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Multiple Barrier Function Certificates for Forward Invariance
in Hybrid Inclusions

Mohamed Maghenem and Ricardo G. Sanfelice

Abstract— As a continuation of [1] and using multiple barrier
functions, this paper studies forward invariance in hybrid sys-
tems modeled by hybrid inclusions. After introducing the notion
of a multiple barrier function, we propose sufficient conditions
to guarantee different forward invariance properties of a closed
set for hybrid systems with nonuniqueness of solutions, solutions
terminating prematurely, and Zeno solutions. More precisely,
we consider forward (pre-)invariance of sets, which guarantees
solutions to stay in a set, and (pre-)contractivity, which further
requires solutions that stay in the boundary of the set to evolve
(continuously or discretely) towards its interior. Our conditions
for forward invariance involve infinitesimal conditions in terms
of multiple barrier functions while our conditions for pre-
contractivity (and contractivity) involve Minkowski functionals.
Examples illustrate the results.

I. INTRODUCTION

The study of forward invariance in dynamical systems
can constitute an important step to conclude some stability
properties [2]. Also, it offers a powerful tool to guarantee
safety in many real-world applications [3]. The main chal-
lenge when studying forward invariance notions consists in
providing the tightest possible conditions ensuring that such
a property holds, while avoiding explicit computation of the
systems solutions. A primary, and yet fundamental answer to
this problem was given by Nagumo in [4]. In this reference,
conditions involving the contingent cone at the boundary of
a given closed set are shown to be necessary and sufficient
to conclude that, for each point in the set, there exists at
least one solution that remains in it. The set, in this case,
is invariant in a weak sense. The same result, under the
name viablility, is shown to remain valid when the system
is represented by a general differential inclusion satisfying
certain regularity conditions. The latter result has been, in
turn, extended to impulse differential inclusions and hybrid
inclusions in [5] and [6], respectively. When all the solutions
starting from a given closed set are required to remain in the
set, in this case as stressed in [7], the invariance conditions
concern the systems behavior outside the set rather than on its
boundary. Sufficient conditions are proposed in [8], [7], and
[6] for hybrid automata, differential inclusions, and hybrid
inclusions, respectively. Moreover, one can strengthen this

M. Maghenem and R. G. Sanfelice are with Department of Electrical
and Computer Engineering, University of California, Santa Cruz. Email:
mmaghene,ricardo@ucsc.edu.

This research has been partially supported by the National Science
Foundation under CAREER Grant no. ECS-1450484, Grant no. ECS-
1710621, and Grant no. CNS-1544396, by the Air Force Office of Scientific
Research under Grant no. FA9550-16-1-0015, by the Air Force Research
Laboratory under Grant no. FA9453-16-1-0053, and by CITRIS and the
Banatao Institute at the University of California.

978-1-5386-7926-5/$31.00 ©2019 AACC

invariance property by requiring, additionally, that whenever
a solution reaches the boundary of the set to render invariant,
it instantaneously leaves the boundary towards the interior of
the set. In this case the set is contractive [9] or invariant in
a strict sense [7]. Characterizations of the latter property are
proposed in [9] for differential and difference equations and
in [7] for differential inclusions.

For general hybrid inclusions, in our previous work [1],
characterizations of the aforementioned invariance notions
are proposed using scalar barrier functions. That is, when the
considered closed set is defined as the set of points where the
dynamics are defined and, at the same time, a scalar function
is nonpositive, we say that the set admits a scalar barrier
function candidate. In [1], infinitesimal sufficient conditions
involving the scalar barrier function candidate are derived
to guarantee the aforementioned invariance notions. Our
approach in [1] can be seen as an alternative to the previously
cited literature using cone conditions [7], [6]. Moreover,
it extends the existing results using barrier functions [10],
[11] for hybrid inclusions. In many applications, it is often
the case the closed set to render invariant corresponds to
the region where multiple scalar functions are nonpositive
simultaneously. In such cases, it is typically difficult to find
a single scalar function that defines the set of interest and, at
the same time smooth. Hence, it is natural to want sufficient
conditions guaranteeing forward invariance of a closed set in
terms of the multiple barrier function for hybrid inclusions.

