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Abstract— This work pertains to the study of stability of
limit cycles for hybrid systems with explicit logic states vithin
a hybrid systems framework. We first focus on constructing
the hybrid systems with explicit logic states and revealindgpasic
properties of limit cycles. Application to model switched gstems
under dwell-time switching as such a hybrid system is providd.
In addition, we establish sufficient and necessary conditits for
stability of the limit cycles relying on Poincaré maps. Examples
illustrate the results. A discussion about the case of systes with
nonunique solutions is also included.

|. INTRODUCTION

can evolve continuously (flows) and/or discretely (jumps)

In recent years, the study of limit cycles in hybrid system

existence of limit cycles with jumps in many engineerin
applications, such as robotics [1], phase-locked loop [2

gene networks [3], etc. In this paper, we consider a subse

of hybrid systems with great utility: hybrid systems with
explicit logic states; that is, hybrid systems containing+ d

crete modes or logic variables. Such systems can be mode
using hybrid automata, in particular, and arise in a variet
of applications including the modeling of the dynamics o
genetic networks with binary hysteresis [3], the modelin
of heating control systems with desired temperature ban

[4], and the modeling of the DC-DC boost converter undée?

different switching modes [5].

system. In [2], Flieller et al. utilized the sensitivity dysis
method to determine limit cycles of switched systems and
analyzed their local stability through the computation foé t
Jacobian, which relies on the knowledge of the switching
sequence. In [8], the trajectory sensitivity approach was
employed to develop sufficient conditions for stability of
limit cycles in switched differential-algebraic systerirs[9],

Li studied the maximum number of limit cycles in a class of
discontinuous quadratic polynomial differential systesith
e-order terms. Recently, Benmiloud et al. in [10] provided

mostly focus on deriving stability conditions for switched

finear systems or planar switched systems. We believe that
has received substantial attention. This is mainly due ¢ thC y b y

onditions for stability of limit cycles in hybrid systemstiv

ggxplicit logic states should play a more prominent role in

rt'lalysis and control of limit cycles with jumps. To the befst o
our knowledge, tools for the analysis of asymptotic stapili
of limit cycles in such hybrid systems are not available in

He‘? literature.
n this paper, we exploit the main idea proposed in [11],

Iormulating the stability problem of limit cycles for hylori

ystems with explicit logic states in a hybrid dynamical
ystems framework [12]. The main contributions of this
aper can be summarized as follows:

1) We employ the hybrid systems framework [12] to model

Particular motivation for the study of hybrid systems with
explicit logic states comes from limit cycles in switched
systems with a sequence of modes. The problems of ensuring
the stability of limit cycles have been studied for specific
classes of switched systems. In particular, for a class oR)
switched linear systems in [6], Olsder applied a generdlize
implicit function theorem to show characteristics of the
periodic solutions around operating points for sufficigntl
small period. In [7], a sufficient condition given in terms
of a set of linear matrix inequalities for exponential ski&pi
of limit cycles in a class of switched affine linear systems
was proposed using a discrete-time state description of the
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the hybrid systems with explicit logic states and the
mechanisms generating switching modes in a way that is
amenable to the tools in [11] for the study of attractivity,
stability, and robustness of limit cycles.

As an application, we model the switched systems under
dwell-time switching as a hybrid system with explicit
logic states. A notion of limit cycle for such hybrid
systems is introduced and some of its properties are
presented including compactness and transversality.
We establish sufficient and necessary conditions for
guaranteeing global asymptotic stability of limit cycles
for hybrid systems with explicit logic states, which
can further be extended for characterizing robustness of
asymptotic stability under perturbations of such systems
using the recent results in [12].
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The structure of the paper is as follows. We start with a
motivational example in Section Il. The formulation of the
hybrid model and an application to switched systems with
dwell-time are given in Section Ill. Section IV introduces
the definition of limit cycle and gives some of its basic



properties. Section V presents the stability notions ad wel
as sufficient and necessary conditions for stability of dimi
cycles. Section VI discusses the case of nonuniqueness ¢ s b
solutions in switched systems with dwell-time. o , .
Notation: Specifically, R™ denotes then-dimensional
Euclidean spaceR>, denotes the set of nonnegative real

