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Abstract— This paper proposes hybrid control algorithms for
optimization of a convex objective function with fast conver-
gence, reduced oscillations, and robustness. Developed using
hybrid system tools, the algorithms feature a uniting control
strategy, in which two standard heavy ball algorithms, one
used globally and another used locally, with properly designed
gravity and friction parameters, are employed. The proposed
hybrid control strategy switches the parameters to converge
quickly to the set of minimizers of the convex objective function
without oscillations. A hybrid control algorithm implementing
a switching strategy that measures the objective function and
its gradient, and another algorithm that only measures its gra-
dient, are designed. Key properties of the resulting closed-loop
systems, including existence of solutions, asymptotic stability,
and robustness, are analyzed. Numerical results validate the
findings.

I. INTRODUCTION

In this paper, the problem of finding the critical points
of a scalar, continuously differentiable objective function L
is considered. In particular, we are interested in algorithms
to solve optimization problems of the form minξ∈Rn L(ξ)
by finding the minima of L. The heavy ball method is an
accelerated gradient method capable of guaranteeing conver-
gence to the set of minimizers of L [1] [2]. Unlike classical
gradient descent, the heavy ball method adds a velocity
term to the gradient so as to speed up convergence. The
method consists of running a dynamical system that, under
appropriate assumptions, has all of its solutions converging
to the set of critical points of the function L. The dynamical
system used in the heavy ball method is given by the second-
order system

ξ̈ + λξ̇ + γ∇L(ξ) = 0 (1)

where λ and γ are positive tunable parameters; see [2], [1],
[3]. This system resembles the dynamics of a particle sliding
on a profile defined by L, with friction. In such a setting, the
parameter λ represents the ratio between the viscous friction
coefficient and the mass of the particle, and γ represents the
gravity constant. This heavy ball algorithm can be applied, in
its current form, to control a single autonomous agent, and
it has potential to be extended to multiagent systems [4],
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[5], wireless sensor or communication networks [5], [6], and
machine learning [5], [7], to name a few applications. The
performance of the heavy ball method is highly dependent on
λ and γ. Specifically, when λ is large, heavy ball converges
very slowly, and when λ is small, heavy ball converges
quickly, but with oscillations near the minimum [3]. This
behavior suggests the need of a dynamic adaptation of the
value of λ for fast convergence without oscillations to be
possible.

Global convergence of the heavy ball method for a convex
function L is demonstrated in [7]. In [3], convergence bounds
for the continuous-time heavy ball method, both when L
is convex and when L is a Morse function, are derived,
but global asymptotic stability is not established. In [8], a
general, continuous-time Lyapunov function for accelerated
gradient methods is developed using Bregman Lagrangians.
In [9], Lyapunov functions for the heavy-ball method are
proposed to establish stability and convergence, including
rate estimates. In [4] and [10], global asymptotic stability of
the continuous-time heavy ball method, when L is convex
and C2, is demonstrated.

Contrary to classical gradient descent, accelerated gradient
methods suffer from error accumulation. The authors in [11],
[12], and [13] suggest that the heavy ball method is sensitive
to perturbations, due to its acceleration component. In [13],
the effect of white noise on the discrete-time heavy-ball
method is analyzed, and robustness to such noise is attained
through the use of varying step-sizes. In [4], a perturbed
continuous-time heavy ball system is analyzed and shown to
be robust, but at the expense of the system measuring the
Hessian of L. In [10], a continuous-time heavy ball with
perturbations is also formulated and analyzed, where the
system employs an observer to measure these perturbations.

The main contributions of this paper are as follows. We
propose heavy ball control algorithms for optimization of
a convex objective function L, with fast convergence and
reduced oscillations. The algorithms utilize a uniting control
strategy, developed using hybrid system tools [14], which
switches between two standard heavy ball algorithms with
different gravity and friction parameters. We design a hybrid
control algorithm implementing a switching strategy that
measures both L and its gradient, and then extend it to
the case where it measures only the gradient of L. The
algorithms require no measurements of the Hessian of L. We
prove global asymptotic stability of the set of minimizers
of L for the resulting closed-loop system, and establish
robustness results. The arguments we present follow similarly



for the case when ξ ∈ Rn, but for simplicity we present our
results for n = 1.

