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Abstract— This paper investigates sufficient and necessary
conditions for safety (equivalently, conditional invariance) in
terms of barrier functions. Relaxed sufficient conditions con-
cerning the sign and the regularity of the barrier function
are proposed. Furthermore, via a counterexample, the lack of
existence of an autonomous and continuous barrier function
certifying safety in a class of autonomous systems is shown.
As a consequence, guided by converse Lyapunov theorems for
only stability, time-varying barrier functions are proposed and
infinitesimal conditions are shown to be both necessary as well
as sufficient, provided that mild regularity conditions on the
system’s dynamics holds. Examples illustrate the results.

I. INTRODUCTION

Beyond stability, the most important property to guarantee
in a dynamical system is safety. The safety problem consists
in guaranteeing that the system’s solutions, when starting
from a given set of initial conditions, never reach a given
unsafe set [1]. The same property is also called conditional
invariance in some earlier works [2], [3], [4], [5]. Regarding
the considered application, reaching the unsafe set can corre-
spond to the impossibility of applying a predefined feedback
law [6] or, simply, colliding with an obstacle [7]. Safety
analysis is in fact a key step in many control applications.

Analogous to Lyapunov theory for stability, the concept
of barrier function is a powerful qualitative tool to study
safety without computing the system’s solutions. Generally
speaking, a barrier function candidate is a function of the
system’s variables that satisfies some sign and boundedness
properties on the set of initial conditions and the opposite
properties around the unsafe set. Then, the safety property is
guaranteed provided that the change of the barrier candidate
along the system’s solutions, which can written in terms of
infinitesimal conditions, satisfies certain growth conditions,
especially around the unsafe set. Hence, the barrier candidate
becomes a safety certificate in this case. According to the
latter definition, barrier functions are used in many contexts
including constrained optimization [8], multiagent systems
[7], and constrained nonlinear control [9], to just name a few.
Furthermore, barrier functions have been used under different
names in the literature, including potential functions [7] and
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even just Lyapunov functions in some earlier works [5]. Also,
barrier functions adopt different forms in the literature. For
example, in [10], a barrier function candidate is defined as
a positive function that is is bounded on the set of initial
conditions and unbounded when converging to the boundary
of the unsafe set. In [1] and [11], a barrier function candidate
is defined as a scalar function that is strictly positive on the
unsafe set and nonpositive on the set of initial conditions.
Another slightly different definition can be deduced from
[2], where a barrier function candidate is assumed to have
values on the boundary of the unsafe set strictly greater than
on the boundary of the initial set.

In the context of safety analysis using barrier functions,
as compared to Lyapunov theory for stability, the converse
problem is less explored and not completely solved. More
precisely, given a safe system with respect to a given initial
and unsafe sets, the converse problem pertains to finding
conditions on the system’s dynamics such that a barrier
function verifying sufficient conditions for safety exists.
For sufficiently smooth systems and when a continuously
differentiable and strictly decreasing function along the sys-
tem’s solutions exists, it is shown in [12] that safety is
equivalent to the existence of a smooth barrier function. In
[13], after reintroducing the notion of safety, a converse result
is proposed for smooth systems living in smooth compact
manifolds. In this case, the latter assumption in [12] is
replaced by the existence of certain type of functions known
as Meyer functions. In [13], it is also pointed out that the
assumption in [12] is restrictive as it excludes, for example,
systems with limit cycles. Furthermore, when the set of initial
conditions or the unsafe set are not compact, the converse
result in [13] does not apply — see Example 1 in this paper.
To the best of our knowledge, [12] and [13] are the only
works on converse characterizations of safety using barrier
functions.

In this paper, we compare and relax some of the existing
sufficient conditions for safety using barrier functions. The
proposed relaxations concern the sign and the regularity of
the barrier candidates. After that, we propose to study the
necessity of the proposed sufficient conditions. We present a
simple yet informative counter-example that shows that, in
some situations, it is not possible to construct a continuous
barrier function depending only on the system’s variables
such that the proposed sufficient conditions hold. This is
true even when the system is smooth and autonomous.
Consequently, we propose time-varying barrier functions and
sufficient conditions for safety that are also necessary, under
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mild regularities on the system’s dynamics. The latter is not
to be confused with the time-varying barrier functions used
in the context of moving obstacles [14] and providing only
sufficient conditions for safety. Our approach is inspired from
converse Lyapunov theorems for only stability in [15], [16],
[17], [18], [19]. To the best of our knowledge, the proposed
results are unique in the literature and open the field to having
general converse characterizations for safety using barrier
functions.