numbers, i.e.R>o := [0,+0c), and N denotes the set of s : 7 = ) R R

natl'_'ral number_s inCIUding’ e, N:= {Oa L,2,--- } The Fig. 2. State trajectories of the thermostat system wittiainvaluesoO for
equivalent notatiof: " 3y '] T and(x, y) are used for the same ¢ and1 for g (blue) or18 for ¢ and2 for ¢ (red), wherea = 0.1, by = 15,

vector. Given a sed C R”, A denotes its closure. Given b2 = 20 andc = 10. Left: Transient response &, Right: Phase plot of
a continuously differentiable functioh : R* — R and a state variablesy ande.
function f : R® — R", the Lie derivative ofh atz in the di-

rection of f is denoted by ;h(z) := (Vh(x), f(z)). Given m
a functionf : R™ — R", its domain of definition is denoted
by dom f, i.e.,dom f := {x € R™: f(x) is defined.

20| by

PROBLEM STATEMENT
AND MATHEMATICAL MODELING

A. System Description
Il. MOTIVATIONAL EXAMPLE Follow 12 ch 1.4 der the hvbrid
The following example motivates the study of limit cycles ollowing [12, Chapter 1.4]consider the hybrid system

for hybrid systems with explicit logic states in this paperWIth explicit logic states given by

The state-triggered switched system features a limit cycle H B {fq(f)] ceCqeQ
Consider a thermostat that controls the temperaguoé q B 0 ard 1)

a heating system [4]. The heater in the system is used to £t

maintain the temperature of the thermostat within a desired {q*] = 9% §€DpqcQ

temperature band.he proposed model doest consider the h Conde d he derivati ith .
influence of the internal temperature of the heatewe will ere§ andg denote the derivatives with respect to time,

show later, the system can be modeled as a hybrid Systéﬁ§pect|vely, a_an* gnd g denote_ the values OT thetate
with a logic variableg € O := {1,2}. Wheng = 1 and the & and the logic yarlqble] after a jump, respsﬁlvely. The
temperature is at the higher ehgl (or above) of the desired StAl€ Vector ofi is given byxz := (¢,q) € R™™, where
temperature band, resetto 2 and the heater turns off until 5_ € R* is the continuous state componeqte Q |s_the .
the temperature reaches the lower énodf the desired band. discrete statg compon_ent associated with the expliciclogi
Wheng = 2 and the temperature is less than or equdito mode, andQ is a finite index set _Of?max e_lements, namely,
resetq to 1 and the heater turns on again. Fig. 1 shows g = {12, dmax}. The explicit logic stateg, by its
hybrid automaton modeling this system [4]. The paramet tur.e, can change only via a Jumigor eaphq €9 Fhe
a is the natural cooling coefficient of the thermostat and th nction f, : R" - R def:lnes the ech)rllutlon of _durlng
parameter: characterizes the effectiveness of the heater. THPWS and the functiog, : R > Q — R™*" determines the
desired temperature band for the thermostat is chosen as ue of the sta.te after jumps. , "
interval [bq, bo]. If the parameters, by, b2, and ¢ satisfy System (1) with state = (,5’ g) can be written within the
a>0andc> aby > ab > 0, the system exhibits periodic YPrid systems framework in [12] as follows:
behavior for any initial condition, as shown in Fig. 2. i o= f(a) = [fq(g)} veC

0 2)
v 9(@) = g, () reD

whereC := J (C; x {¢}) denotes the flow set anB :=

H
Jr

qeQ
U (D4 x {¢}) denotes the jump set. The data of the hybrid
Q

qe
system# is given by (C, f, D, g). The elements of data
that represert{ on the state spade”*! have the following
properties:

- Given functionsf, for eachqg € Q, the flow mapf :

In this paper, our interest is in developing analysis method ~ R" x Q—R"*! defines the continuous evolution of

that can be applied to such a system with explicit logic - The jump mapy is given by, for eachy € Q, function
. . . n n

states as well as to switched systems under dwell-time so as 9¢ : R" — R" x Q that defines the changes ofat

