
Analyzing Action Games: A Hybrid Systems Approach
Yegeta Zeleke

University of California, Santa Cruz
Yzeleke@ucsc.edu

Joseph C. Osborn
Pomona College

joseph.osborn@pomona.edu

Ricardo G. Sanfelice
University of California, Santa Cruz

ricardo@ucsc.edu

ABSTRACT
Design support tools benefit from rich information about games’

emergent behavior. Inventing successful AI players for particular
games can help producing some of this information, but this is both
labor intensive and limited in that it can generally only reveal that
a solution exists and not say that no solution exists or that certain
classes of solution exist. We show a generic method for posing and
answering feasible-path, optimal-path, and reachable-space queries
in action games, and we devise a measure of game level difficulty.
We accomplish all this by encoding action videogame characters as
hybrid dynamical systems, using Flappy Bird and Super Mario as
case studies.

CCS CONCEPTS
•Computer systems organization→Embedded and cyber-

physical systems; • Software and its engineering → Formal
software verification; • Mathematics of computing → Dis-
crete mathematics; Continuous mathematics;

KEYWORDS
Hybrid dynamical systems, Gamemodeling, Reachable-set, Feasible-

set, Optimal-path, Game level difficulty, Control theory, Hybrid
control
ACM Reference Format:
Yegeta Zeleke, Joseph C. Osborn, and Ricardo G. Sanfelice. 2019. Analyzing
Action Games: A Hybrid Systems Approach. In Proceedings of FDG (FDG’19).
ACM, New York, NY, USA, 11 pages. https://doi.org/

1 INTRODUCTION
Game design is challenging, in part, because it is difficult to

anticipate the global effects of any local design change. For example,
while it may be clear that adjusting the height of a platform in an
action game could make that part of the level impassable, it may
be less obvious that the player has an alternative route, or that this
alternative route takes so much time that, although it is feasible,
the player will not be able to complete the level before their clock
runs out. Whether a designer is moving a platform by one pixel,
tweaking a gravity or velocity constant by a small fraction to fix a
bug, or changing the time duration of a powerup, there is always
the possibility of opening up new (and unintended) avenues of play
or closing off desirable solutions. In service of this goal, it can be

Research by Y. Zeleke and R. G. Sanfelice has been partially supported by the National
Science Foundation under Grant no. ECS-1710621 and Grant no. CNS-1544396, by the
Air Force Office of Scientific Research under Grant no. FA9550-16-1-0015, Grant no.
FA9550-19-1-0053, and Grant no. FA9550-19-1-0169, and by CITRIS and the Banatao
Institute at the University of California.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

helpful to have an oracle for play [19], and it can be valuable for
this oracle to act as an idealized player.

If our designer’s only concern were for this player to be “optimal,”
and if they had access to significant computational resources, they
could apply techniques from reinforcement learning to obtain such
an oracle for play [14]. This is an unsatisfying answer for two
reasons (besides the assumption of access to a high-performance
computing cluster): First, this only yields a policy for getting the
most points in the least time by any means necessary, which is not
necessarily the most informative thing to designers; Second, and
possibly much worse, any change to the game’s design—its rules,
its levels, or potentially even its graphics—might require significant
retraining time, depending on the architecture. In an iterative design
process, this second limitation is severe. It is therefore worthwhile
to look for other approaches.

In fact, hybrid systems are well-known to game developers
already—but in an ad hoc, informal way. Designers have tradi-
tionally used informal state machine diagrams to describe game
characters (a particularly readable example is Swink’s treatment of
Super Mario [22]), and in programming language implementations
of game characters, sets of discrete variables implicitly define state
machines by their combinations. For example, a Boolean variable
might be set to true when a character has a speed boost powerup,
which implicitly yields a normal speed state and a boosted speed
state; if the character can also crawl to fit through small gaps, then
we have a four-state system (crawling, with and without the speed
boost, and walking normally, with and without the speed boost).
The present work formalizes this combinatorial approach to game
character behaviors, which admits the application of mature al-
gorithms and approaches for analyzing such complex systems. In
this paper we propose adapting a successful hybrid dynamical sys-
tems framework for use in games. In [15] Osborn et al. recently
made a similar move with the related formalism of hybrid automata,
and it seems expressive enough for action games as a class; open
questions remained as to the computation time required to extract
answers to design queries from this system. This paper builds on
their results by showing that hybrid systems can also be effective
for the purposes Osborn et al. established, using completely distinct
solution methods with a related (but subtly different) underlying
representation.

We begin by describing hybrid dynamical systems and how they
differ from the hybrid automata models used by Osborn et al. Next,
using Flappy Bird as an example, we show and solve three classes
of problems related to the emergent dynamics of these hybrid dy-
namical systems: reachability (can the player navigate a character
to a position), feasible set computation (what is the complete set of
reachable positions), and optimal path planning (what is the best
way, under some metric, to get a player character to a position).
We showcase general techniques which are well-known in hybrid
dynamical systems and which could be of significant use to devel-
opers of game design support tools. In the process, we formalize
one possible metric of game difficulty in terms of the size of the
intersection of the feasible set with specific points.

Note that it is exceedingly difficult to apply the reinforcement
learning-based approaches mentioned above to the problem of feasi-
ble set computation. Also, while there are game-specific approaches

https://doi.org/

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Yegeta Zeleke, Joseph C. Osborn, and Ricardo G. Sanfelice

to finding feasible sets [5, 9, 18], they leverage closed-form solu-
tions to specific games’ physical dynamics; our work only requires
that the game’s dynamics can be encoded as a hybrid dynamical
system.

Our main contribution, therefore, is a general method which ad-
mits the use of tried-and-true solution approaches from the hybrid
dynamical systems literature, including but not limited to feasibil-
ity checking, reachable set finding, and optimal path planning via
model predictive control. In the future, this also opens up applica-
tions for parameter synthesis, hybrid systems identification, and
other problems of potential interest in game design support tools. A
secondary contribution is a possible metric of game level difficulty
formalized in terms of reachable sets.

2 HYBRID SYSTEMS
Dynamical systems comprise mathematical equations describing

the evolution of state variables defining a system with respect to
time [7]. A dynamical system whose behavior is governed by dif-
ferential equations is a continuous-time system, while a dynamical
system whose behavior is dictated by a difference equation is a
discrete-time system. A hybrid dynamical system (or, simply, hybrid
system) is a system where its state variables can change both con-
tinuously and discretely. Such evolution of the state variable can
be captured by both differential and difference equations.