The rest of the paper is organized as follows. Section II
contains a brief explanation of notation and the hybrid sys-
tems framework. Section III introduces the uniting algorithm
and presents its nominal properties, and Section IV pertains
to robustness. Due to space constraints, proofs of the results
will be published elsewhere.

II. PRELIMINARIES

A. Notation

We denote the real, positive real, and natural numbers R,
R>0, and N, respectively. The set Cn represents the family
of n-th continuously differentiable functions. For vectors v
and w, |v| =

√
v>v denotes the Euclidean vector norm of

v, and 〈v, w〉 = v>w the inner product of v and w. The
closure of a set S is denoted S. The distance of a point x
to a set S is defined by |x|S = infy∈S |y − x|. Given a set-
valued mapping M : Rm ⇒ Rn, the domain of M is the set
dom M = {x ∈ Rm : M(x) 6= ∅}. A function β : R>0 ×
R≥0 → R≥0 is a class-KL function, also written β ∈ KL,
if it is nondecreasing in its first argument, nonincreasing in
its second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,
and lims→∞ β(r, s) = 0 for each r ∈ R≥0.
B. Preliminaries on Hybrid Systems

In this paper, a hybrid system H has data (C,F,D,G)
and is defined as [14, Definition 2.2]

H =

{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(2)

where x ∈ Rn is the system state, F : Rn ⇒ Rn is the flow
map, C ⊂ Rn is the flow set, G : Rn ⇒ Rn is the jump map,
and D ⊂ Rn is the jump set. The notation ⇒ indicates that
F and G are set-valued maps. A solution φ is parameterized
by (t, j) ∈ R≥0×N, where t is the amount of time that has
passed and j is the number of jumps that have occurred. The
domain of φ, namely, domφ ⊂ R≥0 × N is a hybrid time
domain, which is a set such that for each (T, J) ∈ domφ,
domφ ∩ ([0, T ]× {0, 1, . . . , J}) = ∪Jj=0([tj , tj+1], j) for a
finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ+1. A
solution φ to H is called maximal if it cannot be extended
further. The set SH contains all maximal solutions to H. A
solution is called complete if its domain is unbounded. In the
upcoming results, we will assume that our proposed hybrid
closed-loop algorithm meets the hybrid basic conditions, as
defined in [14, Assumption 6.5].

III. HYBRID UNITING FRAMEWORK FOR

THE HEAVY BALL METHOD
A. Motivation and Problem Statement

As mentioned in Section I, the performance of the heavy
ball method for finding the minimizers of an objective
function is highly dependent on the choice of γ and λ. In
particular, for a fixed value of γ, the choice of the “friction
parameter” λ significantly affects the asymptotic behavior
of the solutions to (1). In fact, large values of λ give rise

to slowly converging solutions, resembling solutions yielded
by steepest descent, while smaller values give rise to fast
solutions with oscillations getting wilder as λ decreases [3].
This is illustrated in the top two plots in Figure 1. Motivated
by these properties, we propose a logic-based algorithm that
determines which set of parameters (or algorithm) should be
used far from the minimizer and which one should be used
nearby it so as to guarantee fast convergence with reduced
oscillations. The challenge is that the objective function and
the minimizers are unknown, so it is not evident when to
switch and how to avoid chattering. The third plot in Figure
1 shows that the improvement provided by the proposed
algorithm is significant.
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Fig. 1. Comparison of the performance of the heavy ball method, with large
and small values of λ, and with proposed logic-based algorithm for L(z1) =
1
4
z21 . Top: when λ is large, heavy ball converges very slowly (zoomed out

plot included). Middle: when λ is small, heavy ball converges quickly, but
with wild oscillations. Bottom: our proposed logic-based strategy yields fast
convergence, with no oscillations.

The problem to solve is stated as follows:
Problem(?): Given a scalar, real-valued, continuously dif-
ferentiable objective function L with a single isolated or a
connected continuum of minimizers, design an optimization
algorithm that guarantees fast convergence without oscilla-
tions, without knowing the function L or the location of its
minimizers, and with robustness.

