 1). “TC” is total number of crashes and “AS” is average number of switches.

δ 0.1 0.06 0.03 0.01 0.006 0.003 0.001
s(μ) TC AS TC AS TC AS TC AS TC AS TC AS TC AS

0.00 5110 2.61 5444 4.36 5791 8.73 5927 26.1 5922 43.8 6107 88.3 6125 263
0.25 3248 1.75 3716 2.88 3862 5.72 4197 17.2 4334 28.9 4375 57.3 4144 169
0.50 1575 1.13 1875 1.76 2253 3.38 2549 10.0 2529 16.7 2625 33.2 2638 101
0.75 428 0.70 609 1.01 863 1.80 1102 5.00 1140 8.26 1155 16.4 1189 48.6
1.00 47 0.46 51 0.57 110 0.86 241 2.05 274 3.21 276 6.14 298 17.7
1.25 1 0.34 2 0.39 1 0.48 6 0.73 9 0.94 8 1.55 17 3.92
1.50 0 0.25 0 0.29 0 0.35 0 0.42 0 0.45 0 0.48 0 0.54

spacing for a given sampling time, there are fewer crashes, as expected, and the
trajectories contain fewer switches. The number of switches can be thought of as
a measure of the sensitivity to measurement noise. As the sampling time is de-
creased, the system also becomes more sensitive to measurement noise due to the
smaller movements of the system making it difficult to escape the neighborhood
of the horizontal axis.

For this system, a crash-free bound on the measurement noise (that solely
depends on μ) can be calculated as follows.

Claim. Suppose the MPC with logic controller is implemented with the cost
functions 
1, 
2. If the buffer gain μ > 1, the measurement noise is bounded by
s(μ)

2 , and the horizontal component of the state x < −
(

1+s(μ)
2

)

then the system
will not crash due to measurement noise.

Note that the bound in Claim 5.2 does not depend on the sampling time δ. Hence,
the given controller yields a robustness margin independent of δ. For this system,
increasing the buffer gain will always increase the robustness margin. However,
this may not work on other systems. Increasing the buffer gain too much can
cause a system to become obstinate rather than decisive. Choosing the buffer
gain then will be very dependent on the task that the system is required to
perform. A balance must be made between ignoring (usually small) measurment
error and responding to (relatively large) changes in task conditions.

5.3 Avoiding Moving Obstacles

Let the dynamics of a vehicle and obstacle be x+ = x + u and z+ = z + v,
respectively, where x ∈ R

2, u ∈ {−1, 0, 1} × {−1, 0, 1}, and v ∈ {−1, 0, 1}. We
fix the vertical displacement of the obstacle h > 0, and constrain the horizontal
displacement to z ∈ [−1, 1]. The goal of the vehicle is to reach some target while
avoiding the obstacle whose goal is to reach the vehicle. Both of the agents are
considered as single points in R

2 and run MPC to achieve their goals as follows.
The stage cost of the vehicle puts a high penalty on the current location of the
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obstacle and gradually vanishes at the target. The stage cost of the obstacle
vanishes whenever x1 = z and is positive elsewhere.

Applying standard MPC with the vehicle and the obstacle initially aligned
vertically at zero horizontal position, the obstacle is able to prevent the vehicle
from converging to its target. Suppose the vehicle decides to move in the increas-
ing x1 direction to avoid the obstacle from the right. The obstacle will follow
the vehicle with one step of delay. At some point, it will become necessary for
the vehicle to change its course since the optimal path, now that the obstacle
has moved, is now to the the left of the obstacle. Hence the vehicle can get stuck
possibly as shown in Fig. 4(a).

With the MPC with memory approach described in Section 4.1, the problem
can be resolved. Using the same stage cost, M = 5, and μ = 1.4, the vehicle
avoids the obstacle. The sequence in memory is effectively used when the obstacle
is at (2, 3): the vehicle stays within his initial course of passing the obstacle from
the right as shown in Fig. 4(b). Similar results were obtained with MPC with
logic using two symmetric respect to x1 stage cost functions that allow the vehicle
avoid the obstacle from the left and from the right, respectively, but the results
are omitted because of space limitations.

Note that the moving obstacle can be thought of as noise for the measure-
ment of the vehicle’s distance to a static obstacle. Since the displacement of the
obstacle has magnitude equal to one, the “measurement noise” for the vehicle is
rather large.
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