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Abstract— In this paper, we show that the hybrid controller
that is induced by a Synergistic Lyapunov Function and
Feedback (SLFF) pair relative to a compact set, can be extended
to the case where the original affine control system is subject to
a class of additive disturbances known as matched uncertainties,
provided that the estimator dynamics do not add new equilibria
to the closed-loop system. We also show that the proposed
adaptive hybrid controller is amenable to backstepping. Finally,
we apply the proposed hybrid control strategy to the problem of
global asymptotic stabilization of a compact set in the presence
of an obstacle and we illustrate this application by means of
simulation results.

I. INTRODUCTION

Over the last few years, there has been significant research

effort towards the development of new analysis tools for

hybrid dynamical systems, i.e., systems whose solutions
exhibit both continuous-time and discrete-time behaviors

(c.f. [1]). This research effort has fueled the development of

novel hybrid control architectures, such as synergistic hybrid
control, which we further explore in this paper.

Synergistic hybrid feedback is a hybrid control strategy

that is comprised of a collection of potential functions that
asymptotically stabilize a given compact set by gradient

descent. If, for all equilibria that do not lie within the given

compact set, there exists another function in the collection
which has a lower value and does share the same equilibria,

then it is possible to achieve global asymptotic stabilization

of the given compact set through hysteretic switching. This
control strategy has been successfully applied to the problem

of global asymptotic stabilization of a compact set for sys-

tems evolving in compact manifolds, such as pendulum sta-
bilization [2], vector-based rigid body stabilization [3], [4],
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tracking for a vectored-thrust vehicle [5], rigid-body tracking

through unit-quaternion feedback [6] and rotation matrix
feedback [7], [8]. Synergistic hybrid feedback provided a

solution to global asymptotic stabilization on compact man-

ifolds, thus overcoming the topological obstructions which
plagued earlier continuous feedback approaches (c.f. [9]).

Another application which imposes similar limitations to

continuous feedback is obstacle avoidance. Obstacle avoid-
ance is an important and longstanding problem that reflects

the need to drive mechanical systems from one place to

another while avoiding any number of obstacles in its way.
Several solutions to this problem have been proposed over

the last few decades as highlighted in [10]. In particular, it is
possible to find both stochastic [11] as well as determinisc

approaches [12] to tackle the obstacle avoidance problem.

However, it was shown in [13] that in a spherical state
space, there is at least one saddle equilibrium point for

each obstacle within the state space, thus precluding global

asymptotic stabilization of a setpoint by continuous feedback.
To address this limitation a hybrid control solution was

proposed in [14]. In this paper, we propose a different hybrid

control approach to the same problem using the concept of
Synergistic Lyapunov Function and Feedback (SLFF) pairs

that was introduced in [15].

The main contributions of this paper are as follows: 1) we
provide sufficient conditions for the construction of a SLFF

pair for a affine control system that is subject to matched
uncertainties from a SLFF pair for the unperturbed system;

2) we develop a backstepping control design that preserves

the synergism properties, provided that no new equilibria are
added to the system due to the presence of perturbations and;

3) we apply the proposed controller to the problem of global

obstacle avoidance. More specifically, in Section III, we
present the notion of a SLFF pair and, similar to [15], show

how it induces a hybrid controller for a control affine system

that renders a given compact set globally asymptotically
stable for the closed-loop hybrid system. In Section IV, we

demonstrate that, given a SLFF pair for the control affine

system, it is possible to modify the controller in order to
compensate the effect of bounded matched uncertainties.

In Section V, we show that SLFF pairs and the hybrid

controllers that they induce are amenable to hybrid back-
stepping. In Section VI, we show that SLFF pairs can be

used to solve the problem of global asymptotic stabilization
of a compact set in the presence of an obstacle and we

demonstrate this application by means of simulation results

in Section VI-A. In Section II, we present some mathematical
preliminaries and notation that we use throughout the paper

and in Section VII we provide some concluding remarks.

The proofs of the results in this paper will appear elsewhere.



II. PRELIMINARIES AND NOTATION

A. Notation

The n-dimensional Euclidean space is represented by R
n

and it is equipped with the inner product 〈u, v〉 = u⊤v,

defined for each u, v ∈ R
n and the norm |x| :=

√

〈x, x〉
for each x ∈ R

n. The n-dimensional Euclidean space has

the topology generated by a countable basis of open balls
of the form c + ǫB := {x ∈ R

n : |x− c| < ǫ}, where

c ∈ R
n and ǫ > 0. More generally, given a set Ω ⊂ R

n,

we define Ω+ ǫB :=
⋃

c∈Ω c+ ǫB. The operators ∂S and S
denote the boundary and the closure of a set S, respectively.

