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Abstract— We present a model predictive control (MPC) al-
gorithm for hybrid dynamical systems. The proposed algorithm
relies on a terminal constraint and a cost function, as well as
a set-based notion of prediction horizon, reminiscent of free
end-time optimal control problems. When the terminal cost is
a control Lyapunov function (CLF) on the terminal constraint
set, and the prediction horizon has a certain geometry, under
standard assumptions from conventional MPC, the closed-loop
system governed by MPC is shown to have an asymptotically
stable compact set using the value function. A numerical
example using the prototypical hybrid model of a bouncing
ball demonstrates the effectiveness of the proposed algorithm.

I. INTRODUCTION

In the context of model predictive control (MPC), the
term hybrid has been frequently used to refer to systems
with continuous- and discrete-valued states [1, Sec. 2.2.5], or
discontinuities in the control algorithm or the plant dynam-
ics [1], [2], [3]. Works in the former category often consider
discrete-time models derived from the differential equation
governing the continuous-valued states, while the discrete-
valued states correspond to logical variables [1, Sec. 2.2.5].
Many systems labeled as hybrid in the broader control liter-
ature (hybrid dynamical systems, or simply hybrid systems)
do not follow such a partition, and possess continuously
evolving states that are subject to discrete transitions (jumps)
at times. MPC strategies for such systems have been limited,
with the most relevant publications being the impulsive and
measure-driven frameworks in [4] and [5]. See [6] for a
recent survey.

The objective of this work is to present a stabilizing
MPC strategy for hybrid dynamical systems. Similar to ex-
isting continuous-time MPC variants [7], the proposed strat-
egy (hereinafter referred to as the hybrid MPC algorithm)
relies on the solution of an optimal control problem (OCP) at
isolated time instants, when state measurements are available.
In a receding horizon fashion, the optimal control signal is
applied to the system until the next measurement.

Unlike the literature that partitions the state into
continuous- and discrete-valued components, our analysis
takes place in the mathematical formalism of [8], where a
hybrid system is identified by a combination of constrained
differential and difference equations (and more generally,
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inclusions). In addition to a well-developed robust stability
theory, as noted in [1], the hybrid systems framework in [8] is
highlighted by its simplicity, as well as its ability to describe
numerous models of a hybrid nature, such as impulsive [4]
and switched [3] systems, and hybrid automata [9]. In
conducting the analysis in this setting, we formulate an MPC
scheme applicable to various hybrid modeling paradigms,
thereby laying the theoretical foundations of a general hybrid
MPC framework.

In contrast to some of the existing work, the hybrid
MPC algorithm proposed in this paper does not rely on the
discretization of the differential equations. Apart from the
semantics of the term hybrid, which, in our setting, implies
the interaction of continuous and discrete dynamics, a major
reason for this approach is the fact that discretization is a
nontrivial task. Although discretization is somewhat straight-
forward in certain cases (e.g. sampled-data control systems
and switched systems), it is a delicate matter for systems like
hybrid automata, in which the state can undergo nonperiodic
jumps. For such models, which include mechanical systems
with impacts, the time between consecutive jumps can be
noninteger multiples of the sampling time, and become
arbitrarily small. This issue arises in the prototypical hybrid
model of a bouncing ball, modeling the vertical motion of
a ball bouncing on a horizontal flat surface. Modeled as a
unit point-mass with height x1 and velocity x2, the motion
of the ball can be represented by the differential equations

ẋ1 = x2 and ẋ2 = −γ when x1 ≥ 0, (1)

and the difference equations

x+1 = x1 and x+2 = −λx2 + u when x1 = 0 and x2 ≤ 0.
(2)

Above, γ > 0 is the gravitational constant, λ ∈ [0, 1] is the
coefficient of restitution, and u ≥ 0 is an input affecting the
post-impact velocity. In the autonomous case with dissipative
impacts (in other words, when u = 0 and λ < 1), state
trajectories of the bouncing ball are characterized by Zeno
phenomenon, where the time between consecutive jumps
tends toward zero [8, Example 2.12].