The reminder of the paper is organized as follows. Back-
ground and motivations are presented in Section II. Sufficient
conditions for safety in terms of barrier functions are in
Section III, and necessary and sufficient conditions in terms
of barrier functions are in Section IV.

Due to space limitations some proofs are omitted and will
be published elsewhere.

Notation. For x, y ∈ Rn, x> denotes the transpose of
x, |x| the Euclidean norm of x, |x|K := infy∈K |x − y|
defines the distance between x and the set K, and 〈x, y〉
denotes the inner product between x and y. For a set K ⊂
Rn, we use int(K) to denote its interior, ∂K its boundary,
cl(K) its closure, and U(K) an open neighborhood around
K. For O ⊂ Rn, K\O denotes the subset of elements of
K that are not in O. For a function f : Rn → Rm, dom f
denotes the domain of definition of f , f−1(x) denotes its
reciprocal image evaluated at x. Finally, by f ∈ Ck(K),
k ∈ {1, 2, ..}, we mean that f is k−times differentiable and
the k−th derivative is continuous (when K = Rn, we only
write f ∈ Ck).

II. BACKGROUND AND MOTIVATION

A. Background on safety problem

Consider a differential equation of the form

ẋ = f(x) (1)

where f : Rn → Rn. A solution x : domx → Rn to
(1), starting from xo, is given by a function t 7→ x(t, xo)
satisfying (1) for all t ∈ domx, where domx ⊂ R≥0 denotes
the domain of definition of the solution x. A solution x is
complete if domx is unbounded, and it is maximal if there
is no solution y such that y(t) = x(t) for all t ∈ domx and
domx strictly included in dom y.

Results to study safety for such dynamical systems have
been presented in [20], [11], [1], [12], [13]. In these articles,
a set Xu ⊂ Rn denotes the region of the state space that the
solutions to (1) are not allowed to reach when starting from
a given set of initial conditions Xo ⊂ Rn\Xu.

Definition 1 (Safety): The system (1) is said to be safe
with respect to (Xo, Xu), with Xo ⊂ Rn\Xu, if for each
xo ∈ Xo and each solution x, x(t, xo) ∈ Rn\Xu for all
t ∈ domx. •
This definition of safety coincides with the definition of
conditional invariance established in earlier literature; see
[2], [3], [4], [5]. For completeness and comparison to safety

as in Definition 1, we include the definition of conditional
invariance, directly from [2].

Definition 2 (Conditional invariance): A set H ⊂ Rn is
said to be conditionally invariant for (1) with respect to a set
F ⊂ H if, for each xo ∈ F , each solution x starting from
xo satisfies x(t, xo) ∈ H for all t ∈ domx. •
It is immediate that the system (1) is safe with respect to
(Xo, Xu) if and only if the set H := Rn\Xu is conditionally
invariant for (1) with respect to F := Xo.

In what follows we recall existing sufficient conditions
for safety from [1] and conditional invariance from [2].
Furthermore, we emphasize that the characterization in [2]
allows a larger family of barrier functions in the case of
continuous-time systems than the one in [1]. In [1], safety
of (1) with respect to (Xo, Xu) is guaranteed by the existence
of a C1 function B : Rn → R satisfying B(x) > 0 ∀x ∈ Xu

B(x) ≤ 0 ∀x ∈ Xo

〈∇B(x), f(x)〉 ≤ 0 ∀x ∈ Rn.
(2)

Such a function is called a barrier function in [1]. Conditions
in (2) inform us not only about the safety with respect to
(Xo, Xu), but more precisely about the forward invariance
of the set

K := {x ∈ Rn : B(x) ≤ 0} . (3)

On the other hand, following the earlier result in [2], the
conditional invariance of a set H with respect to a set F ⊂ H
is guaranteed by the existence of a C1 function B̄ : Rn → R
such that the following three conditions hold:

(i) For all x ∈ Rn\F and all y ∈ F such that

y = arg min
z∈F

B̄(x− z), (4)

we have
〈∇B̄(x− y), f(y)〉 ≤ 0.