Fig. 1. The hybrid automaton of a thermostat

to guarantee asymptotic stability of limit cycles. Whileeth jumps.
models considered in [9], [10] are specific cases of switched - For each; € Q, the sets’; and D, are subsets aR”,
systems with logic modethey only apply to planar switched on which the flows are effective and jumpasith such

systems. On the other hanthe results presented here are  Vvalue ofg) can occur, respectively.
suitable for general hybrid systems with explicit logictega Compared to our previous results in [11], [13], the explicit



logic state in the hybrid systert allows us to capture consists of a DC voltage sourdg, an inductorZ, an ideal
certain families of logic mod@atterns or switching signals diode d, a capacitor, a resistork, and an ideal switchs.
explicitly. We extendand specialize, as needexdyr previous The controlled switcht can be either on or off, defining two
results to fit such a model. When modeling a system witmain steady-state modes of operation (cf. [14]).

explicit logic states as a well-posed hybrid system, théstoo

in [12] for robust stability of limit cycles apply. mode 1:5 is on mode 2:5'is off
A solution to# is parameterized by ordinary timteand a AW S

counter; for jumps. Itis given by a hybrid ate) : dom ¢ — L g /™ ¢

R™*! that satisfies the dynamics 6{; see [12] for more 1 e~ [lg

details. A solutiong to H is said to be complete ilom ¢ T F

is unbounded. It is precompact if it is complete and bounded.

It is said to be maximal if it is not a truncated version of
another solution. The set of maximal solutions#ofrom Fig. 3. The boost converter

the setK is denoted as
The circuit associated to each mogeshown in Fig. 4. In

Su(K):={¢:¢ is a maximal solution té{ with ¢(0,0) € K'}. mode 1, in which the switch is on, the inductor offloads
power to the resistor. In mode 2, in which the switch is off,
the input source charges the inductor and the capacitosfeed
= f(x) zeC the load. Assuming no parasitic effects, the dynamics of the
boost DC-DC converter on such moda® modeledy

We definet — ¢/ (¢, z0) as a solution of the flow dynamics

from 2y € C. Note that by construction, thecomponent of
the solutions tdH remains constant during flows. 2= Agz+ by (4)

B. Special Case: Switched Systems with Dwell-Time wherez = (z1,292) € Rio is the state vector with; the

The continuous staté of A in (2) may contain an auxil- inductor currentzs the voItage_ over the capacitor, aqu
iary state component that is useful in modeling switched {1, 2} @ logic variable used to indicate whether the swifch
systems under dwell-time switching. A dwell-time switogpin iS on or off. When the logic variable is equal tol (i.e., the

signal has switching time's satisfyingt, , —t; > T) fori = switch S is on), the dynamics of the system are governed by
1,2,---, whereT, > 0 denotes the dwell-time parameter. In 0 -1 L
fact, a hybrid system modeling switched systems with dwell- Ar = [1 _i] y b= [6} :
time switching signals is given By _ e fe : , _
N When the logic variable is equal to2 (i.e., the switchS is

z = fqlz) ~ off), the dynamics of the systeare governed by

x = 1 2€Cyx =0 0o p

B o- b o [f]

N 3 S (U 1 B

== F ~ As suggested in [6], one would expect different behaviors

xt = 0 z € Dy, x € [Ty, 0)

" = Ge(z) AW

L L

with statezx = (£,q) = ((z,%),q) € R*™ x Q and dwell
time parametefl),, > 0. System (3) fits the framework of g ¢ R E 5 |R
hybrid systems in (2) withf := (2, x) € Rj“, fq(&) = T
(fq(z)vl)a gq(g) = (Z,O,:qu(Z)), Oq = Cq X R}Ov and
D, := D, x [T, ). A model with switches occurring every (a) mode 1 (b) mode 2

T, seconds (after the first switch) is given as in (3) but with
flow and jump set&’, := C, x[0,T] andD, := D, x {1},
respectively.

The following example illustrates the latter model in a
system that features a limit cycle.

Example 3.1:(A boost converter) Consider the simplified
boost DC-DC converter shown in Fig. 3. The boost circuit g =

16

Fig. 4. Two different modes for the boost converter

1

1A hybrid arc is a functiony defined on a hybrid time domain and for 1: 12
eachj € N, t — ¢(t, j) is locally absolutely continuous. dompact hybrid
time domainis a set€ C R>o x N of the form€& = U‘}]:O([t‘j,tj+1},j) .

