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Abstract— This work pertains to the study of stability of
limit cycles for hybrid systems with explicit logic states within
a hybrid systems framework. We first focus on constructing
the hybrid systems with explicit logic states and revealingbasic
properties of limit cycles. Application to model switched systems
under dwell-time switching as such a hybrid system is provided.
In addition, we establish sufficient and necessary conditions for
stability of the limit cycles relying on Poincaré maps. Examples
illustrate the results. A discussion about the case of systems with
nonunique solutions is also included.

I. I NTRODUCTION

Hybrid systems are ubiquitous in realistic systems due to
their ability to capture models having state variables that
can evolve continuously (flows) and/or discretely (jumps).
In recent years, the study of limit cycles in hybrid systems
has received substantial attention. This is mainly due to the
existence of limit cycles with jumps in many engineering
applications, such as robotics [1], phase-locked loop [2],
gene networks [3], etc. In this paper, we consider a subset
of hybrid systems with great utility: hybrid systems with
explicit logic states; that is, hybrid systems containing dis-
crete modes or logic variables. Such systems can be modeled
using hybrid automata, in particular, and arise in a variety
of applications including the modeling of the dynamics of
genetic networks with binary hysteresis [3], the modeling
of heating control systems with desired temperature bands
[4], and the modeling of the DC-DC boost converter under
different switching modes [5].

Particular motivation for the study of hybrid systems with
explicit logic states comes from limit cycles in switched
systems with a sequence of modes. The problems of ensuring
the stability of limit cycles have been studied for specific
classes of switched systems. In particular, for a class of
switched linear systems in [6], Olsder applied a generalized
implicit function theorem to show characteristics of the
periodic solutions around operating points for sufficiently
small period. In [7], a sufficient condition given in terms
of a set of linear matrix inequalities for exponential stability
of limit cycles in a class of switched affine linear systems
was proposed using a discrete-time state description of the
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system. In [2], Flieller et al. utilized the sensitivity analysis
method to determine limit cycles of switched systems and
analyzed their local stability through the computation of the
Jacobian, which relies on the knowledge of the switching
sequence. In [8], the trajectory sensitivity approach was
employed to develop sufficient conditions for stability of
limit cycles in switched differential-algebraic systems.In [9],
Li studied the maximum number of limit cycles in a class of
discontinuous quadratic polynomial differential systemswith
ε-order terms. Recently, Benmiloud et al. in [10] provided
a new methodology to guarantee local asymptotic stability
of the desired limit cycle in planar switched systems by
designing one switching surface. Existing works in this area
mostly focus on deriving stability conditions for switched
linear systems or planar switched systems. We believe that
conditions for stability of limit cycles in hybrid systems with
explicit logic states should play a more prominent role in
analysis and control of limit cycles with jumps. To the best of
our knowledge, tools for the analysis of asymptotic stability
of limit cycles in such hybrid systems are not available in
the literature.

In this paper, we exploit the main idea proposed in [11],
formulating the stability problem of limit cycles for hybrid
systems with explicit logic states in a hybrid dynamical
systems framework [12]. The main contributions of this
paper can be summarized as follows:

1) We employ the hybrid systems framework [12] to model
the hybrid systems with explicit logic states and the
mechanisms generating switching modes in a way that is
amenable to the tools in [11] for the study of attractivity,
stability, and robustness of limit cycles.

2) As an application, we model the switched systems under
dwell-time switching as a hybrid system with explicit
logic states. A notion of limit cycle for such hybrid
systems is introduced and some of its properties are
presented including compactness and transversality.

3) We establish sufficient and necessary conditions for
guaranteeing global asymptotic stability of limit cycles
for hybrid systems with explicit logic states, which
can further be extended for characterizing robustness of
asymptotic stability under perturbations of such systems
using the recent results in [12].

The structure of the paper is as follows. We start with a
motivational example in Section II. The formulation of the
hybrid model and an application to switched systems with
dwell-time are given in Section III. Section IV introduces
the definition of limit cycle and gives some of its basic



properties. Section V presents the stability notions as well
as sufficient and necessary conditions for stability of limit
cycles. Section VI discusses the case of nonuniqueness of
solutions in switched systems with dwell-time.