Given a subset S of X := X1 × X2, the projection of S
onto X1 is represented by πX1

(S) := {x1 ∈ X1 : (x1, x2) ∈
S for some x2 ∈ X2}. Similarly, the projection of S onto

X2 is denoted by πX2
(S) := {x2 ∈ X2 : (x1, x2) ∈

S for some x1 ∈ X1}. The tangent cone to a set S ⊂ R
n

at a point x ∈ R
n, denoted by TxS, is the set of all vectors

w ∈ R
n for which there exists xi ∈ S, τi > 0 with xi → x

and τi → 0+ such that w = limi→∞(xi − x)/τi.
A set-valued map M : S ⇒ R

n associates a subset of Rn

to each point in S, represented by M(x). The graph of a set-

valued map M : S ⇒ R
n is given by gphM := {(x, y) ∈

S × R
n : y ∈ M(x)}, its domain is given by domM =

πS(gphM) and its range is rgeM = πRn(gphM). A set-

valued map M is: outer semicontinuous if gphM is closed;
locally bounded if, for each x ∈ domM there exists a

neighborhood Ux of x such that M(Ux) is bounded; upper
semicontinuous if M(x) is closed for each x ∈ domM ,

M is outer semicontinuous and locally bounded; lower

semicontinuous if, for each x ∈ domM , all convergent
sequences xi → x in domM have a subsequence xi(k) such

that M(xi(k)) converges to M(x); continuous if it is both

upper and lower semicontinuous.

Given a differentiable function F : R
m×n × R

k×ℓ →
R

p×q , we define

DXF (X,Y ) :=
∂ vec(F )

∂ vec(X)⊤
(X,Y )

for each (X,Y ) ∈ R
m×n×R

k×ℓ for each X ∈ R
m×n, where

vec(A) := [e⊤1 A
⊤ . . . e⊤mA

⊤]⊤ for each A ∈ R
m×n and

ei ∈ R
m is a vector of zeros, except for the i-th component,

which is 1. If F : Rm×n → R, then ∇F (X) := DF (X)⊤.

B. Hybrid Systems

A hybrid system H with state space R
n is defined as

follows:
ξ̇ ∈ F(ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D

where ξ ∈ R
n is the state, C ⊂ R

n is the flow set,

F : R
n

⇒ R
n is the flow map, D ⊂ R

n denotes the

jump set, and G : R
n

⇒ R
n denotes the jump map. A

solution ξ to H is parametrized by (t, j), where t denotes

ordinary time and j denotes the jump time, and its domain

dom ξ ⊂ R≥0×N is a hybrid time domain: for each (T, J) ∈
dom ξ, dom ξ ∩ ([0, T ]×{0, 1, . . . J}) can be written in the

form ∪J
j=0([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where Ij := [tj , tj+1] and the

tj’s define the jump times. A solution ξ to a hybrid system

is said to be maximal if it cannot be extended by flowing

nor jumping and complete if its domain is unbounded. The
projection of solutions onto the t direction is given by

ξ↓t(t) := ξ(t, J(t)) where J(t) := max{j : (t, j) ∈ dom ξ}.
The distance of a point ξ ∈ R

n to a closed set A ⊂ R
n is

given by |ξ|A := infy∈A |y − ξ|. The definitions of global

uniform pre-asymptotic stability and invariance can be found
in [1].

III. SYERGISTIC LYAPUNOV FUNCTIONS AND FEEDBACK

PAIRS

In this paper, we address the problem of globally asymp-

totically stabilizing a given compact set for an affine control
system that is subject to exogenous disturbances. In particu-

lar, similar to [15], we consider the dynamical system

ẋ = f(x, q, u, θ) := ψx(x, q) + ψu(x, q)u + ψθ(x, q)θ (1)

for each (x, q, u, θ) ∈ X×Q×R
m×Ω, where x ∈ X denotes

the state of the system with X ⊂ R
n closed, q ∈ Q with

Q ⊂ Z finite represents a logic variable, u ∈ R
m represents

the input, θ ∈ Ω represents a constant disturbance whose

norm is bounded by θ0 ∈ R≥0, i.e.