(ii) Define
w(x) := B̄(x− y),

with y satisfying (4). Then, there exists a ∈ R such
that {

w(x) ≥ a ∀x ∈ ∂H
w(x) < a ∀x ∈ ∂F (5)

(iii) For all (x, y) ∈ (Rn\F )× F ,

˙̄B(x− y) ≤ g(B̄(x− y)); (6)

where the scalar function g is such that, for any l :
R≥0 → R, if l(0) < a with a as in (ii) and

D+l(t) := lim sup
t→0+

l(t+ h)− l(t)
h

≤ g(l(t)) ∀t ≥ 0,

then, for some ε > 0, l(t) < a for all t ∈ [0, ε].

In [2], the main idea to proof conditional invariance for (1)
of H with respect to F uses (5), which establishes that the
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value of w on the boundary of H is strictly larger than its
value on the boundary of F . Then, using (i)-(iii), one can
show that w does not increase along the solutions to (1).
The latter fact is true since, under (i)-(iii), for each solution
t 7→ x(t, xo), we have

D+w(x(t, xo)) ≤ g(w(x(t, xo))) ∀t ∈ domx. (7)

Hence, for any xo ∈ ∂F , w(x(t, xo)) < a for all t ∈ domx.
Consequently, there is not a possibility that a solution to (1),
starting from F , reaches H .

Remark 1: Conditions (i)-(iii) guarantee forward invari-
ance of the set

K1 := {x ∈ Rn : w(x)− a < 0} ,

which implies forward invariance of the set K := (K1∪F )∩
H . Indeed, when a solution x to (1) starts from K1 ∩H , it
remains in K1∩H because of (7) and the fact that w(x) ≥ a
for all x ∈ ∂H . Moreover, when a solution starts from F ,
it cannot leave the set F without flowing in K1 ∩H since
∂F ⊂ K1 ∩H; hence, it also remains in K. •

Remark 2: We stress on the fact that conditions (i)-(iii)
show that int(H) is conditionally invariant with respect to F .
We implicitly assumed in this case that F ⊂ int(H). In the
sequel, when int(H) is conditionally invariant with respect
to F we say that H is strictly conditionally invariant with
respect to F . The conditional invariance of H with respect
to F holds if we replace condition (ii) by

(iv) Define w(x) := infy∈F B̄(x− y), where x and y are as
in (i), and there exists a ∈ R such that

w(x) > a ∀x ∈ U(H)\H, (8)
w(x) ≤ a ∀x ∈ ∂F. (9)

In this case, we are implicitly showing forward invariance of
the set

K2 := {x ∈ H : w(x)− a ≤ 0} ∪ F.

•

B. Background on converse safety problem

In [12], when additionally the vector field f is C1 and there
exists a C1 function g : Rn → R that is strictly decreasing
along the solutions to (1), it is shown that safety with respect
to (Xo, Xu) implies the existence of a C1 barrier candidate
B satisfying (2). Similarly, in [13], a geometric point of
view is adopted using Morse-Smale theory for systems on
smooth and compact manifolds. In this study, a slightly
different definition of safety is considered and a converse
result is proposed for such particular class of systems. The
assumption about existence of a strictly decreasing function
along the system’s solutions in [12] is replaced in [13] by the
existence of certain type of functions called Meyer functions.

C. Motivation

The contributions of this paper are two-fold:

• We investigate the tightest possible sufficient condi-
tions for conditional invariance (equivalently, safety) in
continuous-time systems.

• We provide necessary and sufficient conditions without
assuming the existence of neither a strictly decreasing
function along the solutions to (1) nor a Meyer function.

The relevance of our approach is justified in the following
example.

Example 1: Consider the linear system

ẋ1 = −10x2, ẋ2 = x1. (10)

We analyze conditional invariance of the set

H :=
{
x ∈ R2 : x2 ≤ 2

}
with respect to the set

F :=
{
x ∈ R2 : x21 + x22 ≤ 1

}
.

First, note that neither F nor H are forward invariant.
However, H is conditionally invariant for (10) with respect to
F . A way to show this fact is to use the sufficient conditions
in (2). For this purpose, we propose the barrier function
candidate

B(x) := (x21/10 + x22)− 1. (11)

The conditions in (2) are satisfied since B(x) ≤ 0 for all
x ∈ Xo := F , B(x) > 0 for all x ∈ Xu := Rn\F , and
〈∇B(x), f(x)〉 ≤ 0 for all x ∈ R2 and where f(x) :=
[−10x2 x1]>. Hence, safety with respect to (Xo, Xu)
follows. Thus, H is conditionally invariant with respect to
F .