B. Modeling

We interpret (1) as a control system consisting of a plant
and a control algorithm. The plant is given by the double
integrator[
ż1
ż2

]
=

[
z2
u

]
=: FP (z, u) (z, u) ∈ R2 × R =: CP (3)

with output y = h(z), which will adopt different forms in the
upcoming sections. The control algorithm leading to (1) is
given by u = κ(h(z)) = −λz2−γ∇L(z1). However, to cope
with the trade-off between damping oscillations and con-
verging fast, we propose a logic-based algorithm that unites
two control algorithms, one with small λ used far from the
minimizer to quickly get close to the critical point, and one



with large λ used near the minimizer to avoid oscillations.
The proposed logic-based algorithm “unites” two individual
controllers, or, equivalently, optimization algorithms, that are
designed as static state-feedback laws of the form

κq(h(z)) := −λqz2 − γq∇L(z1) (4)

for each q ∈ Q := {0, 1} and z ∈ R2. The parameters
λq > 0 and γq > 0 should be designed for each q ∈ Q, so
as to achieve fast convergence without oscillations nearby
the minimizer. The algorithm for q = 1 will be designed
to achieve fast convergence and is referred to as global.
The algorithm for q = 0 will be designed to achieve stable
convergence near the minimizer and is referred to as local.
Due to q jumping between 0 and 1 with hysteresis, we refer
to the proposed logic-based algorithms as hybrid algorithms.

The design of the hybrid control algorithms is done using
the function1

Vq(z) := γq (L(z1)− L(A1)) +
1

2
z22 (5)

defined for each q ∈ Q and each z ∈ R2, where

A1 = {z1 ∈ R : ∇L(z1) = 0} . (6)

Supervisor
q̇ = 0 (z, q) ∈ C := C0 ∪ C1

q+ = 1− q (z, q) ∈ D := D0 ∪D1

ż1 = z2
ż2 = u

κ1(h(z))

global (q = 1)

κ0(h(z))

local (q = 0) q

u yy

Fig. 2. Feedback diagram of the hybrid closed-loop systemH, in (7), uniting
global and local optimization algorithms.

The switch between κ0 and κ1 is governed by a supervi-
sor. The supervisor selects between these two autonomous
optimizaton algorithms, based on the plant's output and on
the optimization algorithm currently applied. In our simplest
algorithm, which is introduced first, the idea is to define
sublevel sets of Vq and use hysteresis to switch between
the global heavy ball algorithm and the local one. More
precisely, when the supervisor is using the global optimiza-
tion algorithm and V1(z) ≤ c1,0 with c1,0 small, then z1 is
close to the minimum and a switch to the local algorithm
is performed to converge without oscillations. When the
supervisor is using the local algorithm and V0(z) ≥ c0
with c0 > c1,0, then z1 is too far from its minimum and
the supervisor switches to the global algorithm to converge
quickly to the neighborhood of the minimum. These switch-
ing events constitute the jumps in the hybrid closed-loop
system, and the c0- and c1,0-sublevel sets need to be properly
tuned to solve Problem(?). At times other than when these

1Since the value of L is the same for all z1 ∈ A1, L(A1) is a singleton.

events occur, the hybrid algorithm executes the individual
optimization algorithm associated with the current value of
q, namely, it applies (4) to (3).

To capture the mechanism outlined above, we define the
data of the hybrid closed-loop system H as follows2:

F (x) :=

 z2
κq(h(z))

0

 ∀x ∈ C := C0 ∪ C1 (7a)

G(x) :=

[
z

1− q

]
∀x ∈ D := D0 ∪D1 (7b)

Figure 2 shows the feedback diagram of this hybrid closed-
loop system H. We denote the closed-loop systems resulting
from using the individual heavy ball algorithms (κq) as Hq ,
for each q ∈ Q = {0, 1}; i.e., H0 denotes the local heavy
ball algorithm that uses λ0 and γ0, andH1 denotes the global
heavy ball algorithm that uses λ1 and γ1.

The reader may wonder whether a (nonhybrid) discon-
tinuous algorithm would solve Problem(?) robustly. Un-
fortunately, that is not the case since solutions without
hysteresis switching may exhibit chatter at the switching
surface induced by a discontinuous algorithm. The proposed
hybrid systems approach solves the problem with robustness
by virtue of hysteresis switching.

C. Uniting Optimization Algorithm Using Measurements
of L and ∇L

In this section, we present a uniting optimization algorithm
with switching rules derived from sublevel sets of V0 and V1.
This algorithm measures L and ∇L at the current value of
z1. That is, the output of (3) is

y =

 z2
∇L(z1)
L(z1)

 =: h(z). (8)

However, the algorithm has no knowledge of the particular
objective function L or of its minima.