Part of the definition of a hybrid system is a delineation of those
regions of the state space where solutions may flow continuously
(the flow set) and those regions where instantaneous jumps can oc-
cur (the jump set). A well defined hybrid system therefore consists
of a differential equation, a flow set, a difference equation, and a
jump set. Allowing states that can evolve both continuously and
discretely, hybrid dynamical systems allow for modeling and simu-
lation of a wide range of systems in domains including robotics, au-
tomobiles, power systems, and biological systems. Hybrid systems
have been modeled and analyzed in numerous ways throughout
the last few decades [4, 8, 11, 13, 23, 25].

We use the following general framework to define hybrid systems
as a tuple (C, F ,G,D) [8]. A closed-loop (i.e., without any input)
hybrid system H comprises a flow set C ⊂ Rn , which is a subset
of n-dimensional real numbers denoted Rn , a jump set D ⊂ Rn ,
continuous dynamics given by a flow map F : Rn ⇒ Rn , and
discrete dynamics given by a jump map G : Rn ⇒ Rn , where
the symbol⇒ is used to indicate that points are mapped into sets.
Formally, a hybrid system is given by

H :=
{

x ∈ C Ûx ∈ F (x)
x ∈ D x+ ∈ G(x) (1)

To illustrate the general framework, consider a point-mass bounc-
ing vertically on a horizontal platform. The point-mass will flow
whenever it is rising or falling, and it will jump the instant it collides
with the platform while falling. Suppose that, upon contact with the
platform, the point-mass will immediately reverse its velocity and
that a dissipation of energy will cause the speed of the point mass
to reduce. Note that the mass will also flow when it is colliding with
the platform but has already bounced and has an upward velocity.
We can denote the state of the point-mass x ∈ R2 and its data as:

C := {x ∈ R2 : x1 ≥ 0}, F (x) :=
(

x2
−γ

)
∀x ∈ C

D := {x ∈ R2 : x1 = 0,x2 ≤ 0}, G(x) := −λx ∀x ∈ D
(2)

where x1 is the ball’s height above the platform, x2 its vertical
velocity, γ the acceleration due to gravity, and λ the restitution
coefficient. When one only knows that λ belongs to the range

[λ1, λ2] with 0 ≤ λ1 ≤ λ2 ≤ 1, then the jump map G can be
modeled as the set-valued map G(x) = −[λ1, λ2]x .

Solutions to the bouncing ball in (2) and to general hybrid sys-
tems H are parametrized by the scalar pair (t , j) ∈R≥0 × N where
t denotes the ordinary time to represent the flow time, j stands
for the number of jumps, while R≥0 is nonnegative real set and
N is the set of nonnegative integers. The domain of a solution is
given by a hybrid time domain, which is the collection of intervals
[tj , tj+1] × {j} where tj is a nondecreasing sequence denoting the
jump times. See [8] for more details.

In the case of controlled hybrid systems, a control input affects
the hybrid system’s dynamics: the conditions determining whether
a solution to a hybrid system should flow or jump are captured
by subsets of the state space and the input space. Given an input1
(t , j) 7→ u(t , j), a state trajectory (t , j) 7→ x(t , j) to a hybrid system
has to satisfy, over intervals of flow,

d

dt
x (t , j) ∈ F (x (t , j),u(t , j))

when
(x (t , j),u(t , j)) ∈ C

and, at jump times,
x (t , j + 1) ∈ G(x (t , j),u(t , j))

when
(x (t , j),u(t , j)) ∈ D

We can also define an output map of the system as a function of
the system’s trajectories and inputs:y(t , j) = h(x (t , j),u(t , j)). Finally,
we can write a controlled hybrid system with state x and input u
in the compact form

Hu :

{
Ûx ∈ F (x ,u) (x ,u) ∈ C
x+ ∈ G(x ,u) (x ,u) ∈ D
y = h(x ,u)

(3)

The objects defining the data of controlled hybrid system, are spec-
ified as Hu = (C, F ,D,G,h). The state space x is given by the
Euclidean space Rn while the input space is given by the closed
set U ⊂ Rm and the output y takes values in Rp . Then, the set
C ⊂ Rn ×U contains those points in Rn ×U on which flows are
possible according to the flow map F : Rn × U ⇒ Rn . The set
D ⊂ Rn×U contains those points inRn×Ud fromwhich jumps are
possible according to the set-valued jump map G : Rn ×U ⇒ Rn .
See [8] and [7] for details.

3 VIDEOGAMES AS HYBRID SYSTEMS
It is challenging to predict all of the emergent behaviors possible

in a videogame; this may be a part of their appeal, but it presents
a challenge to game designers. Besides essential requirements of
playability (can a game level be beaten?), designers must also con-
sider softer constraints like the game’s level of difficulty. These types
of questions are difficult to answer without deep knowledge of the
game’s possible reachable states. Even relatively formal models of
concepts like game difficulty have focused on abstract concepts like
rhythm groups, structuring a level as a series of oscillations between
high and low difficulty [21]. Informal approaches to game design
leverage iterative changes and human testing, which is exceedingly
time-consuming (and many such tests may be cut short or even
invalidated if a bug is encountered during play [20]). Moreover, a
simple change in the game environment can potentially impact the
design and hence requires retesting and redesign.

1The components of u can be used to define both uc and ud , that is, there could be
inputs that affect both flows and jumps.

Analyzing Action Games: A Hybrid Systems Approach FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

In the remainder of this paper, we show how the hybrid systems
framework may help answering the sorts of game design problems
discussed above: Assuming that a given game can be modeled as
a hybrid system, a variety of useful tools from the hybrid systems
framework can be applied for analysis. First, we show that games of
interest indeed can be modeled using the formalism described ear-
lier. We then explore the application of hybrid systems techniques
towards three concrete problems of interest in game design support
tools: finding a witness feasible path that shows a particular (bad)
situation is reachable or a particular (good) situation can in theory
be reached; determining and visualizing the reachable set of system
states ending in some condition (or starting from some condition),
which is essentially a forall-quantified version of the first problem;
and optimal motion planning. This latter task is commonplace in
game AI, but implementations for games with continuous space and
physics generally use coarse discrete approximations that are given
a priori based on beliefs about the game’s dynamics; the approach
we give works on the true dynamics. We also show an application
for synthesizing these different types of information: a possible
measure of game level difficulty.