Notation: Specifically, Rn denotes then-dimensional
Euclidean space,R>0 denotes the set of nonnegative real
numbers, i.e.,R>0 := [0,+∞), and N denotes the set of
natural numbers including0, i.e., N := {0, 1, 2, · · · }. The
equivalent notation[x⊤ y⊤]⊤ and(x, y) are used for the same
vector. Given a setA ⊂ R

n, A denotes its closure. Given
a continuously differentiable functionh : Rn → R and a
functionf : Rn → R

n, the Lie derivative ofh at x in the di-
rection off is denoted byLfh(x) := 〈∇h(x), f(x)〉. Given
a functionf : Rm → R

n, its domain of definition is denoted
by dom f , i.e., dom f := {x ∈ R

m : f(x) is defined}.

II. M OTIVATIONAL EXAMPLE

The following example motivates the study of limit cycles
for hybrid systems with explicit logic states in this paper.
The state-triggered switched system features a limit cycle.

Consider a thermostat that controls the temperatureξ of
a heating system [4]. The heater in the system is used to
maintain the temperature of the thermostat within a desired
temperature band.The proposed model doesnot consider the
influence of the internal temperature of the heater.As we will
show later, the system can be modeled as a hybrid system
with a logic variableq ∈ Q := {1, 2}. Whenq = 1 and the
temperature is at the higher endb2 (or above) of the desired
temperature band, resetq to 2 and the heater turns off until
the temperature reaches the lower endb1 of the desired band.
Whenq = 2 and the temperature is less than or equal tob1,
resetq to 1 and the heater turns on again. Fig. 1 shows a
hybrid automaton modeling this system [4]. The parameter
a is the natural cooling coefficient of the thermostat and the
parameterc characterizes the effectiveness of the heater. The
desired temperature band for the thermostat is chosen as the
interval [b1, b2]. If the parametersa, b1, b2, and c satisfy
a > 0 and c > ab2 > ab1 > 0, the system exhibits periodic
behavior for any initial condition, as shown in Fig. 2.

ξ = b2

ξ = b1

ξ̇=−aξ+c

(ξ 6 b2)
ξ̇=−aξ

(ξ > b1)

Fig. 1. The hybrid automaton of a thermostat

In this paper, our interest is in developing analysis methods
that can be applied to such a system with explicit logic
states as well as to switched systems under dwell-time so as
to guarantee asymptotic stability of limit cycles. While the
models considered in [9], [10] are specific cases of switched
systems with logic modes,they only apply to planar switched
systems. On the other hand,the results presented here are
suitable for general hybrid systems with explicit logic states.
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Fig. 2. State trajectories of the thermostat system with initial values0 for
ξ and1 for q (blue) or18 for ξ and2 for q (red), wherea = 0.1, b1 = 15,
b2 = 20 and c = 10. Left: Transient response ofξ; Right: Phase plot of
state variablesq and ξ.

III. PROBLEM STATEMENT

AND MATHEMATICAL MODELING

A. System Description

Following [12, Chapter 1.4],consider the hybrid system
with explicit logic states given by

H






[
ξ̇

q̇

]
=

[
fq(ξ)
0

]
ξ ∈ Cq, q ∈ Q

[
ξ+

q+

]
= gq(ξ) ξ ∈ Dq, q ∈ Q

(1)

where ξ̇ and q̇ denote the derivatives with respect to time,
respectively, andξ+ and q+ denote the values of thestate
ξ and the logic variableq after a jump, respectively. The
state vector ofH is given byx := (ξ, q) ∈ R

n+1, where
ξ ∈ R

n is the continuous state component,q ∈ Q is the
discrete state component associated with the explicit logic
mode, andQ is a finite index set ofqmax elements, namely,
Q := {1, 2, · · ·, qmax}. The explicit logic stateq, by its
nature, can change only via a jump.For eachq ∈ Q, the
function fq : Rn → R

n defines the evolution ofξ during
flows and the functiongq : Rn ×Q → R

n+1 determines the
value of the state after jumps.