Ω := {θ ∈ R
ℓ : |θ| ≤ θ0}, (2)

ψx : X × Q → R
n, ψu : X × Q → R

n×m and
ψθ : X × Q → R

ℓ are continuous functions satisfying

ψθ(x, q) := ψu(x, q)ψθ̂
(x, q) for each (x, q) ∈ X × Q for

some continuously differentiable function ψ
θ̂
: X × Q →

R
m×ℓ. To meet the desired goal, we resort to the concept of

Synergistic Lyapunov Functions and Feedback (SLFF) pairs

that was introduced in [15] and which we reproduce next for
completeness.

Given a compact set A ⊂ X×Q, the continuous functions

V : Rn × Q → R≥0 and κ : Rn × Q → R
m form a SLFF

pair candidate relative to A for
{

ẋ = f(x, q, κ(x, q), 0)

q̇ = 0
(x, q) ∈ X ×Q (3)

if:

(A1) V is continuously differentiable on a neighborhood of

X ×Q;
(A2) Each sublevel set of V, given by

ΩV(r) := {(x, q) ∈ X ×Q : V(x, q) ≤ r},

is compact;
(A3) V is positive definite relative to A;

(A4) For all (x, q) ∈ X × Q, f(x, q, κ(x, q), 0) be-

longs to the tangent cone to X × Q at (x, q) and
〈∇V(x, q), f(x, q, κ(x, q), 0)〉 ≤ 0.

A SLFF pair candidate (V, κ) relative to A for (3) induces

the hybrid controller with output κ and dynamics

q̇ = 0 (x, q) ∈ C := {(x, q) ∈ X ×Q : µV(x, q) ≤ δ}
(4a)

q+ = ̺V(x) (x, q) ∈ D := {(x, q) ∈ X ×Q : µV(x, q) ≥ δ}
(4b)

where δ > 0,

µV(x) := V(x, q) −min
p∈Q

V(x, p) (5)



for each (x, q) ∈ X ×Q and

̺V(x) := arg min{V(x, q) : q ∈ Q} (6)

for each x ∈ X .

The interconnection between (1) and (4) results in the

closed-loop hybrid system H := (C,F,D,G), given by
[

ẋ
q̇

]

= F(x, q) :=

[

f(x, q, κ(x, q), θ)
0

]

(x, q) ∈ C

[

x+

q+

]

∈ G(x, q) :=

[

x
̺V(x)

]

(x, q) ∈ D.

(7)

Property (A4) guarantees that each sublevel set of V is

invariant for the nominal instance of the system (1), i.e.,

with θ = 0. Properties (A1) through (A3), ensure that the
closed-loop hybrid system resulting from the interconnection

between (1) and (4) is endowed with the following properties.

Lemma 1. Given a compact set A ⊂ X × Q and a SLFF

pair candidate relative to A for (3), the following holds:

1) The function

νV(x) := min
q∈Q

V(x, q) ∀x ∈ X

is continuous; 2) The function ̺V in (6) is outer semicontin-

uous and ̺V(x) is compact for each x ∈ X ; 3) The function

µV in (5) is continuous.

The regularity properties that are presented in Lemma 1

are key in proving that the closed-loop hybrid system (7)

satisfies the hybrid basic conditions, given in [1, Assump-
tion 6.5], as proved next.

Lemma 2. Given a compact set A ⊂ X × Q and a SLFF

pair candidate relative to A for (3), the data (C,F,D,G)
of the closed-loop hybrid system satisfies the following:

(S1) The sets C and D are closed;

(S2) The flow map F is outer semicontinuous and locally

bounded relative to C, and F(x, q) is convex for each

(x, q) ∈ X ×Q;

(S3) The jump map G is outer semicontinuous and locally

bounded relative to D.

The hybrid basic conditions ensure that the closed loop

system (7) is endowed with robustness to perturbations and
small measurement noise, as explained in [1, Chapter 7]. In

particular, these conditions ensure that the system is well-
posed and allow for the application of invariance principles

for hybrid dynamical systems that are at the core of the

stability proofs that are presented in this paper. Finally, we
prove that each maximal solution to H in (7) is complete.

Lemma 3. Given a compact set A ⊂ X × Q and a SLFF

pair candidate relative to A for (3), each maximal solution

to (7) is complete.