Example 3.1. Consider the clasical Flappy Bird video game, in
which the player controls the vertical movement of a bird by press-
ing a button. Once this button is pressed, the bird moves toward the
top of the screen. The game environment contains series of pipes
(obstacles) that are crossing the screen horizontally at fixed speed,
see Figure 1. The purpose of the game is to maintain the bird away
from the moving obstacles as long as possible. The configuration of

vy

vx

γ

Figure 1: Flappy Bird position in a constrained environment
at two time instances.

the game at each time instant is completely defined by the position,
the vertical velocity of the bird on the screen, and the state of the
button (pressed or not pressed). In other words, if we regard the
game as a dynamical system, its solutions would describe the evo-
lution of the bird position and vertical velocity as well as the state
of the button with respect to time. Furthermore, the fact that the
button has two possible values (pressed or not pressed) introduces
a discrete feature to the system. For each possible configuration
of the button, there is a unique continuous evolution of the sys-
tem: flapping, when the button is pressed and falling, otherwise.
Moreover, after each change of button configuration, a portion of
the state variables representing the behavior of the bird is reset. In
particular, an instantaneous change on the bird’s vertical velocity
occurs at button event.

The combined continuous and discrete behavior of the dynamical
system Hu modeling this game can be seen as a hybrid system of
the form (3). Let us denote by x = (ξ ,q) ∈ R3 × {0, 1} the state

Flapping, q = 1

Ûξ =

vx
vy
0

 ,
if (ξ ,q,u) ∈ C1

Falling, q = 0

Ûξ =

vx
ξ3
γ

 ,
if (ξ ,q,u) ∈ C0

If (ξ ,q,u) ∈ D1

If (ξ ,q,u) ∈ D0

ξ+ =

ξ1
ξ2
vy

Figure 2: Hybrid automata representing the Flappy Bird
game.

variable of the dynamical model, where ξ := [ξ1, ξ2, ξ3]⊤ represents
the horizontal position (ξ1), vertical position (ξ2), and the vertical
velocity (ξ3) of the bird, respectively, and q denotes the current
mode related to button configuration. Figure 2 depicts a hybrid
automata description of the continuous-time evolution (flow) and
the discrete transitions (jump) of the state variables of the system.
In mode q = 1 (flapping), the state ξ evolves according to the
differential equation Ûξ = [vx ,vy , 0]⊤, where vx and vy are the
constant vertical and horizontal velocities, respectively. In mode
q = 0 (falling), the state ξ evolves according to the differential
equation Ûξ = [vx , ξ3,γ]⊤ where γ is a constant acceleration due to
gravity. A switch between the modes is caused by an external action
(player) which can be considered as an input to the system and
denoted by u ∈ {ON,OFF}. In order to completely define the game
as a hybrid system, we shall specify the region of the augmented
space composed of state and input spaces where the flow occurs.
This region is denoted by (x ,u) ∈ C . Similarly, we introduce the
region of the same augmented space where the jump takes place
which we denote by (x ,u) ∈ D.

A transition from mode q = 1 to mode q = 0 (respectively from
mode q = 0 to mode q = 1) occurs when (ξ ,q,u) ∈ D1 = R3 × {1} ×
{OFF} (respectively (ξ ,q,u) ∈ D0 = R3 × {0} × {ON}). During this
transition, ξ1 and ξ2 stay the same, however, ξ3 resets tovy which is
the initial falling speed. In mode q = 1 (respectively mode q = 0) the
system will be flowing as long as (ξ ,q,u) ∈ C1 = R3 × {1} × {ON}
(respectively (ξ ,q,u) ∈ C0 = R3 × {0} × {OFF}).

The Flappy Bird game is completely defined by the following
hybrid system with only one input affecting the flow and jump sets:

H FB
u :

{
Ûx = F (x) (x ,u) ∈ C := ⋃

q∈{0,1}Cq
x+ = G(x) (x ,u) ∈ D := ⋃

q∈{0,1} Dq
(4)

where

x = (ξ ,q),
{
C0 = R3 × {0} × {OFF} D0 = R3 × {0} × {ON}
C1 = R3 × {1} × {ON} D1 = R3 × {1} × {OFF}

and

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Yegeta Zeleke, Joseph C. Osborn, and Ricardo G. Sanfelice

F (x) =

©«
vx
vy
0
0

ª®®¬ when q = 1

∀x = (ξ ,q) : (x ,u) ∈ C©«
vx
ξ3
−γ
0

ª®®¬ when q = 0,

G(x) =
©«
ξ1
ξ2
vy
1 − q

ª®®¬ ∀x : (x ,u) ∈ D

Example 3.2. Flappy Bird has an interesting property which is
consistent with many standard problems in motion planning: ev-
ery obstacle is to be avoided. This is mainly because the bird dies
immediately on any collision; but there are plenty of games that do
not have this property. Consider, for example, Super Mario World
(Figure 3). In this game, the player-controlled character must be
on the ground in order to run or jump, and in many cases must
hit its head against a breakable ceiling in order to make progress.
Since including an environment which the player can modify would
force us to consider task planning in addition to motion planning,
for now we consider a constrained version of the Mario character
who cannot break any blocks. Even so, it provides an interesting
generalization.

Figure 3: Environment from Super Mario World. The con-
trolled character may change size, and some obstacles act as
floors but not ceilings.

Super Mario World has a variety of different powerups and ad-
ditional abilities, but to simplify the presentation we concern our-
selves here with the constrained version of Mario who is always
the same size and has no abilities besides running, standing still,
and jumping. We also consider only environments with obstacles
that are always floors, walls, or ceilings (like the yellow blocks in
Figure 3), although this constraint is easily relaxed by considering
the character’s instantaneous state (e.g., whether the character is

ascending or descending). Finally, we exclude the world map from
consideration here and address only individual stage environments.