A hybrid inclusion is defined as a differential inclusion
with a constraint, which models the flow or continuous
evolution of the system, plus a difference inclusion with
a constraint, modeling the jumps or discrete events. For
this general framework, sufficient conditions in terms of
infinitesimal inequalities involving the multiple barrier can-
didates are proposed in this paper. More precisely, under
mild conditions on the data defining the hybrid inclusion,
we first propose sufficient conditions that guarantee forward
invariance notions; see Section III. As a second step, we
provide conditions to conclude the relatively stronger notion
named strict invariance or contractivity. For the latter prop-
erty, we distinguish two cases. When the closed set is a C-
set, necessary and sufficient conditions are provided. When
the closed set is a non-C set, only sufficient conditions are
provided; see Section IV. The results in this paper cover the
existing results in [12], [11], [8], [1] where only scalar barrier
functions are used. Also, we provide alternative conditions
to those proposed in [6] and [7] in terms of tangent cones.
Indeed, our conditions are alternatives to those therein since

2346



they exploit the fact that the set is a zero-sublevel set of a
barrier function. Hence, the obtained conditions avoid the
computation of tangent cones, which can be numerically
expensive. However, our results build upon the well-known
tangent-cone based conditions that can be found in [7] and
[13]. To the best of our knowledge, this is the first time in
the literature where the concept of multiple barrier functions
is used for hybrid inclusions.

Due to space limitation, some proofs are omitted and will
be published elsewhere.

Notations. For x, y € R", x| denotes the transpose of z,
|| the Euclidean norm of z, |z|x := minycx |z —y| defines
the distance between x and the nonempty set K, and (z,y) =
2"y the inner product between x and y. The inequalities
x <0 and x < 0 mean that z; < 0 and, respectively, z; < 0
for all i € {1,...,n}. The inequalities # £ 0 and = £ 0
mean that there exists ¢ € {1,...,n} such that 2; > 0 and,
respectively, x; > 0. For a closed set K C R", we use
int(K) to denote its interior, JK its boundary, cl(K) its
closure, and U(K) to denote an open neighborhood around
K, namely, cl(K) C U(K). For an open set O C R", K\O
denotes the subset of elements of K that are not in O. The
open unit ball in R™ centered at the origin is denoted B. For
a continuously diferentiable function B : O — R, VB(x)
denotes the gradient of the function B evaluated at z. The
set of continuously differentiable functions is denoted by C!.
Finally, F' : O = R" denotes a set-valued map associating
each element = € O to a subset F'(x) C O.

II. PRELIMINARIES AND STANDING ASSUMPTIONS
A. Hybrid inclusions

We consider general hybrid inclusions of the form

JzeC teF(x)
H'{xeD zt e G(x), M

with the state variable x € R"™, the flow set C' C R"™, the
jump set D C R™, the flow and the jump set-valued maps,
respectively, F' : R" = R, G : R” == R". A solution x
to H is defined on a hybrid time domain denoted dom z C
R> x N where R>g := [0,00) and N := {0,1,...}. The
solution x is parametrized by an ordinary time variable
t € R>p and a discrete jump variable j € N. Its domain
of definition domz is such that for each (T, .J) € domuw,
domzx N ([O7T] X {0, 1,..., J}) = U;-I:O ([tjvthrle) for a
sequence {t]}jio1 such that t;,1 > t; and ¢y = 0; see [14].

Definition 1: (Solution to H) A function z : domz —
R™ defined on a hybrid time domain dom x and such that,
for each j € N, t — (¢, 4) is locally absolutely continuous
is a solution to H if

(S0) z(0,0) € cl(C) U D;
(S1) forall j € N such that I7 := {t :
nonempty interior
z(t,j) e C

o(t, j) € F(a(t, 7))

(t,j) € domz } has

t € int(17),
te I,

for all
for a.a.

2

(S2) for all (¢,7) € domz such that (¢,j 4+ 1) € dom =,

z(t,j) € D, z(t,j +1) € G(z(t, 7)) 3)

A solution x to H is said to be complete if it is defined
on an unbounded hybrid time domain; that is, the set dom x
is unbounded. Furthermore, it is said to be maximal if there
is no solution y to #H such that x(¢,j) = y(t,7) for all
(t,7) € dom z with dom z a proper subset of dom y. Finally,
it is said to be trivial if dom = contains only one element of
the form (0, 0).