Given a SLFF pair candidate (V, κ) relative to A for (3),

we define E := {(x, q) ∈ X ×Q : 〈∇V(x, q), F(x, q)〉 = 0}
and let Ψ ⊂ E denote the largest weakly invariant subset of

{

ẋ = f(x, q, κ(x, q), 0)

q̇ = 0
(x, q) ∈ E (8)

Then, the SLFF pair candidate (V, κ) is a SLFF pair relative

to A for (3) if

(A5) µV(x, q) > 0 for each (x, q) ∈ Ψ\A.

If there exists δ > 0 such that µV(x, q) > δ for each (x, q) ∈
Ψ\A, we say that (V, κ) has synergy gap exceeding δ.

Property (A5) implies that it is possible to avoid unwanted
equilibria by switching among the available feedback laws

and Lyapunov functions as shown in the following theorem.

Theorem 1 ([15, Theorem 7]). Suppose that (V, κ) is a

synergistic Lyapunov function and a feedback pair relative

to the compact set A for (3) with synergy gap exceeding δ.

Then, the compact set A is globally asymptotically stable for

the closed-loop system (7) (with θ = 0).

In the sequel, we show that it is possible to modify a
given SLFF pair to compensate for the presence of constant

disturbances θ ∈ Ω.

IV. ADAPTIVE SYNERGISTIC HYBRID FEEDBACK

In this section, we modify the synergistic hybrid controller
in (4) to address the case where θ in (1) is nonzero (we refer

the reader to [17] for an overview of adaptive controller

design and backstepping under the influence of model un-

certainty). Given a SLFF pair (V, κ), let θ̂ ∈ R
ℓ denote an

estimate of the disturbance θ satisfying

˙̂
θ = Γ0 Proj(ψθ(x, q)

⊤∇V(x, q), θ̂), (9)

where Γ0 ∈ R
ℓ×ℓ is a positive definite matrix and Proj :

R
ℓ × R

ℓ → R
ℓ is given by

Proj(η, θ̂) :=

{

η if p(θ̂) ≤ 0 or ∇ p(θ̂)⊤η ≤ 0
(

Iℓ −
p(θ̂)∇ p(θ̂)∇ p(θ̂)⊤

∇ p(θ̂)⊤∇ p(θ̂)

)

η otherwise

for each (η, θ̂) ∈ R
ℓ × R

ℓ,

p(θ̂) :=
θ̂⊤θ̂ − θ20
ǫ2 + 2ǫθ0

for each θ̂ ∈ R
ℓ with ǫ > 0 and θ0 > 0 given in (2). The

function Proj in (9) implements an adaptive feedback law
with the following properties (c.f. [18]):

(P1) Each solution t 7→ θ̂(t) to

˙̂
θ = Γ0 Proj(η(t), θ̂),

from θ̂ ∈ Ω + ǫB with input t 7→ η(t) satisfies rge θ̂ ⊂
Ω+ ǫB;

(P2) We have that

(θ − θ̂)⊤ Proj(η, θ̂) ≥ (θ − θ̂)⊤η

for each (η, θ̂) ∈ R
ℓ × R

ℓ.

Given a SLFF pair relative to A for (3), denoted by (V, κ),
we define

V0(x, q, θ̂) := V(x, q) +
1

2
(θ − θ̂)⊤Γ−1

0 (θ − θ̂)

κ0(x, q, θ̂) := κ(x, q)− ψ
θ̂
(x, q)θ̂

for each (x, q, θ̂) ∈ S0 := X × Q × (Ω + ǫB). Following

the controller design that was introduced in Section III and
setting u = κ0(x, q), we obtain the closed-loop hybrid

system H0 := (C0, F0, D0, G0) given by

(ẋ, q̇,
˙̂
θ) = F0(x, q, θ̂) (x, q, θ̂) ∈ C0 (11a)

(x+, q+, θ̂+) ∈ G0(x, q, θ̂) (x, q, θ̂) ∈ D0 (11b)



where C0 := {(x, q, θ̂) ∈ S0 : µV0
(x, q, θ̂) ≤ δ}, D0 :=

{(x, q, θ̂) ∈ S0 : µV0
(x, q, θ̂) ≥ δ} and

F0(x, q, θ̂) :=





f(x, q, κ0(x, q), θ)
0

Γ0 Proj(ψθ(x, q)
⊤∇V(x, q), θ̂)





∀(x, q, θ̂) ∈ C0

(12a)

G0(x, q, θ̂) :=





x

̺V0
(x, θ̂)

θ̂



 ∀(x, q, θ̂) ∈ D0.