1

for some finite sequence of tim@s=tg < t; < --- < tj41. The set€ is Z1 t
a hybrid time domairif for all (T, J) € £, £N([0,T] x {0,1,---,J})
is a compact hybrid time domain. Fig. 5. A limit cycle of the boost converter system in (5) withitial

2For a more general switched system with dwell-time signsés [12, condition (1.153, 2.476) from mode 2. Left: Phase plot of state variables
Example 2.13]. z1 and zg; Right: Transient response of



by toggling the switchS. In this work, we are interested in B. Basic Properties of Limit Cycles

periodic behavior. For instance, when we change the pasitio |, \what follows. we focus on a class of hybrid systems
of the switchS every second and the parameters are chosgii, explicit logic states in (2) that satisfies the follogin
asc=0.5,L =1,R =2, and E = 1, the boost converter 555 mption. In particular, the systems in the motivational
exhibitsa limit cycle for any initial condition. A limit cycle, example (Section 11) and Example 3.1 satisfy them.

i i i in Fig 3
denotedO, of the system in (5) is depicted in Fig.°5. Assumption 4.3For a hybrid syster = (C, f, D, g) in

In a similar manner as in [12, Chapter 2.4], we mode : :
o . . . 2) with statex := (£,q) on R"™ x Q, there existcompact
the switching frequency/events using a timer varigbldat ze)tsM C R" Zmd c:(cé;n(tli)r1uously difoerentiabIe functio;)v%-
4 :

increases during flow, and then triggers a jump once Ii,
reaches a given threshdld . Following (3),whenq = 1, we — R for eachg € Q such that, for each < Q,

makey to increase as ordinary timeand whenevey = 7, 1) the seC, can be written ag’, = {£ € R" : h4(¢) > 0}
resety to 0 and the logic variablg to 2. Wheng = 2, we and the setD, can be written asD, = {{ € R" :
makey to increase as ordinary tinteand whenevex = T}, he(§) = 0, Ly, hy(§) < O} _ _
again, resef to 0 and the logic variabl to 1. Hence, the  2) the_z functionf, is continuously d|fferen_t|able on an open
whole system composed by the circuit stategndzs, timer neighborhood ofM, N Cy, and the jump map, is
variable y, and the logic variablgy can be represented by continuous oMy N Dy;
the following hybrid systent(s = (Cg, /5, Dg, g5) : 3) Ly,hq(§) <0forall £ € Myn D,y andg((My N Dy) x
{g})N(MoND) =0, whereMg := |, o (Mg x{q});
< Aqz +bg 4) Hy = (MoNC, f,MgnND,g) has a periodic solution
&= x| =fo(@):= 1 reCp ¢* with period T* € (0,00) and.J* € N\ {0} jumps
U - qz+ 0 . (5) per period that defines a limit cyc® C MoN(CUD).
= |xT|=gplx):=| 0 x € Dgy Remark 4.4:ltem1) in Assumption 4.3 implies that flows
qt 3—¢q occur when every, is nonnegative while jumps only occur
L at points in zero level sets df,. The continuity property
WheieIQZ (§,a) = (2 x.9), c Q(Zl’ZQ) N (ZL’UC)(’j of f, in item 2) of Assumption 4.3 is further required
gB__{lR22}0 X [0, T3] x @ Dy = R x {Tx} x Q, anA for the existence of solutions t6 = f(x) according to

[12, Proposition 2.10]. Moreover, iter®) also guarantees
IV. LIMIT CYCLES AND BASIC PROPERTIES that solutions toi = f(z) continuously depend on initial
conditions. The first condition in item3) is necessary to
establish a transversality property of limit cycles. Thecsel
In this section, we introduce the notion of limit cyclescondition in item3) implies that, for eacly, p € Q such that
for systems as in (2) andn the next section, reveal their ¢ # p, we have((M,ND,) x {q})N((M,ND,) x {p}) = 0.
basic properties. As in [11], we consider a class of periodiThe set)M g restricts the analysis of the hybrid systéfito a
solutions defined as follows. particular region of the state space, leading to the reismic
Definition 4.1: (periodic solution) Consider a hybrid sys- 0f 7 given by#,, in item 4) of Assumption 4.3.
tem 7 with explicit logic states in (2). Lep* be a complete  We revisit the motivational example in Section Il to
solution to. Then¢* is periodic with periodl™ and J* illustrate the properties of a hybrid systehy, satisfying
jumps in each period if™* € (0,00) and J* € N\ {0} are  Assumption 4.3.