System (1) with statex = (ξ, q) can be written within the
hybrid systems framework in [12] as follows:

H





ẋ = f(x) :=

[
fq(ξ)
0

]
x ∈ C

x+ = g(x) := gq(ξ) x ∈ D

(2)

whereC :=
⋃

q∈Q

(Cq × {q}) denotes the flow set andD :=
⋃

q∈Q

(Dq ×{q}) denotes the jump set. The data of the hybrid

systemH is given by (C, f,D, g). The elements of data
that representH on the state spaceRn+1 have the following
properties:

- Given functionsfq for eachq ∈ Q, the flow mapf :
R

n×Q→R
n+1 defines the continuous evolution ofx.

- The jump mapg is given by, for eachq ∈ Q, function
gq : Rn → R

n × Q that defines the changes ofx at
jumps.

- For eachq ∈ Q, the setsCq andDq are subsets ofRn,
on which the flows are effective and jumps(with such
value ofq) can occur, respectively.

Compared to our previous results in [11], [13], the explicit



logic state in the hybrid systemH allows us to capture
certain families of logic modepatterns or switching signals
explicitly. We extendand specialize, as needed,our previous
results to fit such a model. When modeling a system with
explicit logic states as a well-posed hybrid system, the tools
in [12] for robust stability of limit cycles apply.

A solution toH is parameterized by ordinary timet and a
counterj for jumps. It is given by a hybrid arc1 φ : domφ →
R

n+1 that satisfies the dynamics ofH; see [12] for more
details. A solutionφ to H is said to be complete ifdomφ

is unbounded. It is precompact if it is complete and bounded.
It is said to be maximal if it is not a truncated version of
another solution. The set of maximal solutions toH from
the setK is denoted as

SH(K) :={φ :φ is a maximal solution toHwith φ(0, 0)∈K}.

We definet 7→ φf (t, x0) as a solution of the flow dynamics

ẋ = f(x) x ∈ C

from x0 ∈ C. Note that by construction, theq component of
the solutions toH remains constant during flows.

B. Special Case: Switched Systems with Dwell-Time

The continuous stateξ of H in (2) may contain an auxil-
iary state componentχ that is useful in modeling switched
systems under dwell-time switching. A dwell-time switching
signal has switching timesti satisfyingti+1−ti > Tχ for i =
1, 2, · · · , whereTχ > 0 denotes the dwell-time parameter. In
fact, a hybrid system modeling switched systems with dwell-
time switching signals is given by2

ż = f̃q(z)
χ̇ = 1
q̇ = 0




 z ∈ C̃q, χ > 0

z+ = z

χ+ = 0
q+ = g̃q(z)



 z ∈ D̃q, χ ∈ [Tχ,∞)

(3)

with statex = (ξ, q) = ((z, χ), q) ∈ R
n+1 × Q and dwell

time parameterTχ > 0. System (3) fits the framework of
hybrid systems in (2) withξ := (z, χ) ∈ R

n+1, fq(ξ) :=

(f̃q(z), 1), gq(ξ) := (z, 0, g̃q(z)), Cq := C̃q × R>0, and
Dq := D̃q×[Tχ,∞). A model with switches occurring every
Tχ seconds (after the first switch) is given as in (3) but with
flow and jump setsCq := C̃q×[0, Tχ] andDq := D̃q×{Tχ},
respectively.

The following example illustrates the latter model in a
system that features a limit cycle.

Example 3.1:(A boost converter) Consider the simplified
boost DC-DC converter shown in Fig. 3. The boost circuit

1A hybrid arc is a functionφ defined on a hybrid time domain and for
eachj ∈ N, t 7→ φ(t, j) is locally absolutely continuous. Acompact hybrid
time domainis a setE ⊂ R>0 × N of the formE =

⋃J
j=0([tj , tj+1], j)

for some finite sequence of times0 = t0 6 t1 6 · · · 6 tJ+1. The setE is
a hybrid time domainif for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, · · · , J})
is a compact hybrid time domain.