A configuration of our simplified Super Mario World therefore
includes the continuous position and velocity of the player charac-
ter and other on-screen (and potentially off-screen) entities as well
as discrete variables including the states of control inputs. Again,
treating this game as a dynamical system we can see that the so-
lutions to this system describe the evolution of Mario’s position
and velocity. The discrete features here include whether the left or
right directional input (joystick’s directional button) is given and
whether the jump button is pushed (held) down.

This induces two modes of operation, one for each combination
of inputs: a) direction of motion and b) jump button. However, like
Flappy Bird, Mario has some unusual properties. For instance, the
acceleration due to gravity while falling (i.e., after the apex of his
jump) is higher than it is while Mario is rising. Even stranger, the
longer the jumping button is hold (up to a certain threshold), the
higher Mario jumps! So, after the jump is initiated the controller can
still determine how high the jumpmust be.Mario can also accelerate
horizontally while in the air, although at a reduced acceleration.
Another consideration is that Mario has maximum and minimum X
and Y velocities, essentially requiring terminal-velocity states. The
discrete state space of Mario is therefore much larger than Flappy’s.

Similar to the case-study of Flappy Bird, the combined continu-
ous and discrete behavior of the dynamical system modeling this
game can be seen as a hybrid system of the form (3). Let us de-
note by x = (ξ ,q,τ) ∈ R3 × {0, 1} × R≥0 to represent the state
variable of the dynamical model, where ξ = [ξ1, ξ2, ξ3]⊤ contains
the horizontal position (ξ1), vertical position (ξ2), and the verti-
cal velocity (ξ3) of Mario, respectively. The state q indicates the
discrete variable in Mario’s dynamical model (when Mario is on
the air or in contact with the ground), and τ denotes the amount
of time the jump input is provided. The system’s input is given
by u = (u1,u2) ∈ {−1, 0, 1} × {0, 1}, where u1 denotes the current
directional control (left, stay, or right, respectively) u2 denotes the
current jump button configuration (button pushed or not pushed,
respectively).

On floor
q = 0

Ûξ =

[vx u1
0
0

]
,

Ûτ = 0
if (ξ ,q,u) ∈ C0

If (ξ ,q,u) ∈ D1

ξ+ =

ξ1
ξ2
fyq

τ+ = 0

On air
q = 1

Ûξ =

[vx u1
ξ3
f1(τ , ξ3)

]
,

Ûτ = 1
if (ξ ,q,u) ∈ C1

If (ξ ,q,u) ∈ D0

Figure 4: Hybrid automata modeling Super Mario World.

Figure 4 depicts a hybrid automata describing both the continuous-
time evolution (flow) and the discrete transitions (jump) of the state
variables of the system. The logic it implements is as follows:

Analyzing Action Games: A Hybrid Systems Approach FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

• In mode q = 0, Mario is in contact with the ground or stand-
ing on a floating surface which is either standing still, run-
ning right or running left, depending on u1. Hence, the state
evolution is given by

Ûx = [vxu1, 0, 0, 0, 0]⊤

where vx is the horizontal velocity.
• In mode q = 1, Mario jumps right (if u1 = 1), left (if u1 = −1),
or straight up (if u1 = 0) allowing the state x to evolve
according to the differential equation

Ûx = [vxu1, ξ3, f1(τ , ξ3), 0, 1]⊤

where the function

f1(τ , ξ3) :=
{

−γdown when ξ3 < 0
γup + α (τ) when ξ3 ≥ 0, (5)

denotes vertical acceleration during Mario’s jumps, while
the term α (τ) is used to indicate the longer the jump input
is active, the smaller the deceleration rate is used; thus, the
higher the jump will be. Therefore, one can define α (τ) = aτ
where a is a positive constant and τ is used to denote the
amount of time the input u1 is held. The positive constants
γup and γdown represent the rate of acceleration when Mario
is rising and falling, respectively.

• A switch between the modes is caused by an external player
action changing the input u. In this sense, a transition from
mode q = 0 to mode q = 1 occurs when (ξ ,q,u) ∈ D0 :=
R3 × {0} × {1, 0,−1} × {1}. Upon this transition, the state is
reset according to the difference equation

x+ = [ξ1, ξ2, fyq, 1 − q, 0]⊤

where fy is the initial vertical velocity and 1 − q determines
the next mode. These transitions are necessary to show the
character Mario is now on the air (either jumping up or
falling down) or on the ground as it is dictated by the corre-
sponding differential equations.

To account when the character returns to ground after a jump, we
introduce the jump set

D1 := R × B × R × {1} × {−1, 0, 1}
where B is defined as a set that indicates when the player character
is in contact with a floor. The overall conditions for jump can be
defined as D := ⋃

q∈{0,1} Dq . Furthermore, the flow set is C :=⋃
q∈{0,1}Cq where C0 := R3 × {0} × {−1, 0, 1} × {0} and C1 :=
R3 × {1} × {−1, 0, 1} × {1}. Consequently, we introduce Mario’s
dynamics as the following hybrid system:

HM :=
{

Ûx = F (x ,u) (x ,u) ∈ C = ⋃
q∈{0,1}Cq

x+ = G(x ,u) (x ,u) ∈ D = ⋃
q∈{0,1} Dq

(6)

where

F (x ,u) :=

©«
vxu1
0
0
0
0

ª®®®®¬
when q = 0,

∀(x ,u) ∈ C©«
vxu1
ξ3
f1(τ , ξ3)
0
1

ª®®®®¬
when q = 1,

G(x) :=

©«
ξ1
ξ2
fyq
1 − q
0

ª®®®®¬
∀x : (x ,u) ∈ D

4 REACHABILITY AND FEASIBILTY
Among the most important challenges in video game analysis are

quantifying the playability of the game within the player’s ability
and gauging the difficulty of the gamewith respect to changes in the
game environment. Solving the later challenges would considerably
help the game design support system.

For games modeled as hybrid dynamical systems, one can uti-
lize existing approaches in order to handle the aforementioned
challenges. Indeed, given a hybrid system model whose solutions
describe the game character’s evolution with respect to time, the
player’s action on the game represents control inputs for the game’s
dynamical model. As a result, the solution to game model must at
least ensure that the character never interpenetrates the environ-
ment inappropriately. If a target point—a final destination for the
character—is given, then the system’s solutions must also end up
in the target point or area. Analyzing playability therefore consists
in providing answers to two main questions: First, what is the set
of initial configurations of the character that allow for an admis-
sible input such that the character trajectory reaches the target?
Second, can we quantify the difficulty of reaching the target from
the obtained set of feasible initial points? And if so, can we use this
information to provide assistance to game designers?