(12b)

We show next that the functions (V0, κ0) in (10) form a
SLFF pair candidate relative to the compact set

A0 := A × {θ}. (13)

Proposition 1. The pair (V0, κ0) in (10) is a SLFF pair

candidate relative to A0 for

(ẋ, q̇,
˙̂
θ) = F0(x, q, θ̂) (x, q, θ̂) ∈ S0. (14)

Since (V0, κ0) is a SLFF pair candidate relative to A0

for (14), we have in particular that V0 is nonincreasing along
solutions to the closed-loop system (11). However, showing

that (V0, κ0) is a SLFF pair relative to A0 for (14) requires
further assumptions on the nature of the SLFF pair (V, κ)
and the function ψθ, as shown next.

Theorem 2. Given a SLFF pair (V, κ) relative to a compact

set A ⊂ X ×Q for (3) with synergy gap exceeding δ, let Ψ
denote the largest weakly invariant subset of (8) and let Ψ0

denote the largest weakly invariant subset of

(ẋ, q̇,
˙̂
θ) = F0(x, q, θ̂) (x, q, θ̂) ∈ E0

with E0 := {(x, q, θ̂) ∈ S0 : 〈∇V0(x, q, θ̂), F0(x, q, θ̂)〉 =
0}. If the projection of Ψ0\A0 onto X × Q is a subset of

Ψ\A, i.e.,

πX×Q(Ψ0\A0) ⊂ Ψ\A, (15)

then (V0, κ0) in (10) is a SLFF pair relative to A0 for (14)

with synergy gap exceeding δ.

It follows directly from [15, Theorem 7] that, under the

assumptions of Theorem 2, the set A0 in (13) is globally

asymptotically stable for the closed-loop hybrid system (11).
Next, we demonstrate that synergism is a property that can

also be preserved through backstepping.

V. ADAPTIVE BACKSTEPPING OF SYNERGISTIC

FEEDBACKS

Consider the following dynamical system

ẋ = f(x, q, u, θ)

˙̂
θ = Γ0 Proj(υ(ζ), θ̂)

u̇ = τ

with ζ := (x, q, θ̂, u) ∈ S1 := X × Q × (Ω + ǫB) × R
m,

which is obtained from (1) by adding the estimator dynamics

with

υ(ζ) := ψθ(x, q)
⊤∇V(x, q)

+ ψθ(x, q)
⊤Dx(κ0(x, q, θ̂))

⊤Γ−1
1 (u− κ0(x, q, θ̂))

for each ζ ∈ S1, and u is considered as a state of the

dynamical system with τ ∈ R
m as the new input.

Given a compact subset A of X × Q and a SLFF pair

(V, κ) relative to A for (3), the main goal of this section
is the construction of a SLFF pair (V1, κ1) relative to the

compact set

A1 := {ζ ∈ S1 : (x, q, θ̂) ∈ A0, u = κ0(x, q, θ̂)}.

In this direction, we define

V1(ζ) := V0(x, q, θ̂)

+
1

2
(u− κ0(x, q, θ̂))

⊤Γ−1
1 (u− κ0(x, q, θ̂))

(16a)

κ1(ζ) := −ψ
θ̂
(x, q)Γ0 Proj(υ(ζ), θ̂)− ku(u− κ0(x, q, θ̂))

− Γ1ψu(x, q)
⊤∇V(x, q) +Dx(κ0(x, q, θ̂))f(x, q, u, θ̂)

(16b)

for each (x, q, θ̂, u) ∈ S1, under the additional assumption

that κ is continuously differentiable. Following the controller
design that was introduced in Section III and setting τ =
κ1(ζ), we obtain the closed-loop hybrid system H1 :=
(C1, F1, D1, G1) given by

ζ̇ = F1(ζ) ζ ∈ C1 := {ζ ∈ S1 : µV1
(ζ) ≤ δ} (17a)

ζ+ = G1(ζ) ζ ∈ D1 := {ζ ∈ S1 : µV1
(ζ) ≥ δ} (17b)

where δ > 0 and

F1(ζ) :=









f(x, q, u, θ)
0

Γ0 Proj(υ(ζ), θ̂)
κ1(ζ)









∀ζ ∈ C1 (18a)

G1(ζ) :=









x

̺V1
(x, θ̂, u)

θ̂
u









∀ζ ∈ D1. (18b)

We are able to prove the following result using arguments

similar to those of Theorem 2.