Based on the outline provided in Section III-B, the super-
visor selects κ0 or κ1 in (4) using sublevel sets of Vq in (5).
When the system measures L and ∇L, these sets are defined
as follows. Let the set U0 be defined by the c0-sublevel set
of V0, namely,

U0 :=
{
z ∈ R2 : V0(z) ≤ c0

}
. (9)

The parameter c0 > 0, along with λ0 and γ0, are designed
so that U0 is in the region where κ0 is to be used. In this
design, λ0 is large to avoid oscillations when converging to
the minimum. As we will show in the upcoming results, U0 is
contained in the basin of attraction induced by κ0 due to the
global attractivity property guaranteed by κ0. Then, roughly
speaking, when q = 0 and V0(z) ≥ c0, the hybrid closed-
loop system will switch to the global algorithm defined by

2The computational complexity of the hybrid algorithm described in (7)
is no more than the complexity of integrating ordinary differential equations,
which using parallel processing is O(log N), given O(N) processors,
where N is the number of iterations in the numerical integration method
[15].



κ1. Otherwise, the local algorithm κ0 is used. In this way, the
set U0 marks the outer portion of the hysteresis implemented
by the supervisor.

The set T1,0, which marks the inner portion of the hystere-
sis mechanism in the supervisor, is defined by a c1,0-sublevel
of V1 with c1,0 ∈ (0, c0) chosen so that T1,0 is contained in
the interior of U0

T1,0 :=
{
z ∈ R2 : V1(z) ≤ c1,0

}
(10)

This choice of T1,0 is possible since U0 and the sublevel sets
of V1 are compact for small enough constants c0 and c1,0.
Then, due to the global attractivity guaranteed by κ0, once z
is in T1,0, the boundary of U0 will never be reached. When
q = 1 and V1(z) ≤ c1,0, the supervisor will switch from
the global algorithm κ1 to the local algorithm κ0. Using the
sublevel sets constructed above to formulate the switching
rules, the flow and jump sets C and D in (7) are identified
as follows:

C0 :=
{
z ∈ R2 : V0(z) ≤ c0

}
× {0} (11a)

C1 :=
{
z ∈ R2 : V1(z) ≥ c1,0

}
× {1} (11b)

D0 :=
{
z ∈ R2 : V0(z) ≥ c0

}
× {0} (11c)

D1 :=
{
z ∈ R2 : V1(z) ≤ c1,0

}
× {1} (11d)

In some of the results to follow, we will impose the following
assumptions on the objective function L.

Assumption 3.1: (Properties of L)
(CM1) L is C1;
(CM2) There exist class-K∞ functions3 α1 and α2 such that

α1

(
|z1|A1

)
≤ L(z1)− L(A1) ≤ α2

(
|z1|A1

)
for all

z1 ∈ R;
(CM3) ∇L is locally Lipschitz.
(CM4) A1 is compact and connected.

Under item (CM1) of Assumption 3.1, the hybrid closed-
loop system H in (7), with C and D defined via (11), is well-
posed as it satisfies the hybrid basic conditions. Moreover,
when Assumption 3.1 holds, every maximal solution to H is
complete and bounded, as stated in the following lemma.

Lemma 3.2: (Existence of solutions to H) Let Assumption
3.1 hold. Then, every maximal solution to the hybrid closed-
loop system H in (7), with C and D defined via (11), is
bounded and complete.

The following result establishes that the hybrid closed-
loop system H has the set

A :=
{
z ∈ R2 :∇L(z1) = z2 = 0

}
×{0} = A1×{0}×{0}

(12)
globally asymptotically stable4. To establish it, we use Lya-
punov stability theory and an invariance principle.

Theorem 3.3: (Global asymptotic stability of A forH) Let
L satisfy Assumption 3.1, λq > 0, γq > 0, and c1,0 ∈ (0, c0).
Then, the set A is globally asymptotically stable for H.

3α2 exists for free since L(z1)−L(A∞) is defined on R and is positive
definite with respect to A1.

4Global asymptotic stability means that all solutions that start close to
the set of interest A stay close to, and converge to, A.