2For a more general switched system with dwell-time signals,see [12,
Example 2.13].

consists of a DC voltage sourceE, an inductorL, an ideal
dioded, a capacitorc, a resistorR, and an ideal switchS.
The controlled switchS can be either on or off, defining two
main steady-state modes of operation (cf. [14]).

mode 1:S is on mode 2:S is off

ON
OFF

S

L

E Rc

d

Fig. 3. The boost converter

The circuit associated to each modeis shown in Fig. 4. In
mode 1, in which the switch is on, the inductor offloads
power to the resistor. In mode 2, in which the switch is off,
the input source charges the inductor and the capacitor feeds
the load. Assuming no parasitic effects, the dynamics of the
boost DC-DC converter on such modesare modeledby

ż = Aqz + bq (4)

where z = (z1, z2) ∈ R
2
>0 is the state vector withz1 the

inductor current,z2 the voltage over the capacitor, andq ∈
{1, 2} a logic variable used to indicate whether the switchS

is on or off. When the logic variableq is equal to1 (i.e., the
switchS is on), the dynamics of the system are governed by

A1 =

[
0 − 1

L
1

c
− 1

Rc

]
, b1 =

[
E
L

0

]
.

When the logic variableq is equal to2 (i.e., the switchS is
off), the dynamics of the systemaregoverned by

A2 =

[
0 0
0 − 1

Rc

]
, b2 =

[
E
L

0

]
.

As suggested in [6], one would expect different behaviors

L

E Rc

L

E Rc

(a) mode 1 (b) mode 2

Fig. 4. Two different modes for the boost converter
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Fig. 5. A limit cycle of the boost converter system in (5) withinitial
condition (1.153, 2.476) from mode 2. Left: Phase plot of state variables
z1 andz2; Right: Transient response ofq.



by toggling the switchS. In this work, we are interested in
periodic behavior. For instance, when we change the position
of the switchS every second and the parameters are chosen
as c = 0.5, L = 1, R = 2, andE = 1, the boost converter
exhibitsa limit cycle for any initial condition. A limit cycle,
denotedO, of the system in (5) is depicted in Fig. 5.3

In a similar manner as in [12, Chapter 2.4], we model
the switching frequency/events using a timer variableχ that
increases during flow, and then triggers a jump once it
reaches a given thresholdTχ. Following (3),whenq = 1, we
makeχ to increase as ordinary timet, and wheneverχ = Tχ,
resetχ to 0 and the logic variableq to 2. Whenq = 2, we
makeχ to increase as ordinary timet, and wheneverχ = Tχ

again, resetχ to 0 and the logic variableq to 1. Hence, the
whole system composed by the circuit statesz1 andz2, timer
variableχ, and the logic variableq can be represented by
the following hybrid systemHB = (CB, fB, DB, gB) :

HB :






ẋ=




ż

χ̇

q̇



=fB(x) :=




Aqz + bq

1
0



 x ∈ CB

x+=




z+

χ+

q+



=gB(x) :=




z

0
3− q



 x ∈ DB

(5)

where x = (ξ, q) = (z, χ, q), z = (z1, z2) := (iL, uC),
CB = R

2
>0 × [0, Tχ] × Q, DB = R

2
>0 × {Tχ} × Q, and

Q = {1, 2}. △

IV. L IMIT CYCLES AND BASIC PROPERTIES

A. Definitions

In this section, we introduce the notion of limit cycles
for systems as in (2) and,in the next section, reveal their
basic properties. As in [11], we consider a class of periodic
solutions defined as follows.

Definition 4.1: (periodic solution) Consider a hybrid sys-
temH with explicit logic states in (2). Letφ∗ be a complete
solution toH. Thenφ∗ is periodic with periodT ∗ and J∗

jumps in each period ifT ∗ ∈ (0,∞) andJ∗ ∈ N \ {0} are
the smallest numbers such thatφ∗(t+T ∗, j+J∗) = φ∗(t, j)
for all (t, j) ∈ domφ∗.

The definition of a periodic solutionφ∗ with period T ∗

and J∗ jumps implies that there existJ∗ jumps and a
switching sequence{q1, q2, · · · , qJ∗} with elements inQ in
each period.Moreover, itimplies that if(t, j)∈dom φ∗, then
(t+T ∗, j+J∗)∈dom φ∗. A periodicsolution toH generates
a limit cycle.