It turns out that the hybrid systems literature offers powerful
approaches for addressing these questions. Solving a feasibility
problem for a given target set consists of analyzing the reachable
set from the target set in backward time. Indeed, this backwards-
reachable set contains the complete admissible set of initial points
and can also characterizes the difficulty of reaching a target point
in forward time by providing all the possible solutions that allow
the character to reach the target point.

In the remainder of this section, we study a reachability problem
for hybrid systems and answer the previously stated questions by
studying a feasibility problem for hybrid systems. Specifically, we
propose an algorithm to approximate the set of reachable points
from a given initial point.

4.1 Reachability
Reachability analysis consists in proposing methods and algo-

rithms to approximate the set of points, the so-called reachable
set, generated by the system solutions starting from a given set
of initial points, denoted χo , after finite (hybrid) time (T , J). More
precisely, the reachable set from χo up to (T , J) for H is given as

reachH(T , J)(χo) := {x (t , j) : x (0, 0) ∈ χ0, t ≤ T , j ≤ J , (t , j) ∈ domx}

(7)
where x is a solution toH from χo .

Since the game solution lives in a constrained environment,
we are more interested in analyzing safe reachable sets rather
than reachable sets. That is, the safe reachable set is given by
reachsafeH(T , J)(χo) := {x(t , j) : x(0, 0) ∈ χ0,x(t , j) /∈ χu∀(t , j) ∈

dom x : t ≤ T , j ≤ J } where χu is used to denote the unsafe set
(e.g., obstacles region).

Reachability analysis is a key step in the verification of hybrid
systems. The set reachsafe(T , J)(χo) indicates whether solutions

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Yegeta Zeleke, Joseph C. Osborn, and Ricardo G. Sanfelice

0 2 4 6 8 10
0

2

4

6

ξ1

ξ2

(a)

0 2 4 6 8 10
0

2

4

6

ξ1

ξ2

(b)

0 2 4 6 8 10
0

2

4

6

ξ1

ξ2

(c)

2 4 6 8 10
0

2

4

6

ξ1

ξ2

(d)

0 2 4 6 8 10
0

2

4

6

ξ1

ξ2

(e)

0 2 4 6 8 10
0

2

4

6

ξ1

ξ2

(f)

Figure 5: Simulation result depicting safe reachable set for
different obstacle configuration.

originating from a given initial condition χ0 satisfies the constraints
(avoiding χu) or not. Given a controlled hybrid system of the form
(3) and the unsafe set χu , we are interested in finding the set of input
signalsu : dom u → Rm such that the resulting solutions belong to
reachsafeH(T , J)(χ0) for a given (T , J) ∈ R≥0 × N. Many reachability
analysis algorithms have been proposed in the literature, including
[3, 6, 24].

We consider Example 3.1 to illustrate a way to compute the
set reachsafeH(T , J)(χo).

2 In the context of this example, the bird
has to stay in a safe set before (T , J). We first discretize the hybrid
systemH FB

u in (4) with a fixed step size using the Hybrid Equations
Toolbox package (HyEQ) [16]. Since the range of the system’s inputs
is discrete and finite (u ∈ {0, 1}), there exist 2N possible sequence
of inputs, where N is the total number of time steps in the interval
[0,T]. The resulting discretized solution is denoted by x {0,1, ...,N } .

For the obstacle setup shown in Figure 5, computing the admissi-
ble inputs can be achieved using iterative methods, e.g. Algorithm 1.
The algorithm first computes the upper bound of the safe solutions
(line 3-10). That is, it computes the solutions of (4) from the initial
condition χ0 and checks if the constraints are met for all possible
combination of inputs. Similarly, it computes the lower bound of
the safe solution (line 12-19).

In Algorithm 1, we first compute the upper-bound trajectory of
the reachable set (lines 2-11), then we compute the lower-bound
trajectory (lines 12-20). Indeed, the 2N input sequences are or-
dered to increase with respect to the index i (i = 0 corresponds
the sequence of all-zero inputs and i = 2N + 1 corresponds to
the sequence of all-one inputs). getNextInput(i) generates the
i-th sequence of inputs. That is, the first loop iteration (lines 3-11)
starts from all-one bit stream and tries to find the first sequence
of inputs that satisfies the constraints. Once the first bit stream
that satisfies the constraints is found (line 6), the loop breaks and

2Source code available at https://github.com/HybridSystemsLab/FlappyBirdReachability

Algorithm 1: Computation of reachable safe set.
reachsafeComputation (χu)
1 Obtain initial system state set χ0 and the horizon N

2 i = 0
3 while i < 2N do
4 u-upper{0,1, ...,N }= getNextInput(i)
5 Simulate system (4) from χ0 for input signal

u-upper{0,1, ...,N } to obtain x {0,1, ...,N }

6 if x {0,1, ...,N } /∈ χu then
7 upperBound=True
8 break
9 end

10 i = i + 1
11 end
12 i = N

13 while i > 0 and upperBound do
14 u-lower{0,1, ...,N }= getNextInput(i)
15 Simulate system (4) for input signal u-lower{0,1, ...,N } to

obtain x {0,1, ...,N }

16 if x {0,1, ...,N } /∈ χu then
17 break
18 end
19 i = i − 1
20 end

the algorithm proceeds to find the lower-bound trajectory for the
reachable set in a similar way (lines 12-20). In the case where all the
input sequences are exhausted without attaining a viable solution
(reachsafeH(T , J)(χ0) = ∅), the upper-bound trajectory will be empty
and hence line 13-20 will not be executed.

In Figure 5, the blue trajectories indicate the lower-bound and
the upper-bound trajectories of the safe reachable set. Given a point
in reachsafeH(T , J)(χo) within the blue inscribed region, there exist a
sequence of inputs such that the corresponding solution reaches
x when starting from χo . This conclusion is highly relevant to
design support tools! Specifically, knowing the reachable set and
its boundaries can help with placing rewards or intractable objects.