The main points of the proof of Theorem 3.3 are as follows.
The individual optimization algorithms H0 and H1 satisfy
V̇q = 〈∇Vq(z), FP (z, κq(h(z)))〉 = −λqz22 ≤ 0 for all q ∈
Q, λq > 0, and γq > 0, and the largest weakly invariant set
contained in

{
z ∈ R2 : V̇q(z) = 0

}
∩
{
z ∈ R2 : Vq(z) = rq

}
is when rq = 0, which is equal to A1. Therefore, since
every maximal solution is bounded and complete by Lemma
3.2, the individual optimization algorithms H0 and H1 have
A1 × {0} globally asymptotically stable. Global asymptotic
stability of A for H follows from the construction of G and
D, which guarantees no more than two jumps in a solution.
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Fig. 3. A comparison of the evolution of z1 over time for H0, H1, and
H, for a function L with a single minimum at A1 = {0}. The heavy ball
algorithm H1 uses λ1 = 1

5
(shown in red) and settles to within a 1%

margin of A1 in about 45.9 seconds. The heavy ball algorithm H0 uses
λ0 = 10.5 (shown in green) and settles to within a 1% margin of A1

in about 193.1 seconds. The hybrid closed-loop system H (shown in blue)
settles to within a 1% margin of A1 in about 3.6 seconds.

Example 3.4: To show the effectiveness of the hybrid
algorithm, we compared it in simulation with the individual
optimization algorithms H0 and H1. None of the algorithms
has knowledge of L, or of the location of its minima, but
they have access to the values of L and ∇L at the current
value of z1. For simulation, we used the following parameter
values: λ0 = 10.5, λ1 = 1

5 , and γ0 = γ1 = 1
2 . The

sublevel set values are c0 = 12.5 and c1,0 = 6.3. The
objective function is simply L(z1) = 1

4z
2
1 , which has a single

minima at A1 = {0}. Initial conditions are z1(0, 0) = −10,
z2(0, 0) = 0, and q(0, 0) = 0. Figure 3 shows the z1 solution
component over time for each of the algorithms5. Black dots
with times labeled in seconds denote the settling time to
within a 1% margin of A1. Algorithm H1, using λ1 = 1

5
and shown in red, reaches the set A1 quickly, but oscillates
wildly until it finally settles to within a 1% margin of A1

in about 45.9 seconds. Algorithm H0, using λ0 = 10.5 and
shown in green, slowly settles to within a 1% margin of A1

in about 193.1 seconds. The hybrid closed-loop system H,
shown in blue, settles to within a 1% margin of A1 in about
3.6 seconds, which is a 92.0% improvement over H1 and a
98.1% improvement over H0.

D. Uniting Optimization Algorithm Using Only Measure-
ments of ∇L

In this section, we propose a switching rule for the hybrid
algorithm that does not use measurements of L but rather
measures ∇L only. With only such limited information,
which emerges in many optimization problems, the switching
rule proposed in Section III-C is not implementable. Namely,

5Code at gitHub.com/HybridSystemsLab/UnitingLevelSetsHeavyBall



the algorithm in this section only measures

y =

[
z2

∇L(z1)

]
=: h(z). (13)

As in Section III-C, the algorithm does not have prior
knowledge of L or of its minima, but relies on convexity
and quadratic growth of L. In fact, in addition to Assumption
3.1, the following assumptions will be imposed in some of
the results in this section.

Assumption 3.5: (Convexity and quadratic growth of L)
(C1) L is convex;
(C2) L has quadratic growth away from its minima A1; i.e.,

there exists α > 0 such that6 L(z1)−L(A1) ≥ α |z1|2A1

for all z1 ∈ R.
The following lemma relates the size of the gradient at a

point to the distance from the point to the set of minimizers
A1.

Lemma 3.6: (ε-suboptimality when L is convex, with
quadratic growth) Let L satisfy Assumptions 3.1 and 3.5.
Let α come from (C2). For some ε > 0, if z1 ∈ R is such
that |∇L(z1)| ≤ εα, then |z1|A1

≤ ε.
The ε-suboptimality condition from Lemma 3.6 is typ-

ically used as a stopping condition for optimization, as it
indicates that the argument of L is close enough to the set
of minimizers. We will exploit Lemma 3.6 to determine when
the state component z1 of the hybrid closed-loop system is
close enough to the global minimizer to switch to the local
optimization algorithm.

To that end, let ε0 > 0, α0 > 0, γ0 > 0 from κ0, and
c0 > 0 be such that

c̃0 := ε0α0 > 0 (14a)

d0 := c0 − γ0
(
c̃20
α0

)
> 0. (14b)

Then, the set U0 in (9) is replaced by Ũ0 :={
z ∈ R2 : |∇L(z1)| ≤ c̃0, 12z

2
2 ≤ d0

}
. This set contains the

region where the switch to H0 is made. Note that Ũ0 is
contained in the basin of attraction induced by κ0, due to
the global attractivity property it guarantees.