Another way to show this fact is inspired by conditions
(i)-(iii) and the scalar function

δ(x) := 10x22 + x21 − 1 ∀x ∈ R2. (12)

We notice that

〈∇δ(x), f(x)〉 = 0 ∀x ∈ R2, (13)

and at the same time,

sup
x∈∂F

δ(x) = 9, inf
x∈∂H

δ(x) > 36. (14)

Hence,

δ(x)− δ(y) < 0 ∀x ∈ ∂F, ∀y ∈ ∂H. (15)

Conditions (13) and (15) imply conditional invariance since
if there was a solution x to (10) that evolves from a point
in ∂F to ∂H , the value of δ would grow from δ(x(0)) ≤ 9
to δ(x(T )) ≥ 36 for some T > 0, which contradicts (13).
Hence, solutions starting from the set F have to remain in
the interior of the set H . It is important to notice that the
family of barrier functions satisfying (13) and (15) is larger
than the family of those satisfying (2).
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Even though it was not very hard to find a barrier candidate
satisfying (2), the existing converse results in [12] and [13]
do not guarantee the existence of such a function for system
(10), though it is safe. Indeed, it is not possible to find
a function that is strictly decreasing along the system’s
solutions since the system admits limit cycles. Also, the set
Xu = R2\H is not bounded, hence, it is not a compact
manifold. �

III. SUFFICIENT CONDITIONS FOR SAFETY

In this section we propose tight sufficient conditions in
terms of the sign and the regularity of the barrier candidates.
To cover the existing results in the literature, we consider two
types of conditional invariance, namely, strict conditional
invariance where the solutions starting from F remain in the
interior of H , and conditional invariance where the solutions
starting from F remain in H .

Theorem 1: Consider the differential equation in (1) with
f ∈ Co. The following hold:

• A set H ⊂ Rn is conditionally invariant with respect to
F ⊂ H if there exists a function1 δ ∈ Co∩C1(U(H)\F )
such that

〈∇δ(x), f(x)〉 ≤ 0 ∀x ∈ U(H)\F, (16)
δ(x)− δ(y) < 0 ∀(x, y) ∈ ∂F × (U(H)\H).

(17)

• A set H is strictly conditionally invariant with respect to
F ⊂ int(H) if there exists a function δ ∈ Co∩C1(H\F )
such that

〈∇δ(x), f(x)〉 ≤ 0 ∀x ∈ H\F, (18)
δ(x)− δ(y) < 0 ∀(x, y) ∈ ∂F × ∂H. (19)

�

In the following corollary, as a particular case of Theorem
1, we relax the sufficient conditions for safety in (2) by
considering barrier functions B : Rn → R of class C1 only
outside the set

K := {x ∈ Rn : B(x) ≤ 0} (20)

and not necessarily on the entire state space.
Corollary 1: The system (1) with f ∈ Co is safe with

respect to given sets (Xo, Xu) if there exists a function B ∈
Co ∩ C1(Rn\K) such that B(x) > 0 ∀x ∈ Xu,

B(x) ≤ 0 ∀x ∈ Xo,
〈∇B(x), f(x)〉 ≤ 0 ∀x ∈ Rn\K.

(21)

�

When the function δ used in Theorem 1 is only locally
Lipschitz, we replace the monotonicity condition (16) (re-
spectively, (18)) by a similar one using the proximal sub-
differential instead of the gradient. In general, for a lower

1By δ ∈ Co∩C1(U(H)\F ), we mean that δ is continuous on its domain
of definition, and continuously differentiable on the set U(H)\F .

semicontinuous function δ : Rn → R, we use ∂P δ(x) to
denote its proximal subdifferential evaluated at x, which can
be defined as

∂P δ(x) := {ζ ∈ Rn : ∃U(x), ∃ε > 0 : ∀y ∈ U(x)

δ(y) ≥ δ(x) + 〈ζ, y − x〉 − ε|y − x|2
}
. (22)

Each vector ζ ∈ ∂P δ(x) is said to be a proximal subgradient
of δ at x — see [21], [22] for more details. Using the
latter nonsmooth calculus tool, Theorem 1 is generalized as
follows.