Definition 4.2: (limit cycle) A periodic solutionφ∗ to H
with periodT ∗ ∈ (0,∞) andJ∗ ∈ N \ {0} jumps in each
period defines a limit cycle4 O = {x ∈ R

n × Q : x =
φ∗(t, j), (t, j) ∈ domφ∗} =

⋃
q∈Q

(Oq × {q}), whereOq is
the range ofφ∗ with logic variable component equal toq.

3The code is available online: https://github.com/
HybridSystemsLab/BoostConverterLimitCycle.

4Alternatively, the limit cycleO can be written as{(ξ, q) ∈ Rn ×Q :
(ξ, q) = (φ∗

ξ
(t, j), φ∗

q(t, j)), t ∈ [ts, ts+T ∗], (t, j) ∈ domφ∗} for some
ts ∈ R>0.

B. Basic Properties of Limit Cycles

In what follows, we focus on a class of hybrid systems
with explicit logic states in (2) that satisfies the following
assumption. In particular, the systems in the motivational
example (Section II) and Example 3.1 satisfy them.

Assumption 4.3:For a hybrid systemH = (C, f,D, g) in
(2) with statex := (ξ, q) on R

n × Q, there existcompact
setsMq ⊂ R

n and continuously differentiable functionshq :
R

n → R for eachq∈Q such that, for eachq∈Q,

1) the setCq can be written asCq = {ξ ∈ R
n : hq(ξ) > 0}

and the setDq can be written asDq = {ξ ∈ R
n :

hq(ξ) = 0, Lfqhq(ξ) 6 0};
2) the functionfq is continuously differentiable on an open

neighborhood ofMq ∩ Cq, and the jump mapgq is
continuous onMq ∩Dq;

3) Lfqhq(ξ) < 0 for all ξ ∈ Mq ∩Dq andg((Mq ∩Dq)×
{q})∩(MQ∩D) = ∅, whereMQ :=

⋃
q∈Q

(Mq×{q});
4) HM := (MQ∩C, f,MQ∩D, g) has a periodic solution

φ∗ with periodT ∗ ∈ (0,∞) andJ∗ ∈ N \ {0} jumps
per period that defines a limit cycleO ⊂ MQ∩(C∪D).

Remark 4.4:Item1) in Assumption 4.3 implies that flows
occur when everyhq is nonnegative while jumps only occur
at points in zero level sets ofhq. The continuity property
of fq in item 2) of Assumption 4.3 is further required
for the existence of solutions tȯx = f(x) according to
[12, Proposition 2.10]. Moreover, item2) also guarantees
that solutions toẋ = f(x) continuously depend on initial
conditions. The first condition in item3) is necessary to
establish a transversality property of limit cycles. The second
condition in item3) implies that, for eachq, p ∈ Q such that
q 6= p, we have((Mq∩Dq)×{q})∩((Mp∩Dp)×{p}) = ∅.
The setMQ restricts the analysis of the hybrid systemH to a
particular region of the state space, leading to the restriction
of H given byHM in item 4) of Assumption 4.3.

We revisit the motivational example in Section II to
illustrate the properties of a hybrid systemHM satisfying
Assumption 4.3.

Example 4.5:(Thermostat, revisited) Consider the ther-
mostat system in the motivational example.Using a logic
variable q ∈ Q := {1, 2}, the system can be modeled
as a hybrid system in (2), in which switches are triggered
by conditions involving the temperature stateξ and the
logic variable q. The resulting hybrid systemHTem =
(CTem, fTem, DTem, gTem) has statex = (ξ, q) and dynam-
ics

HTem





ẋ=fTem(x) :=

[
−aξ+c(2−q)