B. Forward invariance notions for hybrid inclusions

For a set K C C' U D, following [6], we distinguish the
two following forward invariance notions.

Definition 2 (forward pre-invariance): The set K is said
to be forward pre-invariant if for each x, € K, each maximal
solution x starting from z, satisfies x(t,j) € K for all
(t,j) € domz. .

Definition 3 (forward invariance): The set K is said to be
forward invariant if for each x, € K, each maximal solution
x starting from x, is complete and satisfies z (¢, j) € K for
all (¢,7) € domu. .

C. Cones

Different types of cones have been used in the study of
differential inclusions. In the following, we recall from [7]
the definition of some of them, for a closed set K C R"™,
that are used in this paper.

Definition 4: The contingent cone of K at x is given by

Ty (z) = {v cR": liminf% - 0}. )

h—0t

L)

Also, we recall the following equivalence [15, Page 122]:
veETk(x) &

I{hitien — 0" and {vitiey = v o+ hiv; € K. (5)

Definition 5: The Dubovitsky-Miliutin cone of K at x is
given by

Di(z) ={veR":3e,a>0:2+(0,0](v+eB) C K}.

(6)
(]
Also, we recall from [7] the following useful property:
Dk (x) =R"\Tgm\ g () = Tr (2)\Trn\x () Vz € K.
(7

D. Basic assumptions

Our results are obtained under the following standing
assumptions.
Standing Assumptions. The data (C, F, D, G) of the hybrid
inclusion H is such that the flow map F' : R® = R" is

2347



outer semicontinuous and locally bounded on C, F(x) is
nonempty and convex for all x € C, and G(x) is nonempty
for all z € D. ]

Before going further, we state the following general fact.

Fact 1: Consider the hybrid inclusion H = (C, F, D, G)
and a closed set K C C'U D. Starting from z, € K, if a
solution x leaves the set /K, then it has to be under one of
the two following scenarios:

(Scl) The solution x leaves the set K after a jump. It implies
the existence of (¢,j) € domz such that z(¢,j) €
KnNDand (t,j+1) € doma with z(t,j+ 1) ¢ K
and z(t,j + 1) € G(x(t,7)).

(Sc2) The solution z leaves the set K by flowing. It im-
plies the existence of ¢, > t; > 0 and j € N
such that ([t},#5],7) C domx and z((t},t),5) C
(UOQK)\K)NC, with z(t},j) € OK and z(th, j) ¢
K.

In fact, when the set K is closed, according to (Sc2),
x(t7,0) € K N K and since the solution leaves the set
K, under Definition 1, z((#},t5),0) is a subset of C\ K for
some ¢, > t} and sufficiently close to ¢}. However, when
the set K is not closed, the case in (Sc2) is replaced by the
following more general scenario:

(Sc3) The solution x leaves the set K by flowing. It implies
the existence of t5 > ¢} > 0 and j € N such that
([t1,t5],7) C domz and either
a) z((th,t5),7) C (UOK)\K)NC, with z(¢},7) €

OK and z(t},j) ¢ K, or
b) x([t},t3),7) C K, with limyy, (2, j) € cl(K)\K.

For the case in (Sc3)b, the solution dies on the boundary
OK\K.

III. SUFFICIENT CONDITIONS FOR FORWARD
INVARIANCE USING MULTIPLE BARRIER FUNCTIONS

Given a hybrid system H = (C,F, D,G), we consider
closed sets K defined in C'U D and collecting points where
multiple scalar functions are simultaneously nonpositive.

Definition 6: For a hybrid system H, a (vector) function
B : R* — R™ is said to be a multiple barrier candidate
defining the set K if

K={reCuUD:B(x) <0}, (8)

where B(z) := [By(z) Ba(x) ... Bn(2)]", B : R = R
foralli € {1,...,m}, and B(z) < 0 means that B;(z) <0
for all 4 € {1,2,...,m}. .
If B is continuous, the set K is closed relative to C' U D. In
addition, when C'U D is closed, K is automatically closed.
Furthermore, we introduce the following sets that we use in
some statements and proofs. Given B, H, and the set K such

that (8) holds, define, for any i € {1,2,...,m},

K., :={z e R": B(z) <0}, )
K. = {.’E eR": Bl(.’E) < 0}, (10)
OK; :={x € OK : B;(z) =0} . 1D

It is useful to notice that K, = N>, K,;, K = K.N(CUD),
and that 0K = U”,0K; U [0K N 9(C' U D)]. Note that, in
general, O0K; # 0K,.;. Also, we notice that it is possible
from (8) to construct a scalar barrier candidate defining the
closed set K as

B(z) = Bi(z).

max
i€{1,....m}
However, by doing so, the resulting barrier candidate B is
not guaranteed to be C'. Indeed, at points = where multiple
B;’s are equal, if their gradients are not identical, then, Bis
not differentiable at these elements.