As summarized in Section III, the OCP associated with our
proposed algorithm minimizes a cost functional weighting
the state during both the continuous and discrete phases,
and imposes constraints on the terminal state and time. The
assumptions on the OCP listed in Section IV are similar
to their counterparts in the continuous/discrete-time MPC
literature. However, the notion of terminal time differs sig-
nificantly from conventional finite-horizon optimal control.
Akin to free end-time problems, the proposed notion allows



for state trajectories with terminal times belonging to a set,
called the prediction horizon. To account for hybrid time
domains, which are introduced in Section II, a hybrid time
domain-like geometry is assumed for the prediction horizon.

Section V is devoted to the relevant properties of the
OCP. Recursive feasibility of the proposed hybrid MPC
algorithm is shown by exploiting the geometry of the pre-
diction horizon. Then, using the assumptions in Section IV,
which require the terminal cost to be a control Lyapunov
function (CLF) on the terminal constraint set with respect to
a set A, it is proven that the value function is continuous
on A and positive definite with respect to it. Since the
value function is upper bounded by a decreasing function
along optimal solution pairs, asymptotic stability of A can be
established, as detailed in Section VI. A numerical example
using the bouncing ball system is presented in Section VII
to showcase the algorithm. Due to space constraints, proofs
of the technical results are omitted and will be published
in another venue. An outline of this work without formal
statements and more restrictive assumptions can be found
in [10]. Note that as opposed to the case study reported
in [10], where the OCP is solved analytically, the bouncing
ball example reported here relies on numerical solutions of
the OCP, demonstrating the applicability of the algorithm to
a broader class of problems.

II. PRELIMINARIES

We use R to represent real numbers and R≥0 its nonneg-
ative subset. The set of nonnegative integers is denoted N.
The notation S1 ⊂ S2 indicates S1 is a subset of S2, not
necessarily proper. The Euclidean norm is denoted |.|. The
distance of a vector x ∈ Rn to a nonempty set A ⊂ Rn
is |x|A := infa∈A |x− a|. The interior of a set S ⊂ Rn is
denoted intS. We denote by π : Rn × Rm → Rn the
standard projection onto Rn such that π(x, y) = x. A strictly
increasing continuous function α : R≥0 → R≥0 is said to
belong to class-K∞ if α(0) = 0.

A. Hybrid Control Systems

In this paper, a hybrid control system H is defined by its
data (C, f,D, g), and represented as follows:

H

{
ẋ = f(x, u) (x, u) ∈ C

x+ = g(x, u) (x, u) ∈ D.
(3)

Above, x ∈ Rn and u ∈ Rm denote the state and input
of H, respectively. The flow map f : C → Rn describes the
continuous evolution (flow) of the state x when (x, u) ∈ C.
The flow set C ⊂ Rn×Rm is a mixed state-input constraint
that defines where flows are allowed. In a similar manner,
the jump map g : D → Rn describes the discrete evolu-
tion (jump) of the state x when (x, u) ∈ D, with the jump
set D ⊂ Rn × Rm defining where jumps are allowed.

Assumption 2.1: The sets C and D are closed. The func-
tions f and g are continuous.

Example 2.2 (Bouncing Ball): Consider the bouncing ball
with actuated jumps evolving according to (1) and (2). The

dynamics of the bouncing ball in Section I can be represented
in the form of (3) with state x = (x1, x2) and input u
by incorporating the constraints therein. The flow map is
given as f(x, u) = (x2,−γ) on the flow set C = C ′ × UC ,
where C ′ = {x ∈ R2 : x1 ≥ 0} and the nonempty compact
set UC ⊂ Rm is arbitrary, as f does not depend on u. The
jump map is given as g(x, u) = (0,−λx2 + u) on the jump
set D = D′×R≥0, where D′ = {x ∈ R2 : x1 = 0, x2 ≤ 0}.

Solution pairs of H are defined on hybrid time domains
and parametrized by two independent variables, t ∈ R≥0
and j ∈ N. A hybrid time domain E is a subset of R≥0×N
with the property that for each (T, J) ∈ E, there exists a
finite nondecreasing sequence {tj}J+1

j=0 such that t0 = 0 and

E ∩ ([0, T ]× {0, 1, . . . , J}) =
⋃

J
j=0 ([tj , tj+1]× {j}) .