Theorem 2: Consider the differential equation in (1) with
f locally Lipschitz. The following hold:

• A set H ⊂ Rn is conditionally invariant with respect
to F ⊂ H if there exists a locally Lipschitz function
δ : Rn → R such that

〈∂P δ(x), f(x)〉 ≤ 0 ∀x ∈ U(H), (23)
δ(x)− δ(y) < 0 ∀(x, y) ∈ ∂F × (U(H)\H).

(24)

• A set H is strictly conditionally invariant with respect to
F ⊂ int(H) if there exists a locally Lipschitz function
δ : Rn → R such that

〈∂P δ(x), f(x)〉 ≤ 0 ∀x ∈ H, (25)
δ(x)− δ(y) < 0 ∀(x, y) ∈ ∂F × ∂H. (26)

�

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR
SAFETY

In this section, we construct a barrier function for safe sys-
tems using the converse theory for non-asymptotic Lyapunov
stability. Converse theory for (non-asymptotic) Lyapunov
stability has been developed during the 40-50’s by the eastern
control community, see [15], [16], [17], [18], [19], and [23]
for an overview on this topic. Based on this background,
we first show, using a counter-example, that in some cases
we cannot construct an autonomous and continuous barrier
function certifying safety according to any of the existing
characterizations, even if the system is safe, smooth, and
autonomous. The considered counter-example can be found
in [19, Example 21.14, page 82] and [18, Remark, Page 46],
where the objective was to show that some stable systems do
not admit a continuous and autonomous Lyapunov function
that is nonincreasing along the system’s solutions.

Example 2: Consider the two dimensional system

ẋ1 = −x2 + rx1 sin(1/r)
ẋ2 = x1 + rx2 sin(1/r), r = |x|. (27)

In polar coordinates, this system can be rewritten as

ṙ = r2 sin(1/r), θ̇ = 1. (28)

The system in the original coordinates is safe with respect
to the sets

Xo := {0} , Xu := R2\Xo.
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Indeed, the safety property in this case is equivalent to
forward invariance of the origin (which coincides with Xo).
Forward invariance of the origin holds since the origin is
an equilibrium point for system (27). However, we will
show that it is not possible to find a continuous barrier
candidate B, function only of x, that is nonincreasing along
the system’s solutions and at the same time having a value
at the origin that is strictly smaller than all the values
elsewhere. Indeed, from (28), in the phase portrait of (27),
the origin is surrounded by (countably) infinitely many limit
cycles centered at the origin, denoted by Qk, k ∈ N.
Moreover, the radius of the limit cycles converges to zero
as k → ∞ and the trajectories starting from the interior
of the torus formed by each two circles Qk+1 and Qk are
spirals that leave Qk+1 and approach Qk. This being said,
we assume the existence of a continuous function B that
is nonincreasing along the system’s solutions and positive
definite. Furthermore, for a sequence of points {xk}∞k=0 with
xk ∈ Qk, the sequence {B(xk)}∞k=0 converges to zero, and
is strictly positive. Hence, there exists a strictly positive
and monotonically decreasing subsequence {B(xki)}

∞
i=0 that

also converges to zero. As a result, there exist (l1, l2) ∈ N×N
and ε > 0 such that B(xl1)−B(xl2) = ε. We assume, further
and without loss of generality, that l2 − l1 = 2 (the same
reasoning is valid if l2 − l1 > 2). Next, using the continuity
assumption on B and the system’s behavior, it follows that
for any ε1 > 0 we can find T > 0 and two initial conditions
xo and xo1 in the interior of the torus formed by Ql2 and
Ql2−1 and, respectively, in the interior of the torus formed
by Ql2−1 and Ql1 such that

max {|B(xo)−B(xl2)|, |B(xo1)−B(x(T, xo))|,
|B(xl1)−B(x(T, xo1))|} ≤ ε1.

Now, having

ε =B(xl1)−B(xl2) = B(xl1)−B(x(T, xo1))+

B(x(T, xo1))−B(xo1) +B(xo1)−B(x(T, xo))+

B(x(T, xo))−B(xo) +B(xo)−B(xl2)

and using the fact that B does not increase along the system’s
solutions, we obtain

ε =B(xl1)−B(xl2) ≤ |B(xl1)−B(x(T, xo1))|+
|B(xo1)−B(x(T, xo))|+ |B(xo)−B(xl2)| ≤ 3ε1.