A. Definitions

the smallest numbers such thet(t + T, j+J%) = ¢ (L, ) Example 4.5:(Thermostat, revisited) Consider the ther-
for all (z,j) € dom ¢*. mostat system in the motivational examplégsing a logic
The definition of a periodic solutiop* with period7* variable ¢ € Q := {1,2}, the system can be modeled
and J* jumps implies that there exist* jumps and a as a hybrid system in (2), in which switches are triggered
switching sequencég, ¢z, - - - , -} With elements inQ in by conditions involving the temperature stageand the

each periodMoreover, itimplies that if (¢, j) € dom ¢*, then  logic variable q. The resulting hybrid systenHre, =
(t+T*,j+J*)cdom ¢*. A periodicsolution to generates (C'rem, frem, DTem, 9Tem) has stater = (€, ¢) and dynam-
a limit cycle. ics

Definition 4.2: (limit cycle) A periodic solutiong* to H . | —ag+c(2—q) c
with period T* € (0,00) and J* € N\ {0} jumps in each = frem () := 0 TELTem
period defines a limit cycfe© = {x € R*" x Q : = = Heem ¢ (6)
6*(1,9), (t,5) € dom§*} = U, o(Og x {q}), whereO, is 7 =grem (@) [3 . q} 7€ Dren

the range ofp* with logic variable component equal to ~
where Cren := {x € [0,0] x Q : (¢ = 1, < b2) Or (¢ =
3The ~code is available online: https://github.cont 2, > bl)} and Dey, 1= {x c [O’Z_)] x Q : (q =1,¢ =

Hybri dSyst ensLab/ Boost ConverterLimtCycle. _ _

4Alternatively, the limit cycle® can be written ag (£, q) € R x Q : b2) or (¢ = 2,¢ = by)}. The parameters, by, b, b and
(6,0) = (67 (8,9, 03 (,0)), £ € [t t:+T7], (t,) € dom ¢*} for some € SAUSYy a > 0, ¢ > aby > aby > 0, and b > b,.
ts € Rso. Define compact setd/, C R, ¢ € {1,2}, asM; := [0, bs]



and M, := [by,b], and define continuously differentiable (M, N D,) x {¢} is given by

functionsh, : My, — R, ¢ = {1,2}, ashi(§) := by — £ and . o

ho(§) := & — by. Then, Crer, @nd Doy Can be rewritten @) = i, (g(x))’(jT) ' Gf iv‘)g;{ A'[)(gsixggﬁqb} %
as C'Tem = Uzzl(CTemq X {Q}) with CvTemq = {5 € P g "/
My : hy(€) > 0} and Dy, = U2_; (Drem, x {q}) with  forall z € (M, 1 Dy) x {q}.
Drem, = {§ € Mg : hg(§) = 0, Ly, he(§) < 0}, where
fTem, (£) = —a& + ¢(2 — q) and we used the properties _ _ ~ _ o
Lo hi(€) = —(—aé+c(2—q)) = aba—c < 0 for eacht € In this section, we present stability properties of limit
Mf%"bTem andLy,.. ha(€) = —aé+c(2—q) = —aby < 0 cycles for hybrid systems with explicit logic states. Finge
for each¢ 16 M, ﬂ%m’;cnl . By design, the setd/o, C'rem define asymptotic stability using the hybrid Poincaré niap
and D, are compact, wherd/g := quQ(Mq % {q}). In in (7). Belo_w, fo_r eac,r‘q € Q, Pq’C dgnotesk compositions
addition, since the functionfrem andgren are continuously ©f the hybrid Poincaré mag, with itself. . .
differentiable, iterr2) in Assumption 4.3 holds. Furthermore, Next, a relationship between stability of fixed points of
it can be verified that for each € {1,2}, grem((M, N Poincaré magsand the stability of the corresponding limit

DTcmq)X{q})m(MQmDTcm) = ) SinCegrem(z) = (£,3—q) cycles is established.

V. STABILITY OF LIMIT CYCLES

as defined in (6). Therefore, for the hybrid syst®ffe,,,, = Theorem 5.1: Consider a hybrid systéih= (C, f, D, g)
(Mg N Croem, frems Mo N Drem, gTem), Assumption 4.3 with explicit logic states in (2) andompact setsl/, C R™
holds. A for eachq € Q satisfying Assumption 4.3. Suppose every

maximal solution toH,, = (Mg N C, f,Mgo N D,g) is

complete. Then, the following statements hold:

1) for eachqg € Q, z; = (&,q) € (MyN Dy) x {q} is a
stable fixed point of the Poincarmap £, in (7) if and
only if the limit cycleO to H s from ¢*(0,0) = g(x7)

The following properties hold fo# ,, defined in itemd)
of Assumption 4.3.