Given a solution pair with domain E, at any (t, j) ∈ E, t
denotes the ordinary time elapsed and j denotes the number
of jumps that have occurred. The subsequence {tj}Jj=1

corresponds to when jumps occur, as formalized next.
Definition 2.3: Given a pair of functions x : domx→ Rn

and u : domu → Rm representing the state trajectory and
the input, respectively, (x, u) is said to be a solution pair
of (3) if dom(x, u) := domx = domu is a hybrid time
domain, (x(0, 0), u(0, 0)) ∈ cl (C) ∪ D, where cl denotes
closure, and the following hold:
• For all j ∈ N such that Ij := {t : (t, j) ∈ dom(x, u)}

has a nonempty interior, 1) the function t 7→ x(t, j) is
locally absolutely continuous, 2) (x(t, j), u(t, j)) ∈ C
for all t ∈ int Ij , 3) the function t 7→ u(t, j) is Lebesgue
measurable and locally essentially bounded, and 4) for
almost all t ∈ Ij ,

ẋ(t, j) = f(x(t, j), u(t, j)). (4)

• For all (t, j) ∈ dom(x, u) such that (t, j + 1) ∈
dom(x, u),

(x(t, j), u(t, j)) ∈ D,
x(t, j + 1) = g(x(t, j), u(t, j)).

(5)

We denote by ŜH(S) the set of solution pairs of H
originating from a set S ⊂ Rn, with ŜH := ŜH(Rn).1
That is, given any (x, u) ∈ ŜH(S), x(0, 0) ∈ S. Given a
solution pair (x, u), (T, J) ∈ dom(x, u) is said to be the
terminal (hybrid) time of (x, u) if T ≥ t and J ≥ j for
all (t, j) ∈ dom(x, u). The pair (x, u) is said to be complete
if dom(x, u) is unbounded.

In contrast with autonomous hybrid systems, which re-
quire further conditions for uniqueness of state trajecto-
ries [8, Proposition 2.11], the following assumption is nec-
essary and sufficient for uniqueness, as the jump times are
determined by the domain of the input.

Assumption 2.4: Given (classical) solution pairs t 7→
(x(t), u(t)) and t 7→ (x′(t), u′(t)) to the constrained dif-
ferential equation ẋ = f(x, u), (x, u) ∈ C, if u(t) = u′(t)
almost everywhere and x(0) = x′(0), then x = x′.

1We use ŜH(S) to avoid confusion with the notation in [8] for sets of
maximal state trajectories [8, Definition 2.7] of autonomous hybrid systems.



B. Hybrid Control Systems under Static State Feedback

Given the feedback pair κ := (κC , κD), defined by the
functions κC : Rn → Rm and κD : Rn → Rm, let

Hκ

{
ẋ = fκ(x) := f(x, κC(x)) x ∈ Cκ

x+ = gκ(x) := g(x, κD(x)) x ∈ Dκ,
(6)

where
Cκ := {x ∈ Rn : (x, κC(x)) ∈ C},
Dκ := {x ∈ Rn : (x, κD(x)) ∈ D},

and Hκ arises from the application of κ on H.
Trajectories of (6) are defined over hybrid time domains

via Definition 2.3 as follows: a function x is a state trajectory
of (6) if there exists a solution pair (x, u) (said to be
generated by κ) that satisfies (4) with u(t, j) = κC(x(t, j))
for all t ∈ int Ij and (5) with u(t, j) = κD(x(t, j)).

III. HYBRID MPC

As in conventional continuous/discrete-time MPC, the al-
gorithm proposed in this paper is implemented by measuring
the state of the plant H in (3) and minimizing a cost
functional. Each time the state is measured, the algorithm
finds an optimal control that is applied to H until the next
measurement, leading to a moving horizon implementation.
Similar to free end-time optimal control, the minimization
is performed over a nontrivial prediction horizon, in that the
terminal time is allowed to vary within a set.