To construct the set T̃1,0, playing the role of T1,0 in Section
III-C, let ε1,0 ∈ (0, ε0), α1,0 > 0, and c1,0 ∈ (0, c0) such
that

c̃1,0 := ε1,0α1,0 ∈ (0, c̃0) (15a)

d1,0 := c1,0 − γ1

(
c̃21,0
α1,0

)
∈ (0, d0) (15b)

where γ1 is from κ1. Then, the set T1,0 in (10) is replaced
by T̃1,0 :=

{
z ∈ R2 : |∇L(z1)| ≤ c̃1,0, 12z

2
2 ≤ d1,0

}
.

By construction, this set is contained in{
z ∈ R2 : |∇L(z1)| < c̃0,

1
2z

2
2 < d0

}
, namely, the interior

of Ũ0. Let
D1 := T̃1,0 × {1} (16)

6Item (C2) can be relaxed to a ball BLν = {z1 : L(z1)− L(A1) < ν}
for some ν > 0.

be the set where q = 1 switches to q = 0. That is, when
(z1, q) ∈ D1, the supervisor switches from H1 to H0.
By Lemma 3.6, |∇L(z1)| ≤ c̃1,0 implies |z1|A1

≤ c̃1,0
α1,0

.

Therefore, when (z1, q) ∈ D1, then |z1|A1
≤ c̃1,0

α1,0
. Since

points z ∈ D1 satisfy 1
2z

2
2 ≤ d1,0 then each z ∈ D1 satisfies

V0(z) = γ0 (L(z1)− L(A1))+
1
2z

2
2 ≤ γ0α2

(
c̃1,0
α1,0

)
+d1,0 =:

r0, where r0 > 0 and α2 comes from (CM2). In order
to ensure that solutions do not reach D0 from D1, choose
r′0 > r0, and define

D0 :=

{
z ∈ R2 : γ0α1

(
|z1|A1

)
+

1

2
z22 ≥ r′0

}
× {0} (17)

Then, if z ∈ D0, then V0(z) ≥ r′0, which implies that z1 is
far from the minimum, the supervisor in the hybrid algorithm
switches from H0 to H1. It follows that the sets in (16) and
(17) define the jump sets of H in (7).

The flow set is defined via

C0 := (R2 × {0}) \D0, C1 := (R2 × {1}) \D1 (18)

The hybrid algorithm H, with C and D defined via (18),
is well-posed, as it satisfies the hybrid basic conditions [14,
Assumption 6.5].

When the objective function L satisfies Assumptions 3.1
and 3.5, every maximal solution to the hybrid closed-loop
system H is complete and bounded. Additionally, every solu-
tion, with the exception of those such that |∇L(z1(0, 0))| =
c̃0, 1

2z2(0, 0)
2 = d0, and q(0, 0) = 0, are unique, as stated

in the following lemma.

Lemma 3.7: (Existence of solutions to H) Let L satisfy
Assumption 3.1 and Assumption 3.5. Then, every maximal
solution to H, with C and D as defined via (17), (16), and
(18), is bounded and complete. Furthermore, if c1,0 ∈ (0, c0),
c̃1,0 ∈ (0, c̃0) in (14a) and (15a), and d1,0 ∈ (0, d0) in (14b)

and (15b), each solution x to H from x(0, 0) =

[
z1(0, 0)
q(0, 0)

]
is unique, except for those such that γ0α1

(
|z1(0, 0)|A1

)
+

1
2z2(0, 0)

2 = r′0 and q(0, 0) = 0.

The following result shows that the hybrid closed-loop
system H, with C and D as defined via (17), (16), and (18),
has the set A in (12) globally asymptotically stable.

Theorem 3.8: (Global asymptotic stability of H) Let L
satisfy Assumptions 3.1 and 3.5, and let c1,0 ∈ (0, c0),
c̃1,0 ∈ (0, c̃0) in (14a) and (15a), and d1,0 ∈ (0, d0) in (14b)
and (15b). Then, the set A is globally asymptotically stable
for H, when C and D are defined via (17), (16), and (18).