Lemma 4.6: Let Assumption 4.3 hold. Then, the data
of the hybrid systen¥,, = (Mg N C,F,Mg N D,G)
satisfies the hybrid basic conditions given by (A1)-(A3) in for eachq € Q is stable forHy:

[12, PropOSIt_lon 6.5]. o 2) for eachq € Q, 2} = (£,q) € (M, N D) x {q}
The following result shows that a limit cycle generated by 5 g globally asymptotically stablefixed point of the
periodic solutions as in Definition 4.2 is closed and bounded  pgincae map P, if and only if the unique limit cycle
Lemma 4.7: Consider a hybrid systeth= (C, f, D, g) O to Hys from ¢*(0,0) = g(z;) for eachq € Q is
with explicit logic states in (2) andompact sets\/, C R" asymptotically stable fo#{,,; with basin of attraction
for eachq € Q satisfying Assumption 4.3. Then, any limit containing every point i Mo N (C U D).

cycle O for 7, is compact. The following example illustrates the stability of the

The following result establishes a transversalipyoperty corresponding limit cycle using Theorem 5.1.

of limit cycles for # ;. Example 5.2:(Thermostat, revisited) Consider the tem-
Lemma 4.8: Consider a hybrid systeth= (C, f,D,g) perature control syster{ren,, in Example 4.5. Assump-
with explicit logic states in (2) andompact setsl/, C R™ tion 4.3 is verified in Example 4.9Moreover, it can be
for eachgq € Q satisfying Assumption 4.3. Any limit cycleshown that every maximal solution ®re.,,, iS complete.
O for Hyy is transversal toM o N D at every jump, where For eachy € Q = {1,2}, let the Poincaré maps fGtrem,,
Mg = U oMy x {q}). be given byP, with its associated fixed poirt;, ¢). Using
Following the construction in [1], for the hybrid system Th€orem 5.1, to show thahe limit cycle O of Hrem,,
# in (2), for eachq € Q, the time-to-impact function with 1S asymp_tou_cally stable with basin o_f attra}ctlon contagi
respect to D, is defined byTp, : CUD — RsoU{oc}, every point inMg N (Crem U Drem), it suffices to check,

wheré for eachq € Q, the eigenvalues of the Jacobian matrices
associated to the Poincaré mapsat its fixed point(¢;, ).
Tp,(z):=inf{t > 0: ¢(t,j) € Dy x {q},¢ € Sy ()} Due to the linear form of the flow map Gfren,,, the

Jacobian matrices of the Poincaré maps have explicit ioaly

for eachz = (¢,q) € C U D. ; Si K tant during flow. the i luti
Next, let us introduce the Poincaré map for a hybridorms' Incey keeps constant during Tow, the flow solution

f i — _
systemH = (C, f, D, g) with explicit logic states in (2). For (bivetﬁ tI:e f}o;/v dynfmlfi . a§ u c(c2 the)nfroT é;;o ;r:g
eachg € Q, the hybrid Poincaré map, : (M,ND,)x{q} — 2 yol(tdo) = (& =)+ 2 1=

A point z* is a fixed point of a Poincaré map : R*»t1 — R+ jf

5A limit cycle © with J* jumps in each period is transversaltég N D z* = P(x*).
at every jump (wherg* € N\ {0} andD is the union ofJ* jump sets, i.e., 8For stability notions of fixed points of Poincaré maps amditlicycles,
D = U,eo(Dq x {q})), if it intersects each jump s¢tVl; N Dq) x {g}  we refer the reader to [11].
at exactly one point¢, q) := O N Mg N (Dg x {¢q}) with the property 91n this paper, our results employ the term “global” as in [48H related
Ly, hq(€) # 0, whereq € Q. references, which requires careful treatment.