Theorem 3. Given a SLFF pair (V, κ) relative to a compact

set A ⊂ X × Q for (3) with synergy gap exceeding δ and

κ continuously differentiable on an open neighborhood of

X × Q, if (15) holds, then (V1, κ1) is a SLFF pair relative

to A1 for

ζ̇ = F1(ζ) ζ ∈ S1 (19)

with synergy gap exceeding δ.

It follows from Theorem 3 and Theorem 1 that A1 is

globally asymptotically stable for (19). In Theorems 2 and 3,
we demonstrate that a given SLFF pair for the unper-

turbed system (3) generates SLFF pairs for (14) and (21),

respectively, under the additional assumption (15). In the
next section, we apply the proposed controllers to global

asymptotic stabilization of a compact set in the presence of

an obstacle.



VI. SYNERGISTIC ARTIFICIAL POTENTIAL FUNCTIONS

FOR GLOBAL OBSTACLE AVOIDANCE

In this section, we present a solution to the problem of
global asymptotic stabilization of a compact subset Ax of Rn

for (1) in the presence of an obstacle using the synergistic

hybrid feedback strategy of Sections IV and V. In particular,
we consider that an obstacle is represented by a compact

subset N of Rn that we remove from the state space.

In this direction, let Q ⊂ Z be finite set and {Mq}q∈Q

denote a collection of closed subsets of Rn satisfying
⋂

q∈Q

Mq = N (20a)

∀q ∈ Q Mq ∩ Ax = ∅. (20b)

For each q ∈ Q, let Vq : Rn\Mq → R≥0 denote a proper

indicator of Ax on its domain, i.e., each Vq is a continuous

function that is positive definite relative to Ax and Vq(xi) →
∞ when i→ ∞ if either |xi| → ∞ or the sequence {xi}∞i=0

approaches Mq . Each function Vq is commonly referred to
as an artificial potential function (see e.g. [19]).

Defining V(x, q) := Vq(x) for each (x, q) ∈ R
n × Q, it

follows from the previous assumptions that each sublevel set

of V is compact and that V is positive definite relative to

A := Ax ×Q. Crucially, it follows from the construction of
V that none of its sublevel sets include the obstacle N , i.e.,

πRn(ΩV(r)) ∩ N = ∅ for all r ≥ 0. (21)

Therefore, if each Vq is continuously differentiable and if,

for each q ∈ Q, there exists a continuously differentiable
function κ : Rn\Mq → R

m such that (A4) and (A5) hold,

then (V, κ) is a SLFF pair relative to A for (3). In particular,

this means that the controller design of Section III can be
used for global asymptotic stabilization of a compact set

A for (3). In addition, if condition (15) holds, then any of

controller design strategies that are presented in Sections IV
and V can be applied.

Remark 1. Note that, since (23) holds by construction, the

state space X can be taken as a sublevel set of V. Due to the

properties of V, it is always possible to encompass solutions

whose initial conditions lie arbitrarily close to N .

In the next section, we present a particular SLFF pair that

allows for global asymptotic stabilization of the origin of a

simple integrator on R
2 in the presence of an obstacle.

A. Numerical Example

Let us consider the dynamical system

ẋ = f(x, q, u, θ) := u+ θ (22)

where x ∈ R
2 denotes the state of the system, u ∈ R

2

denotes the input and θ ∈ Ω denotes a constant disturbance.

In this section, we make use of synergistic hybrid feedback
to design a controller that globally asymptotically stabilizes

the origin of (24), hence Ax = {0}, given the presence of

an obstacle that is represented by the compact set

N := c+ rB

where c := (c1, c2) = (1, 0) and r := 1/2.

Following the control design strategy that is outlined in

Section VI, we define Q := {−1, 1} and

Mq := N ∪ {(x1, x2) ∈ R
2 : qx2 ≥ 0, x1 = c1}. (22)

It is straightforward to verify that {Mq}q∈Q satisfies (22).
Next, we define φ : S → (−π, π) × {R ∈ R : R > r} as

follows:

φ(x, q) :=

[

φ1(x, q)
φ2(x, q)

]

:=

[

atan2(q(x1 − c1), c2 − x2)
|x− c|

]

(23)
for each (x, q) ∈ S with

S := {(x, q) ∈ R
2 ×Q : x ∈ R

2\Mq} (24)

which is an smooth function with smooth inverse where

atan2(y2, y1) :=



































arctan
(

y2

y1

)

if y1 > 0

arctan
(

y2

y1

)