Example 3.9: As in Example 3.4, we compare the indi-
vidual optimization algorithms H0 and H1 with the hybrid
algorithm H. None of the algorithms has knowledge of L,
or of the location of its minima, but they measure ∇L at
the current value of z1. For simulation, λ0 = 11.5, λ1 = 1

5 ,
γ0 = 2

3 , and γ1 = 1
2 . To calculate the sets Ũ0 and T̃1,0, as

well as r0, we use α0 = α1,0 = 1, ε0 = 4, ε1,0 = 0.7,
and sublevel set values c0 = 12.5, c1,0 = 6.39. Additionally,
r′0 = r0 + 1. For class-K∞ functions, we use α1(u) =

1
6u

2



and α2(u) =
1
2u

2. The objective function is simply L(z1) =
1
4z

2
1 , which has a single minimum at A1 = {0}. Initial

conditions are z1(0, 0) = −10, z2(0, 0) = 0, and q(0, 0) = 1.
Figure 4 shows the z1 solution component with time for each
of the algorithms7. Black dots with times labeled in seconds
denote when each heavy ball algorithm settles to within a 1%
margin of A1. Algorithm H1, using λ1 = 1

5 and γ1 = 1
2 ,

shown in red, settles to within 1% of A1 in about 45.9
seconds. Algorithm H0, using λ0 = 11.5 and γ0 = 2

3 , shown
in green, slowly settles to within 1% of A1 in about 158.6
seconds. The hybrid closed-loop system H, shown in blue,
settles to within 1% of A1 in about 3.6 seconds, a 92.1%
improvement over H1 and a 97.7% improvement over H0.

0 50 100 150 200
-10

-5

0

5

z1

t[s]
Fig. 4. A comparison of the evolution of z1 over time for H0, H1, and H
– which uses measurements of ∇L(z1) – for L(z1) = 1

4
z21 , with a single

minimum at A1 = {0}. The global heavy ball algorithm H1 uses λ1 = 1
5

and γ1 = 1
2

(shown in red) and settles to within a 1% margin of A1 in
about 45.9 seconds. The local heavy ball algorithm H0 uses λ0 = 11.5
and γ0 = 2

3
(shown in green) and settles to within 1% of A1 in about

158.6 seconds. The hybrid closed-loop system H (shown in blue) settles to
within 1% of A1 in about 3.6 seconds.

IV. ROBUSTNESS OF H TO SMALL PERTURBATIONS
In Section III we constructed a hybrid closed-loop system

H, with flow and jump sets as defined in (7), (11), and (18),
that have data satisfying [14, Assumption 6.5]. As a result,
we can affirm that the global asymptotic stability of A on H
that was proved in Theorems 3.3 and 3.8, is robust to small
(general) perturbations. In fact, the algorithm defined in (7)
is robust to any perturbation that fits in the outer perturbed
model of the hybrid system; see the general model in [14,
Chapter 8], which allows for sensing and actuation noise. The
following result proves robustness for measurement noise.

Theorem 4.1: (Robustness of KL asymptotic stability)
Suppose the hybrid system H in (7) has the compact set
A globally asymptotically stable8. Then, for every compact
set K ⊂ R2 × Q and every ε > 0, there exists δρ such
that for each perturbation |ρ| ≤ δρ to the measurements
of ∇L, every solution to it from K satisfies |x(t, j)|A ≤
β(|x(0, 0)|A , t+ j) + ε for all (t, j) ∈ dom x.

V. CONCLUSION AND FUTURE WORK

We developed a hybrid algorithm for the heavy ball
method, using hybrid system tools. the algorithm renders
the set globally asymptotically stable, with robustness, fast
convergence, and reduced oscillations. Two different sets of
switching rules were derived: when L and ∇L are measured,
and when only ∇L is measured. We showed how hybrid

7Code at gitHub.com/HybridSystemsLab/UnitingQuadraticGrowthHeavyBall
8Theorems 3.3 and 3.8 establish global asymptotic stability of A.

systems tools can be leveraged to ensure fast convergence,
with reduced oscillations, on a convex scalar objective func-
tion. Many problems of interest, however, are represented by
nonconvex functions, which have multiple local minima and
maxima, and a common pitfall in such a case involves getting
stuck at a local maximum. For future work, we will develop
a hybrid system for optimization on scalar Morse functions,
which have isolated extrema, nondegenerate critical points,
and form a dense subset of all smooth C2 functions.
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