The set-based generalization of the notion of prediction
horizon accounts for hybrid time domains and maximizes
the set of initial conditions such that the OCP is feasible.
Indeed, for the bouncing ball model in Example 2.2, it could
be impossible to stabilize the origin by hybrid MPC when
the associated OCP is restricted to a fixed prediction horizon
of the form (T, J) for some T > 0 and J ≥ 0: since
flows are not possible from the origin, given any solution
pair (x, u) with terminal time (T, J), there exists (t, j) ∈
dom(x, u) such that x(t, j) 6= (0, 0). Hence, the algorithm
would not be able to make the origin forward invariant. On
the other hand, if the prediction horizon were to be fixed
at (0, J) for some J > 0, the OCP would only allow jumps
and therefore be unsolvable from any initial condition with
positive position or velocity, which, again, would prohibit
stabilization.

Another subtlety arises in the moving horizon implementa-
tion of the algorithm, where a periodic measurement and op-
timization scheme may not be meaningful. This issue can be
observed with the aforementioned scenario for the bouncing
ball, where the time between consecutive jumps converges
to zero for any state trajectory converging to the origin, and
suggests the usage of a similar set-based notion of control
horizon to regulate the optimization times [10]. An example
implementation using the control horizon approach is shown
at the end of this section. Since this approach can result
in the optimization times being nonperiodic, the proposed
hybrid MPC algorithm allows for the online selection of each
optimization time, as discussed in Section VI.

A. Finite-Horizon Hybrid Optimal Control

We now detail the formulation of the OCP associated with
the hybrid MPC algorithm. Since the flow set C and jump
set D define mixed state-input constraints on solution pairs
of H, no additional state-input constraints will be given for
the problem. Instead, constraints on the terminal time and
state will be specified by
• the prediction horizon T ⊂ R≥0 × N, and
• the terminal constraint set X ⊂ π(C ∪D).
1) The Cost Functional: Given a solution pair (x, u) of H

with terminal time (T, J), let {tj}J+1
j=0 be the sequence such

that dom(x, u) = ∪Jj=0([tj , tj+1] × {j}), where tJ+1 = T .
We define the cost functional J such that

J (x, u) :=

 J∑
j=0

∫ tj+1

tj

LC(x(t, j), u(t, j)) dt


+

J−1∑
j=0

LD(x(tj+1, j), u(tj+1, j))

+ V (x(T, J)),

where LC : C → R≥0 is the flow cost, LD : D → R≥0 is
the jump cost, and V : X → R≥0 is the terminal cost. The
second sum is to be interpreted as zero if J = 0.

2) The Prediction Horizon: As discussed before, the
notion of a prediction horizon given by a singleton can
be overly restrictive and prevent a reasonable formulation
of MPC for hybrid systems in the form (3). To maximize
feasibility of the OCP, an appropriate selection of T should
ensure that it intersects with unbounded hybrid time domains.
A natural way of handling this is to let

T := {(T, J) ∈ R≥0 × N : max{T/δp, J} = τp} (7)

for some δp > 0 and τp ∈ {1, 2, . . . }. Above, the pa-
rameters τp and δp define a “rectangle” of height τp and
width τpδp in the (t, j) plane. Observing that T “connects”
the two axes of R≥0 × N under this choice, we generalize
its structure as follows.

Assumption 3.1: There exists a finite nonincreasing se-
quence {tj}J+1

j=0 such that t0 > 0, tJ+1 = 0, and

T :=
⋃

J
j=0([tj+1, tj ]× {j}).

Assumption 3.1 imposes a specific structure on T , with
its geometry resembling a “reverse” hybrid time domain.
When T is selected according to (7), Assumption 3.1 holds
with J = τp and t0 = t1 = · · · = tJ = δpτp. This
assumption is used to prove recursive feasibility.

3) The Constrained OCP: With the constraints X and T
already defined, the OCP to be solved is presented next.

Problem 3.2: Given an initial condition x0 ∈ Rn,

minimize
(x,u)∈ŜH(x0)

J (x, u)

subject to (T, J) ∈ T
x(T, J) ∈ X,

(8)

where (T, J) denotes the terminal time of (x, u).