A. Sufficient conditions for forward pre-invariance

In this section, we present extensions of the results for a
particular class of hybrid systems in [12], [11], [8] to general
hybrid inclusions. For differential inclusions, as stressed in
[7], forward invariance of a set is a property that depends
on the dynamics of the system outside the considered set.
Due to this, the conditions along the flow of H need to
hold on a neighborhood of the boundary of K, relative to its
complement.

Theorem 1: Consider a hybrid system H and a C' mul-
tiple barrier function candidate B defining the closed set
K as in (8). The set K is forward pre-invariant if, for all
1€{1,2,...,m},

(VB;(z),n) <0 Vo € (U(OK;)\K.;) N C and

Vn € F(z)NTe(z), (12)

B(n) <0 VneG(z) YeeDNK, (13)
G(z)c CUD VzeDNK. (14)
0

Example 1: Consider the hybrid system # as in (1) with
the data

Fle)= [xﬂl - xiéiﬂ - |l‘2)] weo

C::{xERQ:xQEO, 1:16[—1,1]},
G(z) :=[0, 1] [é?] Va € D,
D:={z€eR’:2,<0, |z| <1}.

We establish forward pre-invariance for the closed set K :=
{reCUD:|z]*-1<0, z; > 0}. To this end, we start
noticing that the set K can be written as in (8) with the
multiple C! barrier function candidate B(z) := [(|z]?—1) —
x2]T. Also, it is easy to see that G(z) C C U D for all z €
DN K = {x € D:xy=0}; hence, (14) holds. Moreover,
a simple computation shows that, for each z, € (K N D),
B(G(w0)) C [([0,1]|z* = 1) —[0,1]]21]]" € R<o x R<os
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thus, (13) holds. Furthermore, the set (U(OK;)\K.;) NC' is
empty when ¢ = 2 and can be chosen, when 7 = 1, as

(UK )\K)NC ={zeC: |z €(1,2)}.
Consequently,
(VBi(),n) € (0,~23(4 — [a]*)) C R<o

for all n € F(x) and for all z € U(0K1)\K.1)NC. Hence,
(12) holds and forward pre-invariance of the set K defined
by B follows. |

B. Sufficient conditions for forward invariance

According to Definition 3, a forward pre-invariant set K C
C U D is forward invariant if, in addition, all the maximal
solutions starting from that set are complete. Hence, one has
to exclude the case of non-complete maximal solutions dying
on the set (K N JC)\D, as well as the case of maximal
solutions escaping in finite time along flows inside the set
KnCcC.

Proposition 1: For a hybrid system H, a forward pre-
invariant set K C C'UD is forward invariant if the solutions
starting from K cannot escape in finite time along the flows
inside the set K N C, and from any initial condition in the
set (K NIC)\D, a nontrivial flow exists. O

Remark 1: One can guarantee that the solutions do not
have a finite escape time along the flows inside the set KNC'
when, for example, the set K N C' is compact or when the
flow map F is globally bounded in K N C. °

Example 2: Using Proposition 1, we are able to extend
the conclusions in Example 1 and conclude forward invari-
ance of the set K. Indeed, after Example 1, the set K is
forward pre-invariant; and since it is compact, it follows
that there is no possibility of finite time blow-up along the
flows inside K N C. Hence, the forward invariance follows
if we show that from every initial condition in the set
(KNOC)\D = {[1 0]",[-1 0]"}, a nontrivial flow exists.
Indeed, F(z) = {0} forallz € {[1 0]",[-1 0]"}, hence,
the system admits nontrivial constant solutions of the form
x(t,0) =z, forall t >0 and z, € {[1 0]",[-1 0]"}. O