The latter fact yields a contradiction since ε is fixed and ε1
can be made as small as possible, that is, for ε1 = ε/4, we
obtain ε ≤ 3ε/4 which is a contradiction. Hence, though it
is safe, an autonomous barrier certificate does not exist for
this system. �

Before presenting our main results on the existence of time-
varying barrier certificates for safe systems, the following
remarks are in order.

Remark 3: In [15], Persidskii proposed, for the first time,
a construction of a continuous time-varying Lyapunov func-
tion that does not increase along the system’s solutions and
that is positive definite provided that the origin is (uniformly)

stable, the system’s solutions are locally bounded, and the
vector field is continuous. Later on, Krasovskii and Kurzweil
refined this construction in [16] and [18], respectively. Con-
sequently, they deduced the existence of a continuously
differentiable time-varying and nonincreasing (along the sys-
tem’s solutions) Lyapunov function that is positive definite
provided that the origin is stable (uniformly), the vector field
is continuously differentiable, and the system’s solutions are
locally bounded. A remarkable extension of those results
is in [17], where the authors showed the existence of a
smooth (of any order of smoothness) time-varying positive
definite Lyapunov function which is nonincreasing (along
the system’s solutions) provided that the vector field is only
continuous, the solutions locally bounded, and the origin
(uniformly) stable. However, the latter reference is available
only in Russian, and we are still wondering whether it can
help improving the constructions of barrier certificates we
are presenting in this paper. •

Remark 4: It is worth stressing that the concept of Lya-
punov stability is equivalent to conditional invariance of a
converging sequences of compact sets [17]. However, extend-
ing the aforementioned results to the context of conditional
invariance (or, safety) is not straightforward and offers many
technical challenges. Those challenges are related to the fact
that the sets F and H are not necessarily compact, they are
not necessarily forward invariant, and the system’s solutions
are not necessarily bounded nor complete. Consequently, for
a general safe system, most of the existing constructions from
the context of Lyapunov stability cannot be extended to the
context of safety. •
In the following statement, we show that when the system’s
dynamics is locally Lipschitz and when the solutions are for-
ward complete, conditional invariance (equivalently, safety)
is equivalent to the existence of a locally Lipschitz time-
varying barrier-like function certifying this property.

Theorem 3: Consider the system (1) with f locally Lips-
chitz. Assume further that every maximal solution to (1) is
complete. The following hold:

• A set H ⊂ Rn is conditionally invariant with respect
to F ⊂ H if and only if there exists a locally Lipschitz
function δ : R≥0 × Rn → R such that

〈∂P δ(t, x), [1 f(x)>]>〉 ≤ 0 ∀x ∈ Rn, (29)
δ(0, x)− δ(t, y) < 0

∀(t, x, y) ∈ R≥0 × ∂F × (U(H)\H). (30)

• A set H ⊂ Rn is strictly conditionally invariant with
respect to F ⊂ int(H) if and only if there exists a
locally Lipschitz function δ : R≥0 ×Rn → R such that
(29) holds and

δ(0, x)− δ(t, y) < 0 ∀(t, x, y) ∈ R≥0 × ∂F × ∂H.
(31)

�

Remark 5: The completeness requirement of the systems
solutions plays an important role to show the Lipschitz
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continuity of the constructed barrier candidate when the
system is conditionally invariant. Relaxing the completeness
requirement is part of our future research. •

In the case of stability of the origin, Kurzweil in [16]
deduced from the Lyapunov function constructed in [15]
the existence of a Lyapunov function that is C1 everywhere
(except at the origin) under the C1 regularity of the vector
field and the fact that the origin is an equilibrium point. The
compactness of the origin is an important requirement for its
proof to hold. Unfortunately, this assumption does not hold
when a generic (not invariant) set is considered instead of the
origin. However, we can handle such situation by extending
[19, Lemma 48.3]. It should be added that the origin being
an equilibrium plays an important role in [16] to guarantee
positive definiteness of a certain function used in the proof.
However, in our case, when the origin is replaced by a
generic closed set, such a function is not necessarily positive
definite. Therefore, to handle this situation, we propose a
state dependent change in the system’s time scale such that,
in the new time scale, this function becomes positive definite.