A solution pair (x, u) is said to be feasible if it satisfies
the constraints of (8) for some x0. The feasible set X is the
set of all x0 so that there exists a feasible (x, u) ∈ ŜH(x0).
The value function J ∗ : X → R≥0 is defined as

J ∗(x0) := inf
(x,u)∈ŜH(x0)

(T,J)∈T
x(T,J)∈X

J (x, u) ∀x0 ∈ X , (9)

where (T, J) is the terminal time of (x, u). A feasible (x, u)
attaining the infimum is said to be optimal.

While the existence of optimal solution pairs is addressed
in Section IV, their computation is a nontrivial task. In
certain cases, Problem 3.2 can be solved by converting it into
a finite-dimensional nonlinear program, as we shall see in
Section VII. The development of general numerical methods
to solve Problem 3.2 is the current object of research, and
can take the form of the maximum principle—see [11] and
the references therein.

B. An Example Implementation of Hybrid MPC

Having formulated the OCP in Problem 3.2 we present an
example implementation of the proposed algorithm. For this
implementation, we suppose

T = {(T, J) ∈ R≥0 × N : T + J ∈ [τ, τ + 1]} (10)

for some constant τ > 0, which satisfies Assumption 3.1.

Algorithm 1 Hybrid MPC Implementation

1: i = 0, (T0, J0) = (0, 0), x0 = x(0, 0).
2: while true do
3: Solve Problem 3.2 to obtain an optimal pair (x∗i , u

∗
i ).

4: while (t− Ti) < τ/2 and j − Ji < 1 do
5: Apply u∗i to H to generate the state trajectory x.
6: end while
7: i = i+ 1, (Ti, Ji) = (t, j), x0 = x(Ti, Ji).
8: end while

In the implementation in Algorithm 1, the state trajectory x
results from the application of a sequence of optimal control
inputs {u∗i }∞i=0 to H from x0. The initial optimization occurs
at time (0, 0), and the initial optimal control input u∗0 is
applied until τ/2 units of ordinary time elapse or a jump
occurs, whichever occurs first. At this point, Problem 3.2 is
re-solved to find the new input u∗1, which is again applied
for τ/2 units of ordinary time or until the next jump. The
portion of the state trajectory x from (Ti, Ji) to (Ti+1, Ji+1)
corresponds to the optimal state trajectory x∗i computed at
time (Ti, Ji) ∈ dom(x, u). Note that each (x∗i , u

∗
i ) flows for

at least τ units of ordinary time, or jumps at least once, due
to (10). This implementation is generalized in Section VI.

IV. BASIC MPC ASSUMPTIONS FOR HYBRID SYSTEMS

Now we list the assumptions imposed on Problem 3.2 to
ensure feasibility and stability properties. The first assump-
tion concerns the existence of optimal controls. Sufficient
conditions for this assumption can be found in [12], where
standard conditions for existence in continuous time are used.

Assumption 4.1: For any x0 ∈ X , an optimal solution
pair (x, u) ∈ ŜH(x0) exists.

Because of the existence of state variables that do not
necessarily converge to equilibria (e.g., timers and logic
variables), stability theory for hybrid systems consider sets
as opposed to singletons [8, Ch. 3]. As such, the conditions
of Assumption 4.2 are stated with respect to a set A ⊂ X .

Assumption 4.2: Given the compact set A ⊂ X , the
following hold:

(O1) There exists a class-K∞ function αC such that for
every (x, u) ∈ C, LC(x, u) ≥ αC(|x|A) .

(O2) There exists a class-K∞ function αD such that for
every (x, u) ∈ D, LD(x, u) ≥ αD(|x|A) .

(O3) V (x) = 0 if and only if x ∈ A.
(O4) The inclusion S ∩ (π(C ∪ D)) ⊂ X holds for some

open set S ⊃ A.
(O5) There exists a continuous function σ : R≥0 → R≥0

such that |f(x, u)| ≤ σ (|x|A) for all (x, u) ∈ C.