6In particular, when there does not exist> 0 such thate” (¢, z) € 10A “global” property for#H ; implies a “global” property of the original
Dy x {q}, we have{t > 0: ¢/ (t,z) € Dq x {q}} = 0 for eachqg € Q,  system?H only when M is equal toC U D. For tools to establish the
which givesTp, (z) = co. asymptotic stabilityproperty, see [12].



o' (t,&) = e ¢ wheng = 2. From the definition of the

VIl. CONCLUSION

Poincaré map and the solution of the flow dynamics from This paper introduced a Poincaré map to analyze asymp-

T = (f,q) with q=1 andf = by € M, ﬁDTemly it
follows that Py (x) = (b2, 1). Similarly, from the solution of
the flow dynamics fromx = (£, ¢q) with ¢ =2 and§ =b; €
M3 N Den,, it follows that P>(z) = (b1, 2). Then, the fixed
points for P, and P, arexz; = (§5,1) = (be,1) andz} =
(&,2) = (b1, 2), respectively. The Jacobian matrices /of
at the fixed pointsc;, for eachq € {1,2} are both the zero

totic stability of limit cycles in a class of hybrid systems
with explicit logic states, which can model switched system
under dwell-time switchingThe compactness and transver-
sality properties of limit cycles have been presentéd.the
constructions of time-to-impact functions and the Poiacar
map, sufficient and necessary conditions for asymptotic
stability of limit cycles have been established. An example

matrices. According to Theorem 5.1, the hybrid limit cyclefor a switched system with dwell-time, which allows for

O of the hybrid systen{ . ,, iS asymptotically stable with
basin of attraction containing every point Mg N (C're, U
Drem). In fact, the (unique) limit cycle@) is defined by a
periodic solutiony™ t0 Hrrem,, from ¢*(0,0) = (b1, 1) with
T*=Lln-ci 1y z—j and two jumps per period. A

abs—c

VI.

nonuniqueness of solutions, suggests that multiple limit
cycles within a period are possible. Due to existence of set-
valued maps in such a switched system, ways to establish
conditions for asymptotic stability of limit cycles remain
challenging problem. For future work, we will also inves-
tigate the robust stability of limit cycles in hybrid system

REMARKS ON SYSTEMS WITH
NONUNIQUE LIMIT CYCLES

Compared to the switched system in (3), wherfflows at

The authors would

with explicit logic states.
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a constant rate of, general switched systems under dwellinsightful discussions.

time switching, wherey flows at variable rates, allow for
nonuniqueness of solutionsee, e.g., (3) and the first set of
definitions forC, and D, below it. The following example g
presents a switched system with multiple limit cycles under
dwell-time switching, which is modeledsing one of the [2]
models given in Section IlI-B.

Consider the hybrid inclusiof{y = (Ca, Fa, Da,Ga)
with statex = (z,x,q) € R* modeling a switched system
under dwell-time switching

€ Fa(x)
Ha { N ®)

wherez = (z1,22) € R?, Oy = R? x [0,T}] x Q, Dp =
R? x {Ty} x Q, @ = {1,2}, Fa(z) = (fq(2).[e1],0),
e >0, Ga(o) (2,0,3 = ¢q), fi(z) = A1z + by,

fa(2) = Agz + ba, with Ay _1} by = E)] Ay =

5 —1
0 O 0 . i
0 1 OL. The hybrid systent{, can exhibit
periodic behaviors. Note that the systeH allows for  [8]
nonuniqueness of solutions due to the set-valued flow map.
Due to this, multiple limit cycles within a period are podsib
In fact, Ha = (Ca, Fa,Da,GA) at least has a periodic
solution ¢* with period T* = 47, and J* = 2 jumps per
period fore € (0,0.5] and a periodic solutiop™ with period
T* = 2T, and J* = 2 jumps per period.
Note that the systerfit, may have no limit cycles when
e = 0. In fact, Ha has a solution that flows for all time
in such a case. For a hybrid system with explicit logid12]
states and nonunique solutions, such as the above example,
to guarantee (asymptotic) stability of limit cycles usimgt |13
proposed method in this paper, a proper definition of set-
valued Poincaré maps will be requirdde to the existence
of multiple solutions from the same initial condition.

(31

[4]
x € Ch
x € D

T
ot

(5]

(6]

(7]

andby =

[20]

[11]

[14]

Here, the differential inclusiory € [e, 1] leads to switching instants
satisfying0 < ¢1 < Ty /e andt;j;1 — t; < Ty /e for eachj € N\ {0}.
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