4.2 Feasibility
In this section, we exploit the tools developed in Section 4.1

in order to address the feasibility problem. The objective of the
feasibility problem is to compute a set of initial points χ0 such
that the solutions starting from it reach a given target set denoted
χF . Recall that in the reachability problem we compute the set
of final points χF reached by the solutions starting from a given
set of initial points χ0. Our approach relies on the following key
observation: the set of initial points χ0 obtained from solving the
feasibility problem is a set of final points reached by the backward
solutions starting from the given target set χF .

Motivated by this, we compute the backward-in-time solutions
of the given system Hu to solve the feasibility problem for the
(forward-in-time) system Hu as follows: we obtain the final set
χF for the feasibility problem for Hu by solving backward-in-time
reachability problem with χF as the initial set. For this purpose,
we define a backward-in-time version ofHu and then compute the
solutions to that system forward in time.

Analyzing Action Games: A Hybrid Systems Approach FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

Before analyzing the backward-in-time reachability problem
(namely, the feasibility forHu) from the set χF , it is important to
notice that for a high order flow model, the set χF may not be given
in terms of all the state variables involved in the modeling. In this
case, it is important to find a way, before computing the system’s
backward solutions, to augment the set χF so as to specify all of
the state variables. For example, if we consider the Flappy Bird
model introduced in (4), we notice that the state contains the bird
position and vertical speed. However, in practice, the target set χF
corresponds to only the character’s target positions (the character’s
final velocity is not specified). Therefore, before computing the
backward solutions one has to compute first the possible character’s
final velocities. One natural method to do this consists in computing
(offline) all possible final velocities for any possible sequence of
inputs along a given time horizon. This method can be used for any
high order character’s dynamics provided that the control inputs
are assumed to take finite and discrete values. In our approach
for Flappy Bird, the computed final velocity (or remaining state
variables for general high order flow dynamics) corresponding to
each sequence of inputs along the given time horizon, are gathered
in a look-up table and serve to initialize the backward solutions.

So far, we have proposed a general approach to compute the
missing state variables in the specified final state χF . However for
the Flappy Bird model, where the inputs are discrete and finite
(u ∈ {0, 1}), the final velocity (initial velocity for the backward
system) can be computed in a simpler way while observing that
character’s velocities when flapping are constant. Indeed, starting
from a point on the backward solution and given a sequence of
inputs, by counting the number of consecutive backward time steps
along which the system is falling (mode q = 0) and solving the
differential equation Ûvf = 0 with vf (0) = vy along all consecu-
tive falling time steps, the obtained velocity vf at the end of the
consecutive falling steps is an admissible final velocity (initial ve-
locity for the backward system) for the considered sequence of
inputs. More specifically, to initialize the backward speed we use a
key-value lookup table. That is, we compute the initial backward
velocity using the forward dynamics after each l time steps, with
l = 1, 2, ...,N , and record the obtained result in the table with a
key = l and value = vf , where vf is the final velocity after falling l
time steps. In this way, for feasibility problem with N time steps,
the look up table will have N entries.3 Since this lookup table will
be computed offline, the computational burden is minimal and the
access time is constant.

For various obstacle setups shown in Figure 6 (a-d), the obtained
safe backward solutions are plotted starting from χF along N time
steps where N denotes the time horizon (or number of time steps)
and χF is the final set.4 In general, it is very time consuming to
compute all the backward solutions starting from χF especially
when the horizon N is large. One way to handle this inadequacy
consists in solving the feasability along consecutive sub-horizons.
Indeed, starting from χF we compute all the feasible backward
solutions along a given first sub-horizon. At the end of the sub-
horizon we obtain a set of points that are reached. From the later
set, we select only a subset of points from which we re-solve the
feasability problem along another backward-time sub-horizon. We
iteratively apply the same approach until reaching the region where
the character is supposed to start.

3An alternative way to perform such computation is to define a backward-in-time
version of Hu and compute the solutions to it forward in time. Such solutions are
backward-in-time solutions to Hu .
4Source code available at https://github.com/HybridSystemsLab/FlappyBirdFeasibility

0 1 2 3 4
0

2

4

6

ξ1

ξ2

(a)

0 1 2 3 4
0

2

4

6

ξ1

ξ2

(b)

0 1 2 3 4
0

2

4

6

ξ1

ξ2

(c)

0 1 2 3 4
0

2

4

6

ξ1

ξ2

(d)

Figure 6: Simulation result depicting feasible initial sets
for different obstacle setup using Algorithm 2 at first sub-
horizon.

Algorithm 2: Computation of feasible set
feasibleSet (χF , k , ξTarget, Nsub)

1 if ξ1 = ξTarget then
2 return (True)
3 end
4 validInputs= getInputSequence(Nsub , χF)
5 if isempty (validInputs) then
6 return (False)
7 end
8 for i ∈ {0, 1, . . . ,k} do
9 xterminal = getTerminalPoints(χF ,validInput(i))

10 found = feasibileSet(xterminal ,k , ξTarget, Nsub)
11 if found then
12 save data
13 plot
14 end
15 end

In Algorithm 2, we solve the feasibility problem using a recursive
subroutine. The algorithm takes in four parameters, namely χF , k ,
ξTarget, and Nsub to indicate the target point, the number of inputs
that are selected and propagated along the next sub-horizon, the
targeted horizontal axis to stop the recurrence, and the sub-horizon
Nsub ≤ N , respectively. The function getInputSequence() takes in
Nsub and the initial condition for the backward-in-time system,
which is χF and gives a list of valid input sequences from χF (line
4). Once all valid inputs are determined the next step is to apply
selected valid input sequences and obtain terminal points to be
used as initial condition for next recurrence (line 10).

The remaining question is how many terminal points do we
consider as an initial point to propagate backward solutions There-
fore, we provide a flexible method by allowing the user pick k , the
number of points in the feasibility set to be propagated backward.
In Figure 6, k = 256 for N = 8 is used to calculate the backward-in-
time solutions. Indeed this induces more computational burden if
we propagate backward more than one set, however, for computing
only the first set, the computational burden is mild. Experiments

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Yegeta Zeleke, Joseph C. Osborn, and Ricardo G. Sanfelice

ξ1

ξ2

(a)

ξ1

ξ2

(b)

ξ1

ξ2

(c)

ξ1

ξ2

(d)

Figure 7: Simulation result depicting feasible sets at differ-
ent sub-horizon using Algorithm 2.

were conducted on a personal computer powered by an Intel core
i5 processor with 2.7 GHz clock speed and 8GB RAM. For the fea-
sible sets shown in Figure 6 (a-d), the computation time is 42.6 s,
10.9 s, 5.5 s, and 7.5 s, respectively. Similarly, solving the feasibility
problem shown in Figures 7 (a-d) and 8 (a & b) took 5.8s, 35.7 s,
85.02 s, 216.2 s, 0.33 s, and 0.2 ms respectively.