The positive definite properties imposed in Condi-
tions (O1)-(O3) mirror those encountered in the MPC liter-
ature. On the other hand, Condition (O4) is weaker than the
typical assumption in the MPC literature, which would trans-
late to our setting by requiring A to be contained in the in-
terior of X , a restrictive assumption when π(C ∪D) 6= Rn.
This property is utilized to establish continuity of the value
function on A. The last condition of Assumption 4.2, (O5),
implies the existence of a uniform upper bound on the
magnitude of the velocity vector ẋ = f(x, u). It is satis-
fied when C = C ′ × U for a closed C ′ ⊂ Rn and com-
pact U ⊂ Rm, which corresponds to the typical continuous-
time MPC assumption on state and input constraints.

The final assumption concerns the feedback κ and the
terminal cost V over the terminal constraint set X . For the
term forward invariant used here, see [13, Definition 3.1].

Assumption 4.3: The terminal constraint set X is closed,
and forward invariant for the hybrid system Hκ in (6).
Moreover, 1) the flow cost LC , jump cost LD, terminal
cost V , and feedback pair κ are continuous, and 2) there
exists an open set S ⊃ (X ∩ Cκ) on which the terminal
cost V is differentiable and the following hold:

〈∇V (x), fκ(x)〉 ≤ −LC(x, κC(x)) ∀x ∈X ∩ Cκ,
V (gκ(x))− V (x) ≤ −LD(x, κD(x)) ∀x ∈X ∩Dκ,

(11)

LC(x, κC(x)) = 0 ∀x ∈A ∩ Cκ,
LD(x, κD(x)) = 0 ∀x ∈A ∩Dκ.

(12)

Assumption 4.3 is an extension of the familiar CLF-like
assumption in the MPC literature (see, e.g., [7]) and is the
main stabilizing ingredient of the hybrid MPC algorithm.
As per conventional continuous/discrete-time MPC, solutions
of the feedback-controlled system Hκ are used to establish
desired properties of the OCP. Note that forward invariance
of X for Hκ necessitates X ⊂ Cκ ∪Dκ, and, as a result of
Assumption 3.1, X ⊂ X .



V. PROPERTIES OF THE OCP

This section presents the relevant properties of Prob-
lem 3.2, exploited to show asymptotic stability of the com-
pact set A via the proposed hybrid MPC algorithm.

We begin the section with a couple of feasibility proper-
ties. The first result shows that when the set A is in the
relative interior of X , Assumption 4.3 ensures that there
exists a relative neighborhood of A, where feasible solution
pairs exist everywhere.

Proposition 5.1: Suppose Assumptions 2.1, 3.1 and 4.3
hold. Then, X ⊂ X . If, in addition, Condition (O4) of
Assumption 4.2 holds, there exists δ > 0 such that x ∈ X
for every x ∈ π(C ∪D) satisfying |x|A ≤ δ.

The next result extends the typical forward/recursive feasi-
bility (see [7]) result in continuous/discrete-time MPC to the
hybrid case. The proof relies on extending feasible solution
pairs from the terminal constraint set via the CLF property.
That is, as in conventional MPC, feasible solution pairs can
be extended by concatenation. To facilitate the discussion,
we formally define what we mean by concatenation.

Definition 5.2: A solution pair (x, u) is said to be the
concatenation of solution pairs (x0, u0) and (x1, u1) with
terminal times (T0, J0) and (T1, J1), respectively, if

dom(x, u) =

dom(x0, u0) ∪ {(t+ T0, j + J0) : (t, j) ∈ dom(x1, u1)},

and for every (t, j) ∈ dom(x, u), the following holds:

(x(t, j), u(t, j)) = (x0(t, j), u0(t, j)),

if t+ j < T0 + J0, otherwise,

(x(t, j), u(t, j)) = (x1(t− T0, j − J0), u1(t− T0, j − J0)).

Proposition 5.3: Suppose Assumptions 2.1, 3.1 and 4.3
hold. Let (x, u) be a feasible solution pair. Then, for
any (t, j) ∈ dom(x, u), x(t, j) belongs to the feasible set X ,
i.e., x(t, j) ∈ X .