0

]
x∈CTem

x+=gTem(x) :=

[
ξ

3− q

]
x∈DTem

(6)

whereCTem := {x ∈ [0, b̄] × Q : (q = 1, ξ 6 b2) or (q =
2, ξ > b1)} and DTem := {x ∈ [0, b̄] × Q : (q = 1, ξ =
b2) or (q = 2, ξ = b1)}. The parametersa, b1, b2, b̄ and
c satisfy a > 0, c > ab2 > ab1 > 0, and b̄ > b2.
Define compact setsMq ⊂ R, q ∈ {1, 2}, asM1 := [0, b2]



and M2 := [b1, b̄], and define continuously differentiable
functionshq : Mq → R, q = {1, 2}, ash1(ξ) := b2 − ξ and
h2(ξ) := ξ − b1. Then,CTem and DTem can be rewritten
as CTem =

⋃2

q=1
(CTemq

× {q}) with CTemq
= {ξ ∈

Mq : hq(ξ) > 0} andDTem =
⋃2

q=1
(DTemq

× {q}) with
DTemq

= {ξ ∈ Mq : hq(ξ) = 0, LfTemq
hq(ξ) 6 0}, where

fTemq
(ξ) = −aξ + c(2 − q) and we used the properties

LfTem1
h1(ξ) = −(−aξ+c(2−q)) = ab2−c < 0 for eachξ ∈

M1∩DTem1
andLfTem2

h2(ξ) = −aξ+c(2−q) = −ab1 < 0
for eachξ ∈ M2 ∩ DTem2

. By design, the setsMQ, CTem

andDTem are compact, whereMQ :=
⋃

q∈Q
(Mq×{q}). In

addition, since the functionsfTem andgTem are continuously
differentiable, item2) in Assumption 4.3 holds. Furthermore,
it can be verified that for eachq ∈ {1, 2}, gTem((Mq ∩
DTemq

)×{q})∩(MQ∩DTem) = ∅ sincegTem(x) = (ξ, 3−q)
as defined in (6). Therefore, for the hybrid systemHTemM

=
(MQ ∩ CTem, fTem,MQ ∩ DTem, gTem), Assumption 4.3
holds. △

The following properties hold forHM defined in item4)
of Assumption 4.3.

Lemma 4.6: Let Assumption 4.3 hold. Then, the data
of the hybrid systemHM = (MQ ∩ C,F,MQ ∩ D,G)
satisfies the hybrid basic conditions given by (A1)-(A3) in
[12, Proposition 6.5].

The following result shows that a limit cycle generated by
periodic solutions as in Definition 4.2 is closed and bounded.

Lemma 4.7: Consider a hybrid systemH = (C, f,D, g)
with explicit logic states in (2) andcompact setsMq ⊂ R

n

for eachq ∈ Q satisfying Assumption 4.3. Then, any limit
cycleO for HM is compact.

The following result establishes a transversality5 property
of limit cycles forHM .

Lemma 4.8: Consider a hybrid systemH = (C, f,D, g)
with explicit logic states in (2) andcompact setsMq ⊂ R

n

for eachq ∈ Q satisfying Assumption 4.3. Any limit cycle
O for HM is transversal toMQ ∩D at every jump, where
MQ :=

⋃
q∈Q

(Mq × {q}).

Following the construction in [1], for the hybrid system
H in (2), for eachq ∈ Q, the time-to-impact function with
respect toDq is defined byTDq

: C ∪D → R>0∪{∞},
where6

TDq
(x) :=inf{t > 0 : φ(t, j) ∈ Dq × {q}, φ ∈ SH(x)}

for eachx = (ξ, q) ∈ C ∪D.
Next, let us introduce the Poincaré map for a hybrid

systemH = (C, f,D, g) with explicit logic states in (2). For
eachq∈Q, the hybrid Poincaré mapPq : (Mq∩Dq)×{q} →

5A limit cycle O with J∗ jumps in each period is transversal toMQ∩D
at every jump (whereJ∗ ∈ N\{0} andD is the union ofJ∗ jump sets, i.e.,
D =

⋃
q∈Q(Dq × {q})), if it intersects each jump set(Mq ∩Dq)× {q}

at exactly one point(ξ̄, q) := O ∩ MQ ∩ (Dq × {q}) with the property
Lfqhq(ξ̄) 6= 0, whereq ∈ Q.