In Figure 7, the feasibility problem is solved for various obstacle
setups. In particular, we explore how the feasibility set get affected
in relation to changes in the game environment, namely the ob-
stacle setup. Indeed, as the gap between obstacles get smaller and
smaller, the feasible set shrinks. This particular behavior provides
an essential technique for game design. More specifically, one can
gauge the difficulty of the game by just looking at the solution of
the feasibility problem.

Consider the game setup shown in Figure 7 (a)-(d). In the figures,
a sub-horizon of Nsub = 8 and ξTarдet = 3.2 with k = 2 is used
while the target point is set to χF = (ξ1, ξ2) = (10.5, 3). That is, after
a sub-horizon (Nsub), maximum or 23 terminal points are selected
from all terminal points in the set and propagated backward-in-
time on the next sub-horizon. In Figure 7(a) (respectively in (b)),
the feasibility problem is solved to obtain the first(respectively the
second) set backward-in-time. As shown in the figure, there exist
multiple solutions for the feasibility problem both in (a) and (b).
That is, for the particular target point chosen, the bird’s position can
start at various point within the feasible set. However, this is not the
case for Figure 7 (c), where the solution is extended for one more
set backward-in-time. That is, the number of possible trajectories
drastically diminishes as the obstacle setup in ξ1 ∈ (5, 5.5) hinders
many trajectories from passing through. In (d), the solution expands
to include various initial condition as the obstacle setup relaxes.
Although the solution expands at the later sets, it is important to
notice the solution will have one single path when ξ1 ∈ (5, 7). This
yield in increased difficulty in playing the game as the player has to
get this exact solution. In most games, it is desirable the player has
enough possibilities in choosing the safe path, and our numerical
results show that this is not the case for the parameter used.

Now, consider the feasibility solution shown in Figure 8. In sub-
figure (a), the initial condition χF = (10.8, 3.5) is used. It can be seen
from the sub-figure that there exists only one solution that can lead
the trajectory of Flappy Bird starting at ξ1 = 7 towards the desired
destination given by χF . In sub-figure (b), the initial condition was

0 2 4 6 8 10 12
0

2

4

6

ξ1

ξ2

(a)

0 2 4 6 8 10 12
0

2

4

6

ξ1

ξ2

(b)

Figure 8: Simulation result showing unique solution and no
solution for selected initial conditions

set to be a little higher at χF = (10.8, 3.6) (Marked in red ⋆). One
can notice the solution for the feasibility problem is the empty set.
That is, no matter where the initial condition along the vertical line
ξ1 = 7 and ξ2 ∈ (0, 6) (the playable vertical area), there exist no
input sequence that guides the bird to the target point (marked as
green star).

In order to analyze the playability of the game it is possible to
introduce ametric to quantify the difficulty level of the game or even
the existence of solution for a specific game. One possible approach
for gauging the difficulty consist in introducing the following min-
max cost function:

J (χF ,T) := min
t ∈[1,T]

max
(a,b)∈reachsafeb,Hut (χF)

|a − b |2. (8)

where reachsafeb,Hu
t is the backward reachable set with safety up

to ordinary time t . The function J is equal to zero when the feasible
solutions are unique along some intervals, and when J is large, it
follows that the target point can be reached through different paths.
Hence, the player will have a large freedom to win the game. For
the particular game setup shown in Figure 7 (a)-(f), J (χF ,T) is 0.2,
0.22, 0, 0, 0, and 0, respectively. Therefore, the difficulty of the game
is inversely related to the cost function J .

5 PATH PLANNING USING MPC
Thus far, we have proposed approaches to calculate all possible

input sequences that take the game character or the system’s tra-
jectories to a desired target set/point while avoiding the obstacles.
Now, we propose methods to select the optimal input sequences
among all the feasible ones with regards to an optimality criteria.
The optimality criteria can be chosen so as to select input sequences
that allow fast convergence to a goal or to require a minimum num-
ber of jumps, or time to accomplish a task (equivalently, leading to

Analyzing Action Games: A Hybrid Systems Approach FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

a minimum number of actions required from the player). Random-
ized sampling-based planning algorithms such as RRT have been
widely used in motion planning problems, however, RRT converges
to sub-optimal solution [10]. Informed searching algorithms such
as A∗ are complete and optimal, but obtaining a heuristic function
that guides the search is challenging. Moreover, in most planning
algorithms complex dynamics are not considered, rather the trivial
point mass dynamical model is utilized. One can track the result
obtained from those algorithms (i.e. RRT, A*,D*...) to tackle path
planning problem, however guaranteeing safety can be compro-
mised since the dynamical constraints are not considered in the
planning process.

5.1 Outline of Approach
We start by formulating the motion planning problem for a

hybrid system Hu .
Problem (⋆):Given a hybrid systemHu modeled as (3) with initial
state x0 and final state xF , determine the input

(t , j) 7→ u(t , j) (9)
such that resulting solution x toHu in (3) and from

x (0, 0) = x0
is such that for some (T , J) ∈ domx ,

x (T , J) = xF

In order to tackle Problem (⋆), we propose a general hybrid MPC
framework. Motion planing is a fundamental component in video
games testing and it can be implemented in static, dynamic, and
real-time environments. Numerous developments have improved
the accuracy and effectiveness of motion planing techniques over
the past two decades. The core of motion planning relies heavily in
provision of high-performance feasible path generation whether be
a single-agent or a multi-agent system. The presence of dynamic
changes in the environment, heterogeneous terrains, and variable
rewards make solving motion planing problem difficult. In partic-
ular, planning a path such that all constraints are satisfied and a
certain feature is maximized could pose a difficult problem.