Next, we establish J ∗ as a candidate Lyapunov function.

Lemma 5.4: Under Assumptions 2.1, 3.1, 4.2, and 4.3, the
value function J ∗ in (9) satisfies the following:

1) For all ε > 0, there exists δ > 0 such that J ∗(x) ≤ ε
for every x ∈ X with |x|A ≤ δ.

2) There exists a continuous function α : R≥0 → R≥0
such that J ∗(x) ≥ α(|x|A) for every x ∈ X , α(r) = 0
if and only if r = 0, and lim infr→∞ α(r) > 0.

Finally, using the CLF-like conditions and analyzing
the feasible solution obtained by concatenation in Proposi-
tion 5.3, it can be shown that the value function is upper
bounded by a decreasing function along optimal solutions.

Lemma 5.5: Suppose Assumptions 2.1, 3.1 and 4.3, and
Conditions (O1)-(O2) of Assumption 4.2 hold. Let (x, u) be

an optimal solution pair. Then, for any (t, j) ∈ dom(x, u),

J ∗(x(t, j)) ≤ J ∗(x0)

−

(
j∑
i=0

∫ si+1

si

αC(|x(s, i)|A) ds+
j−1∑
i=0

αD(|x(si+1, i)|A)

)
,

where {si}j+1
i=0 is the sequence satisfying

dom(x, u)∩([0, t]×{0, 1, . . . , j}) = ∪ji=0 ([si, si+1]× {i}) .
VI. HYBRID MPC: OPEN-LOOP SOLUTIONS AND

ASYMPTOTIC STABILITY

This section details asymptotic stability of the hybrid
MPC algorithm. Recalling that a periodic implementation of
hybrid MPC is not always possible, we introduce a notion of
solution pairs for H under open-loop optimal control signals
derived from Problem 3.2, generalizing Algorithm 1. Below,
the concatenation of {(x̃i, ũi)}∞i=0 is to be understood in
the sense of Definition 5.2, and the truncation of (xi, ui)
is its restriction to ([0, t] × {0, 1 . . . , j}) ∩ dom(xi, ui) for
some (t, j) ∈ dom(xi, ui).

Definition 6.1: A complete solution pair (x, u) is said
to be generated by the hybrid MPC algorithm if it is the
concatenation of a sequence of solution pairs {(x̃i, ũi)}∞i=0,
where for each i ∈ N, (x̃i, ũi) is the truncation of an optimal
solution pair (xi, ui).

In establishing stability properties for hybrid MPC, the
stability notions in [8, Definition 7.1] are adapted for solution
pairs described in Definition 6.1. Note that by definition,
every (x, u) generated by the hybrid MPC algorithm is
complete and satisfies x(0, 0) ∈ X .

Definition 6.2: The hybrid MPC algorithm is said to ren-
der the set A asymptotically stable if the following hold:
• For all ε > 0, there exists δ > 0 such that given

any solution pair (x, u) generated by the hybrid MPC
algorithm, |x(0, 0)|A ≤ δ implies |x(t, j)|A ≤ ε for
all (t, j) ∈ dom(x, u).

• There exists µ > 0 such that given any solu-
tion pair (x, u) generated by the hybrid MPC algo-
rithm, |x(0, 0)|A ≤ µ implies limt+j→∞ |x(t, j)|A = 0.

Definition 6.2 is meaningful under Assumptions 2.4
and 4.1, and the conditions of Propositions 5.1 and 5.3.
Indeed, there exists a neighborhood of A so that from any x0
in this neighborhood, either no solution pairs exist or an
optimal (x, u) ∈ ŜH(x0) can be found. In addition, Proposi-
tion 5.3 ensures that solutions generated by the hybrid MPC
algorithm stay in X . Finally, Assumption 2.4 guarantees that
given any (x, u) ∈ ŜH(x0), the application of the open-
loop input u to H with initial condition x0 results in the
state trajectory x as desired. This allows us to use the value
function J ∗, which is characterized as a Lyapunov function
by Lemmas 5.4-5.5, to show asymptotic stability.