6In particular, when there does not existt > 0 such thatφf (t, x) ∈
Dq × {q}, we have{t > 0 : φf (t, x) ∈ Dq × {q}} = ∅ for eachq ∈ Q,
which givesTDq

(x) = ∞.

(Mq ∩Dq)× {q} is given by

Pq(x) := {φ(TDq
(g(x)), j) : φ ∈ SHM

(g(x)),
(TDq

(g(x)), j)∈domφ}
(7)

for all x ∈ (Mq ∩Dq)× {q}.

V. STABILITY OF L IMIT CYCLES

In this section, we present stability properties of limit
cycles for hybrid systems with explicit logic states. First, we
define asymptotic stability using the hybrid Poincaré mapPq

in (7). Below, for eachq ∈ Q, P k
q denotesk compositions

of the hybrid Poincaré mapPq with itself.
Next, a relationship between stability of fixed points of

Poincaré maps7 and the stability of the corresponding limit
cycles is established.8

Theorem 5.1: Consider a hybrid systemH = (C, f,D, g)
with explicit logic states in (2) andcompact setsMq ⊂ R

n

for each q ∈ Q satisfying Assumption 4.3. Suppose every
maximal solution toHM = (MQ ∩ C, f,MQ ∩ D, g) is
complete. Then, the following statements hold:

1) for eachq ∈ Q, x∗
q := (ξ∗q , q) ∈ (Mq ∩Dq)× {q} is a

stable fixed point of the Poincaré mapPq in (7) if and
only if the limit cycleO to HM from φ∗(0, 0) = g(x∗

q)
for eachq ∈ Q is stable forHM ;

2) for each q ∈ Q, x∗
q := (ξ∗q , q) ∈ (Mq ∩ Dq) × {q}

is a globally asymptotically stable9 fixed point of the
Poincaŕe mapPq if and only if the unique limit cycle
O to HM from φ∗(0, 0) = g(x∗

q) for each q ∈ Q is
asymptotically stable forHM with basin of attraction
containing every point in10 MQ ∩ (C ∪D).

The following example illustrates the stability of the
corresponding limit cycle using Theorem 5.1.

Example 5.2:(Thermostat, revisited) Consider the tem-
perature control systemHTemM

in Example 4.5. Assump-
tion 4.3 is verified in Example 4.5.Moreover, it can be
shown that every maximal solution toHTemM

is complete.
For eachq ∈ Q = {1, 2}, let the Poincaré maps forHTemM

be given byPq with its associated fixed point(ξ∗q , q). Using
Theorem 5.1, to show thatthe limit cycle O of HTemM

is asymptotically stable with basin of attraction containing
every point inMQ ∩ (CTem ∪ DTem), it suffices to check,
for eachq ∈ Q, the eigenvalues of the Jacobian matrices
associated to the Poincaré mapsPq at its fixed point(ξ∗q , q).

Due to the linear form of the flow map ofHTemM
, the

Jacobian matrices of the Poincaré maps have explicit analytic
forms. Sinceq keeps constant during flow, the flow solution
φf to the flow dynamicsξ̇ = −aξ + c(2 − q) from ξ0 are
given by φf (t, ξ0) = e−at(ξ0 − c

a
) + c

a
when q = 1 and

7A point x∗ is a fixed point of a Poincaré mapP : Rn+1 → R
n+1 if

x∗ = P (x∗).
8For stability notions of fixed points of Poincaré maps and limit cycles,

we refer the reader to [11].
9In this paper, our results employ the term “global” as in [12]and related

references, which requires careful treatment.
10A “global” property forHM implies a “global” property of the original

systemH only when M is equal toC ∪ D. For tools to establish the
asymptotic stabilityproperty, see [12].