IV. SUFFICIENT CONDITIONS FOR CONTRACTIVITY
USING BARRIER FUNCTIONS

One possible way to guarantee forward pre-invariance
while relaxing the flow conditions to hold only on the
boundary of the set K is by considering strict inequalities
instead of the weak inequalities in (12)-(13). However, as
we show, such strict conditions are much stronger than
needed, as they induce a contractivity property for the set
K. Roughly speaking, a pre-contractive set is forward pre-
invariant and whenever a solution reaches its boundary, it
moves back towards the interior. A definition of contractivity
for particular sets named C'—sets can be found in [9] in terms
of the Minkowski functional (also named gauge function)
for both differential and difference equations separately, see
Definitions 3.3 and 3.4 in [9]. In this section, we propose

two different definitions of contractivity notions for general
hybrid inclusions. The first definition concerns the particular
case of C'—sets and extends what is proposed in [9] using
the Minkowski functional. The second definition concerns
general closed sets that are not C'—sets. In the latter case,
the definition is based on the system’s behavior after reaching
the boundary of the considered closed set. Furthermore, nec-
essary and sufficient conditions in terms of barrier candidates
defining the closed set are established.

A. The case of C'—sets

We recall that a set K C C U D is said to be a C'—set if
it is compact, convex, and includes the origin in its interior.
Furthermore, the corresponding Minkowski functional W :
R™ — Ry is given by

Ug(x):=inf{p>0: v e pK}. (15)

Definition 7 (pre-contractivity for C'—sets): For a hybrid
system H, a C-set K C C'U D is said to be pre-contractive
if

limsup\IJK(th)_1 <0 VxedKnNnC and
h—0+t h

Ur(n) <1 VeeDNK, VneG(zx). (17)
L]

Definition 8 (contractivity for C'—sets): For a hybrid sys-
tem H, a C-set K C C'U D is said to be contractive if it is
pre-contractive and, in addition, starting from each element
in the set (O(K NC)NAC)\D, a nontrivial flow of H exists.

The following lemma establishes important consequences of
the aforementioned contractivity notions on the behavior of
the system’s solutions.

Lemma 1: For a hybrid system H, if a C—set K C C'U
D 1is pre-contractive (respectively, contractive) according to
Definition 7 (respectively, Definition 8), then it is forward
pre-invariant (respectively, forward invariant) and, for any
Z, € OK and any nontrivial solution z starting from x,,
there exists 7' > 0 and .JJ € N* such that z(¢, j) € int(K) for
all (t,7) € domaz N [([0,T] x {0})U ({0} x {0,...,J})],
(t.4) # (0,0). 0
Next, we propose necessary and sufficient conditions for pre-
contractivity using barrier functions.

Theorem 2: For a hybrid system H, the C'—set K C
int(C' U D) is pre-contractive if and only if there exists a
Lipschitz continuous barrier candidate B defining the C-set
K as in (8) such that

B;
limsupM <0 VeedK;NnC Vie{l,..,m}
h—0t h
and Vn € F(z) NTe(z), (18)
B(n) <0 Vee KND VneG(x), (19)
G(z)c CUD VYrze KND. (20)
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O

Remark 2: The equivalence in the previous statement is
shown in the particular case where the C'—set K satisfies
K C int(C U D). However, the same result remains valid,
using the same proof, when K is a C-set satisfying K C
(int(C) U D)\(OC N 9D) and the following extra jump
condition holds:

B(n) £0 Vn e G(x)No(CUD)

Indeed, under (19)-(20), having (21) satisfied is important to
conclude that the solutions starting from 0K cannot jump
towards 0K Nint(K.) C 9(CUD). Otherwise, it is possible
to have B(x) < 0 while z € int(K.) NO(CUD) COK. e

Remark 3: In the general case where K ¢ (int(C) U
D)\ (0CNID), we cannot guarantee for a nontrivial solution
flowing from z, € K N OC to satisfy x([0, €], z,) C int(K)
for some ¢ > 0, since the solution can flow in 9C while
remaining in int(K.). In other words, the barrier candidate
does not define the set K on any neighborhood of C'U D as
opposed to the Minkowski functional which defines the set K
in R™. Therefore, in order to extend Theorem 2 to the general
case where K C C'U D, we need to guarantee, additionally,
that there is no possibility of flowing in 9C N K while
flowing in int(K ). The latter fact cannot be characterized in
terms of a general barrier candidate defining the set according
to (8). °