+ π if y1 < 0, y2 > 0

arctan
(

y2

y1

)

− π if y1 < 0, y2 < 0

π/2 if y1 = 0, y2 > 0

−π/2 if y1 = 0, y2 < 0

for each (y1, y2) ∈ {(y1, y2) ∈ R
2 : y2 = 0, y1 ≤ 0} is the

four quadrant tangent inverse. Using (25), we define

U(α,R) :=
(α+ π/2)2

2(α+ π)(π − α)
+

(R− |c|)2

2(R− r)

for each (α,R) ∈ (−π, π)× {R ∈ R : R > r}, and

Vq(x) := U(φ(x, q)) (25)

for each x ∈ R
2\Mq, which is a smooth proper indicator

of Ax on R
2\Mq. To see this, note that, if {αi}i∈N is a

convergent sequence to either π or −π, then

(αi + π/2)2

2(αi + π)(π − αi)
→ +∞ as i→ ∞.

Moreover, we also have that

(Ri − |c|)2

2(Ri − r)
→ +∞ as i→ ∞

if {Ri}i∈N is a convergent sequence to r, hence Vq(ξi) →
+∞ for each convergent sequence {ξi}i∈N to Mq. To verify

that Vq is positive definite, note that

Vq(x) = 0 ⇐⇒ φ(x, q) = (−π/2, |c|)

⇐⇒ x = 0.

Using the gradient-based feedback rule

κ(x, q) := −∇Vq(x) (26)

for each (x, q) ∈ S, we have that

〈∇Vq(x), κ(x, q)〉 ≤ − |∇Vq(x)|
2

for each (x, q) ∈ S.

Proposition 2. Given r > 0, let V(x, q) := Vq(x) for each

(x, q) ∈ S and X := ΩV(r) with Vq and S given in (27)

and (26), respectively. Then, the functions V and κ given

in (27) and (28), respectively, form a SLFF pair relative to

A := Ax×Q = {0}×{−1, 1} for (24) with θ = 0. Moreover,

condition (15) also holds.

Proposition 2 allows for the application of the controller

design strategies that are described in Sections IV and V.
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Fig. 1. Representation of the trajectories of the x component of the
solutions to (7), (11) and (19) under the influence of nonzero disturbance
θ = (1, 1), with x(0, 0) = (2, 0) and distinct initial values of the logic
variable q ∈ Q := {−1, 1}. It is possible to verify that the state trajectories
for (11) and (19) converge to the origin, but the solution to (7) is not able
to compensate the effect of nonzero disturbances.

Figure 1 represents the component x := (x1, x2) of two

solutions for each of the systems (7), (11) and (19) with
f given by (24) and θ = (1, 1). All the solutions share

the same initial condition for the state variable x, given

by x(0, 0) = (2, 0), but distinct initial values of the logic
variable q ∈ Q := {−1, 1}. We verify that, although A
is globally asymptotically stable for (7) when θ = 0 (c.f.

Theorem 1), Figure 1 shows that this nominal controller
is not able to compensate for the presence of nonzero

disturbances θ = (1, 1), since the state of the system leaves
the reasonably large boundaries of the boxed region we chose

to represent. On the other hand, the solutions to (11) and (19)

with initial conditions θ̂(0, 0) = 0, u(0, 0) = 0 and controller
parameters Γ0 = Γ1 = I2, ku = 10, are able to overcome the

presence of nonzero disturbances. In fact, in both of these

cases, the state of the estimator θ̂ converges to the value of

the disturbance θ. Finally, notice that the way in which the

system circumvents the obstacle depends on the initial value
of the logic variable q, but the objective of global asymptotic

stabilization of the origin is achieved regardless of the initial

conditions.

VII. CONCLUSIONS

In this paper, we modified the hybrid controller that is in-
duced by a Synergistic Lyapunov Function and Feedback pair

to achieve global asymptotic stabilization of a compact set in

the presence of matched uncertainties. We also showed that
the synergism property of the proposed adaptive feedback

can be preserved through backstepping without compromis-

ing the global asymptotic stabilization objective. We applied
the proposed controllers to the problem of obstacle avoidance

and we demonstrated this application by means of simulation

results. Future work will focus on the development of a
controller for global trajectory tracking in the presence of

exogenous disturbances and multiple obstacles.
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