Theorem 4: Consider system (1) with f ∈ C1. As-
sume further that every maximal solution to it is com-
plete. Then, system (1) is safe with respect to given sets
(Xo, Xu) if and only if there exists a function B : R≥0 ×
Rn → R of class Co ∩ C1 ((R≥0 × Rn)\K), where K :=
{(t, x) ∈ R≥0 × Rn : B(t, x) ≤ 0}, such that

B(t, x) > 0 ∀x ∈ Xu ∀t ∈ R≥0,
B(t, x) ≤ 0 ∀x ∈ Xo ∀t ∈ R≥0,

∂B
∂t (t, x) + ∂B

∂x (t, x)f(x) ≤ 0 ∀(t, x) ∈ (R≥0 × Rn) \K.
(32)

�

Remark 6: The forward completeness requirement in the
previous statement is important for the barrier function
therein to exist, when the system is safe, and to be well de-
fined. Relaxing the completeness in the proposed framework
is an open question and may involve a completely different
construction of the barrier function than the one we propose.
•

V. CONCLUSION

In this paper, we proposed sufficient and necessary condi-
tions for safety (equivalently, conditional invariance) using
barrier-like functions. The first part of the paper relaxed
existing sufficient conditions. The proposed relaxations con-
cern the sign and the regularity of the considered barrier-like
functions. In the second part, guided by the lack of existence
of autonomous and continuous barrier functions certifying
safety in a class of safe systems, time-varying barrier-like
functions certifying safety are proposed and there existence
is shown to be both necessary as well as sufficient. The
regularity of the proposed time-varying barrier-like functions

depends on the regularity of the system’s dynamics. Our
approach is inspired by converse Lyapunov theorems for only
stability.

REFERENCES

[1] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-
case and stochastic safety verification using barrier certificates,” IEEE
Transactions on Automatic Control, vol. 52, no. 8, pp. 1415–1428,
2007.

[2] G. S. Ladde and V. Lakshmikantham, “On flow-invariant sets.,” Pacific
Journal of Mathematics, vol. 51, no. 1, pp. 215–220, 1974.

[3] G. S. Ladde and S. Leela, “Analysis of invariant sets,” Annali di
Matematica Pura ed Applicata, vol. 94, no. 1, pp. 283–289, 1972.

[4] V. Lakshmikantham and S. Leela, Differential and Integral Inequal-
ities: Theory and Applications, vol. I. Academic press, New York,
1969.

[5] A. A. Kayande and V. Lakshmikantham, “Conditionally invariant sets
and vector lyapunov functions,” Journal of Mathematical Analysis and
Applications, vol. 14, no. 2, pp. 285–293, 1966.

[6] D. Belleter, M. Maghenem, C. Paliotta, and K. Y. Pettersen, “Observer
based path following for underactuated marine vessels in the presence
of ocean currents: A global approach,” Automatica, vol. 100, pp. 123
– 134, 2019.

[7] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of
mobile agents, Part I: Fixed topology,” in 42nd Conference on Decision
and Control, vol. 2, pp. 2010–2015, IEEE, 2003.

[8] A. G. Wills and W. P. Heath, “Barrier function based model predictive
control,” Automatica, vol. 40, no. 8, pp. 1415 – 1422, 2004.

[9] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918–927, 2009.

[10] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.
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[17] J. Kurzweil and I. Vrkoč, “Transformation of Lyapunov’s theorems on
stability and Persidskii’s theorems on uniform stability (In Russian),”
Czechoslovak Mathematical Journal, vol. 7, no. 2, pp. 254–272, 1957.

[18] N. N. Krasovskii, Stability of Motion. Applications of Lyapunov’s
Second Method to Differential Systems and Equations With Delay.
Translated by J. L. Brenner, vol. 48s. Standford University Press,
1963.

[19] W. Hahn, Stability of Motion, vol. 138. Springer, 1967.
[20] S. Prajna, Optimization-based methods for nonlinear and hybrid

systems verification. PhD thesis, California Institute of Technology,
2005.

[21] F. H. Clarke, Optimization and Nonsmooth Analysis, vol. 5. 1990.
[22] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth

Analysis and Control Theory, vol. 178. Springer Science & Business
Media, 2008.

[23] C. M. Kellett, “Classical converse theorems in Lyapunov’s second
method.,” Discrete & Continuous Dynamical Systems-Series B, vol. 20,
no. 8, 2015.

5044