Example 3: Consider the hybrid system
_ [~ 22y + (1/2)a

F(z) = [ —x9 — (1/2)21
C::{xGRzzxgz—l},

Vo e KND. (21)

] Vr € C,

G(z) =[0,1/2] {‘”’“’;2] Vz € D,
D:i={zeR?:a < -1}\{[-1 —1]"}.
We study the pre-contractivity of the C-set
K = {xeCUD:xf—l—x%ﬁQ, xzz—l},

which can be defined according to (8) using the C! barrier
candidate B(x) := [|#|> ~1 — (22 +1)]T. That is, we note
that the C-set K satisfies K C int(C' U D); hence, Theorem
2 is applicable. Indeed, since the candidate B is continu-
ously differentiable, it follows that lim sup;, o+ M =
(VB;(x),n) for all i € {1,2}. Furthermore, (VB (z),n) €
[—2? + 2%, —22% + 23] C R for all n € F(z) and
for all x € K1 NC = {x € 0K : x5 > —1}. Similarly,
(VBy(z),n) =22+ (1/2)z1 = -1+ (1/2)x; < —1/2<0
forall z € 0K, NC = {JC ERZ:my=—1, |74 < 1} and
for all n € F(z). Moreover, G(x) = [0,1/2][z; 1]T C
[—1/2,1/2] x [0,1/2] for all n € G(x) and for all x € K N
D = {z€R?*:29=—1, |z1| <1}. Hence, Bi(n) < 0
and By(n) < 0. Hence, the pre-contractivity of the set K
follows using Theorem 2. ([

The previous sufficient conditions can be complemented

in order to conclude contractivity rather than only pre-
contractivity. That is, in the following, we propose sufficient

qualitative conditions allowing the existence of nontrivial
flows starting from any element in the set (O(KXNC)NIC)\D
as required in Definition 8.

Proposition 2: For a hybrid system H, a C-set K C CUD
is contractive if it is pre-contractive and

Flx)NTe(z) #0  Yax e Ulx,) NO(K NC)NAC,

Vz, € (O(KNC)NIC)\D. (22)
O
Example 4: We propose to build upon the pre-

contractivity conclusions in Example 3 in order to conclude
contractivity, using Proposition 2. To do so, it is enough
to show that the set (O(K N C) N OC)\D satisfies (22).
Indeed, the set (O(K NC)NAC)\D reduces to the singleton
{[-1 —1]"} and the neighborhood U (z) Nd(K NC)NAIC
can be chosen as U(z) N (K N C) n 9C =

{zeR?:ay=—1, 31 € [-1,-1/2)} on which
F(z) = [-[1,2]z; — 1/2 1 — (1/2)z1]7; hence,
(22) follows since 1 — (1/2)z1 > 0. O

B. The case of non-C' closed sets

For general closed sets, we cannot use the Minkowski
functional in order to define contractivity notions. Conse-
quently, in the case of closed sets that are not C-sets, the
following alternative definitions are proposed in order to
preserve the properties in Lemma 1.

Definition 9 (Contractivity for non-C' closed sets): For a
hybrid system #, a closed set K C C U D is said to be
pre-contractive (respectively, contractive) if it is forward pre-
invariant (respectively, invariant) and for each xz, € 0K
and a nontrivial solution x starting from x,, there exist
T > 0 and J € N* such that z(¢,7) € int(K) for all
(t,j) € domz N [([0,T] x {0}) U ({0} x {0,...,J})] and
(t,7) # (0,0). .

Remark 4: 1t is useful to notice that, in the particular case
of differential inclusions, the pre-contractivity of a closed set
K C O reduces to the nonexistence of any solution x starting
from any z, € OK such that ([0, T], z,) C R™\int(K) for
some T' > 0. Pre-contractivity is also named strict invariance
in [7]. .
Next, we propose to characterize contractivity notions using
barrier functions. Our approach is mainly based on the
characterization of the tangent cone Djy (k) on the boundary
of the considered closed set using the barrier candidate
defining the set. Furthermore, the latter fact is combined with
[7, Theorem 4.3.4] to certify the system’s behavior required
in contractivity notions.