Theorem 6.3: Suppose Assumptions 2.1, 2.4, 3.1 and 4.1-
4.3 hold. Then, the hybrid MPC algorithm renders the
compact set A asymptotically stable for the hybrid system H.
Furthermore, limt+j→∞ |x(t, j)|A = 0 for every solution
pair (x, u) generated by the hybrid MPC algorithm.



VII. NUMERICAL EXAMPLE

This section demonstrates an implementation of the hybrid
MPC algorithm with the bouncing ball in Example 2.1.

Consider the total energy W (x) := γx1+x
2
2/2 of the ball

for all x ∈ C ′, and let A = {x ∈ C ′ : W (x) = γh} for
some given constant h ≥ 0, which trivially satisfies Condi-
tion (O5). When λ = 1, A corresponds to the limit cycle of
the autonomous bouncing ball originating from (h, 0).

Let X = C ′ and fix θ ∈ (0, (2/π)(1− λ4)/(1+ λ4)). Let

V (x) = (1 + θ arctanx2)(W (x)− γh)2 ∀x ∈ X,
which satisfies Condition (O3), due to the assumption on θ.
Furthermore, Condition (O4) holds with S = R2. For the
closed-loop system Hκ in (6), we choose κC as an arbitrary
function with its range in UC , which leads to the set Cκ = C ′

and mapping fκ(x) = (x2,−γ), and κD such that

κD(x) = max{λx2 +
√
2γh, 0} ∀x ∈ R2,

which leads to the set Dκ = D′ and mapping

gκ(x) =

{
(0,−λx2) if x2 ≤ −

√
2γh/λ

(0,
√
2γh) otherwise.

We select the flow cost so that

LC(x, u) = θγ(W (x)− γh)2/(1 + 2W (x)) ∀(x, u) ∈ C,
which satisfies Condition (O1) due to radial unboundedness
of W in C ′. The jump cost is chosen so that

LD(x, u) = (1− θπ/2)γh(x2 +
√
2γh)2/2

if x2 ≥ −
√
2γh/λ, and

LD(x, u) = min
{
(1− θπ/2)γh(x2 +

√
2γh)2/2,

(1− θπ/2)(x22/2− γh)2 − (1 + θπ/2)(λ2x22/2− γh)2
}

otherwise, which satisfies Condition (O2) due to the as-
sumption on θ. Note that (12) holds since W (x) = γh
on A and x2 = −

√
2γh on A ∩ Dκ. By routine algebraic

manipulations, it can also be shown that (11) holds. Finally,
one can adapt the strategy in [8, Example 2.12] to show
that X = C ′ is forward invariant for Hκ.

Simulation results2 of the bouncing ball under hybrid MPC
with γ = 9.81, λ = 0.8, h = 2, and a prediction horizon
of the form (7) with τp = 6, δp = 0.4 are presented
in Figure 1. For this simulation, Problem 3.2 is solved
in MATLAB using the fmincon command by converting
it into a finite-dimensional nonlinear program. Such an
approach is possible due to conservation of energy during
flows (the total energy W , and therefore LC is invariant
during flows) and the fact that the state trajectory of the
bouncing ball during flows can be written in closed form.
After every optimization, if the predicted trajectory jumps,
the next optimization is triggered at the next jump time;
otherwise, it occurs at the terminal time of the predicted
trajectory. It can be seen that state trajectories from different
initial conditions all converge to A after a few jumps.

2Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/HybridMPCBBwConstraints
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Fig. 1: Position trajectories of the bouncing ball from dif-
ferent initial conditions under hybrid MPC, projected onto t.
Markers denote optimization times.

VIII. CONCLUSION

Borrowing tools from continuous/discrete-time MPC, we
presented a CLF-based stabilizing MPC algorithm for hybrid
systems, based on finite-horizon hybrid optimal control. A
particular feature of the optimal control problem, which
stands out in comparison to the continuous/discrete-time
case, is the need to reconsider the notion of a terminal time
to account for hybrid time domains. Future work will focus
on the solution of the optimal control problem.
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