φf (t, ξ0) = e−atξ0 when q = 2. From the definition of the
Poincaré map and the solution of the flow dynamics from
x = (ξ, q) with q = 1 and ξ = b2 ∈ M1 ∩ DTem1

, it
follows thatP1(x) = (b2, 1). Similarly, from the solution of
the flow dynamics fromx = (ξ, q) with q = 2 andξ = b1 ∈
M2∩DTem2

, it follows thatP2(x) = (b1, 2). Then, the fixed
points forP1 andP2 arex∗

1 = (ξ∗1 , 1) = (b2, 1) andx∗
2 =

(ξ∗2 , 2) = (b1, 2), respectively. The Jacobian matrices ofPq

at the fixed pointsx∗
q for eachq ∈ {1, 2} are both the zero

matrices. According to Theorem 5.1, the hybrid limit cycle
O of the hybrid systemHTemM

is asymptotically stable with
basin of attraction containing every point inMQ ∩ (CTem ∪
DTem). In fact, the (unique) limit cycleO is defined by a
periodic solutionφ∗ to HTemM

from φ∗(0, 0) = (b1, 1) with
T ∗ = 1

a
ln ab1−c

ab2−c
+ 1

a
ln b2

b1
and two jumps per period. △

VI. REMARKS ON SYSTEMS WITH

NONUNIQUE L IMIT CYCLES

Compared to the switched system in (3), whereχ flows at
a constant rate of1, general switched systems under dwell-
time switching, whereχ flows at variable rates, allow for
nonuniqueness of solutions;see, e.g., (3) and the first set of
definitions forCq andDq below it. The following example
presents a switched system with multiple limit cycles under
dwell-time switching, which is modeledusing one of the
models given in Section III-B.

Consider the hybrid inclusionHA = (CA, FA, DA, GA)
with statex = (z, χ, q) ∈ R

4 modeling a switched system
under dwell-time switching

HA

{
ẋ ∈ FA(x) x ∈ CA

x+ = GA(x) x ∈ DA

(8)

wherez = (z1, z2) ∈ R
2, CA = R

2 × [0, Tχ] × Q, DA =
R

2 × {Tχ} × Q, Q = {1, 2}, FA(x) = (fq(z), [ǫ, 1], 0),
11 ǫ > 0, GA(x) = (z, 0, 3 − q), f1(z) = A1z + b1,

f2(z) = A2z + b2, with A1 =

[
0 −1
5 −1

]
, b1 =

[
1
0

]
, A2 =

[
0 0
0 −1

]
andb2 =

[
0
0

]
. The hybrid systemHA can exhibit

periodic behaviors. Note that the systemHA allows for
nonuniqueness of solutions due to the set-valued flow map.
Due to this, multiple limit cycles within a period are possible.
In fact, HA = (CA, FA, DA, GA) at least has a periodic
solutionφ∗ with periodT ∗ = 4Tχ and J∗ = 2 jumps per
period forǫ ∈ (0, 0.5] and a periodic solutionφ∗ with period
T ∗ = 2Tχ andJ∗ = 2 jumps per period.

Note that the systemHA may have no limit cycles when
ǫ = 0. In fact, HA has a solution that flows for all time
in such a case. For a hybrid system with explicit logic
states and nonunique solutions, such as the above example,
to guarantee (asymptotic) stability of limit cycles using the
proposed method in this paper, a proper definition of set-
valued Poincaré maps will be requireddue to the existence
of multiple solutions from the same initial condition.

11Here, the differential inclusioṅχ ∈ [ǫ,1] leads to switching instantstj
satisfying0 6 t1 6 Tχ/ǫ and tj+1 − tj 6 Tχ/ǫ for eachj ∈ N \ {0}.

VII. C ONCLUSION

This paper introduced a Poincaré map to analyze asymp-
totic stability of limit cycles in a class of hybrid systems
with explicit logic states, which can model switched systems
under dwell-time switching.The compactness and transver-
sality properties of limit cycles have been presented.Via the
constructions of time-to-impact functions and the Poincaré
map, sufficient and necessary conditions for asymptotic
stability of limit cycles have been established. An example
for a switched system with dwell-time, which allows for
nonuniqueness of solutions, suggests that multiple limit
cycles within a period are possible. Due to existence of set-
valued maps in such a switched system, ways to establish
conditions for asymptotic stability of limit cycles remaina
challenging problem. For future work, we will also inves-
tigate the robust stability of limit cycles in hybrid systems
with explicit logic states.
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