Theorem 3: Consider a hybrid system 7 and a C' barrier
function candidate B defining the closed set K as in (8).
The set K is pre-contractive if

<VB¢(JZ),77> <0 VxedK;NC Vi= 1,2,....m

Vn € F(x) NTe(x), (23)

F(.r) N TBCO@K(x) =0 Vzec OKNIC, 24)
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B(n) <0 Vee KND VneG(x), (25)
G(z) c CUD Vo e KN D, (26)
G(z) C int(CUD)  VoedKnD. 7)

O

Example 5: Consider the hybrid system

_ —(w2 + 1)
Flz) = [_2 S

C:= {33 ER?:z5€(0,1], 21 € \/g[*lal]},

} Vr € C,

2
D::{x€R2:x220, x1€\/§[—1,1]}.

We study the pre-contractivity of the set K =
{z €eR?: a3+ (x2+1)2 <4, x5 >0}, which can be de-
fined using the C! barrier function candidate B(z) := [z3 +
(ro +1)2 —4  — 25]7. Indeed, we start noticing that the
set K is not a C—set and does not satisfy K C int(C' U D);
hence, we will use Theorem 3 in order to analyze its pre-
contractivity. Indeed, in order to satisfy the jump conditions
(25)-(27), we notice that, G(z) = [4 3]T Ccint(CU D)
forallz € KND = {2z €R?:25=0, |z;1| <3} since
(1/\/3)551 < 1; and hence, (26)-(27) hold. Moreover, it is
clear to see that B(G(z)) = [¢2/3 - 7/4 —1/2]T <0
for all z € K N D; since |z1] < V/3; and hence, (25) also
follows. In order to conclude the pre-contractivity, it remains
to show that (24) and (23) are both satisfied. Indeed, we have
(VBi(x),F(z)) = —(z2+1)? < 0 for all z € 0CNIK; =
{z €R?:25>0, |[z1 z2+1]|=2}. Furthermore, for
any z € 0K, NC = {xERQ:a@:O, |x1|§\/§},
F(z)=[-1 —2+x]" ¢ Tc(x) since —2+z; < 0 for all
x1 € 0K5NC. Hence, (23) is satisfied. Furthermore, in order
to show (24), we notice that 9K NOC = {[0 1]T } UIK,.
Moreover, when z = [0 1]T, F(z) = [-2 —2]T ¢
Te(z) and © € 0K, we have already shown that F'(x) ¢
Te(z). The two latter facts together allow to conclude that
F(z) ¢ Tocnok (x) for all x € K N IC. Hence, the pre-
contractivity of the set K follows. (|

G(z) ::L {?g] Vo € D,

In the sequel, we propose extra conditions to conclude
contractivity rather than only pre-contractivity.

Proposition 3: For a hybrid system H, a pre-contractive
set K C C'U D is contractive provided that the solutions
do not escape in finite time along the flows inside K N C
and, starting from each element in (O(K N C)NOC)\D, a
nontrivial flow exists. ]

In the following statement, as in Proposition 2, the existence
of a nontrivial flow starting from (O(K N C) N OC)\D is
expressed using a qualitative condition.

Proposition 4: For a hybrid system 7, consider a C!
barrier function candidate defining the closed set K as in
(8). The set K is contractive if (23)-(27) hold and

F)NTe(z) #0 Ve € U(z,) NO(KNC)NIC,

Ve, € (0(K NC)NION\D. (28)

O

Example 6: Let us reconsider the case study in Example
5. In order to conclude contractivity for the set K according
to Proposition 4, we need to show that there is no possibility
of a finite escape along the flows inside the set K NC, which
is the case since the set K is compact. Also, (28) has to hold
for all z € (O(K N C)NOC)\D = {(0,1)}. Indeed, notice
that the neighborhood U (z)NI(KNC)NAC is reduced to the
element z = {[1 0]"} with F(z) =[-2 —4]" € T¢(),
which concludes the contractivity of the set K. (]

V. CONCLUSION

This paper proposed new characterizations of forward
invariance and contractivity for closed sets for general hybrid
inclusions. The considered closed sets are defined using
a vector of barrier functions. The proposed conditions are
alternatives to the existing cone-based conditions and those
involving only a scalar barrier function.
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