Though the rules of Flappy Bird are simple to understand and
executed by a player, it poses some difficulties for an automated
controller. The combined continuous and discrete behavior of the
system as well as the constrained nature of the state space due to
the existing time-varying obstacles makes the application of classi-
cal control techniques not very useful [17]. One possible approach
to handle this shortcoming consists in decomposing the problem
into two independent sub-problems: first, we generate a reference
trajectory that considers only the presence of the obstacles offline,
then, once a reference trajectory is generated, solve the trajectory-
tracking sub-problem by designing a control law that allows the
actual to converge asymptotically to the reference trajectory. De-
coupling the problem into sub-problems has the advantage of re-
ducing complexity. Indeed, the complexity rising from the nature
of the obstacle is not considered in the planning phase. Similarly
the geometric constraint such as obstacle location and boundaries
are not considered in the trajectory-tracking phase. Unfortunately,
this method could result in an unreachable reference trajectory
(namely, a trajectory that can not be attained due to the system dy-
namics) since dynamical restrictions are not taken into account at
time of motion planning [12]. To handle this issue, we propose safe
real-time planning approach in constrained environments while
considering the hybrid nature of the system’s dynamics. The pro-
posed approach is introduced in the next section. It utilizes the
ideas in Section 4.

5.2 MPC Formulation for Planning
This section formulates an optimization problem whose solution

defines a reference trajectory while considering both dynamical and
geometric constraints of the game. In particular, we are interested
in solving the following optimization problem using a predictive
hybrid control scheme [1].

Problem5.1. GivenT ≥ 0 and J ∈ N defining a prediction horizon,
terminal cost V , unsafe set χu , functions Lc and Ld , find a hybrid
arc x⋆ and a hybrid input u⋆ with compact hybrid time domain
dom x∗ = dom u∗ and solution toHu that minimizes

J (x ,u) :=
J∑
j=0

∫min{tj+1,T }

tj
Lc (x (t , j),u(t , j))dt (10)

+
J−1∑
j=0

Ld (x (tj+1, j),u(tj+1, j)) +V (x (T , J))

subject to
x (t , j) /∈ χu ∀(t , j) ∈ domx , (T , J) ∈ domx

where x denotes a solution to Hu with input u. The function Lc
determines the cost of flow and is defined on the flow set C . The
function Ld is defined on the jump set D and determines the cost of
jumps. The functionV denotes the terminal cost. The functional J
in (10) combines the flow and jump costs along with the terminal
constraint.

We utilize aModel Based Predictive Control (MPC) [1] [2] scheme
for hybrid dynamical systemsHu to obtain solutions given as se-
quences of inputs. That is, we predict sequences of pointsx {0,1, ...,N }

according to the system dynamics in (3) and possible inputs. Then
we select the sequence with the least cost. This is done by solving
Problem 5.1 for a given prediction horizon (N) to obtain the optimal
input sequence u⋆ and applying it for the duration of the control
horizon (M). The terminal state obtained after applying u⋆ forM
time steps will then be used as the initial condition for the next
horizons and the process is repeated. The algorithm computing the
optimal input sequence is outlined below. In the algorithm, Hui
denotes input u for system Hu at the i-th iteration.

Algorithm 3:MPC(x0, xF ,M)
1 while x0 ̸= xF do
2 Solve Problem 5.1 to get input u {0,1, ...,M }

3 Discretize the hybrid systemHu and simulate using the
HyEQ toolbox to obtain x {0,1, ...,M }

4 Set x0 = x {M }

5 end

In conventional MPC, the existence of solution often depends on
the initial input guess. Indeed, the solution to the hybrid system,
which is solved in MPC will critically depend on the initial input
guess. To illustrate this, we consider the reachable set presented in
Figure 5(e). For a choice of initial guessu = 1 (flapping), there exists
no solution. However, for the "right" initial guess there is nonunique
solution that leads the bird trajectory away from obstacles for a
specified time horizon and initial condition.

Example 5.1. Suppose our goal is to produce the smoothest safe so-
lution possible. In this case, one would like to minimize the amount
of state transition (push buttons) in the game. We follow the general
formulation stated in (10) and set Lc = 0 while defining Ld ∈ {0, 1}

FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA Yegeta Zeleke, Joseph C. Osborn, and Ricardo G. Sanfelice

to indicate if a jump happens at time tj ∈ [0,T]. That is, the func-
tion Ld returns the number of jumps in the interval t ∈ [0,T] for a
given solution. We are interested in designing a control law u that
complies with (4) while guarantying minimal cost J .

We utilize the MPC based approach stated in Algorithm 3. In
this approach, a dynamical system model is used to predict the
system behavior with respect to time so as to generate an optimal
sequence of control inputs for a given time horizon (M). More
specifically, we use this method to generate a sequence of control
(button pressed or not pressed) that minimize the objective function,
that is, to minimize the amount of push buttons. At a given time
t ∈ [0,T], we solve the optimization problem in (10) over a given
prediction horizon, N , and apply the obtained input sequence for
the amount of the control horizonM . In this optimization scheme,
it is necessary to note that the prediction at tk+1 depends on the
current state variable and the applied input at time tk . Moreover, to
guarantee feasibility, one has to tuneM , N , and the sampling time.
For example, a small value of sampling time will result in a more
transient response with cost of computation time. Similarly for a
fixed N , a smallerM result in a conservative input that maximize
the safety criteria, however slower output response since prediction
has to be done more frequently.

ξ1

ξ2

Figure 9: Nonuniqness of solutions for Flappy Bird game
variants with different jump time, j(t), and total number of
jumps J . The result shown in this simulation uses a receding
horizon of 10 time steps and control horizon of 7.

0 2 4 6 8 10
0

1

2

3

4

5

ξ1

ξ2

Figure 10: Optimal trajectory that minimizes the number of
jumps required to travel through the game space while abid-
ing by the system constraints.

Numerical experiments were carried out to analyze solutions for
the developed strategy of motion planning.5 In order to guarantee
5Source code available at https://github.com/HybridSystemsLab/FlappyBirdPlanning

the existence of solution for MPC problem, a careful initial condi-
tion selection is necessary. For example, for the hybrid model of
(4), an initial condition pertaining to the variable q could lead to
no solution. That is, the initial condition could trap the character
outside reachsafeHT , J (χo). Therefore, we utilize Algorithm 3 in Sec-
tion 4.2 to compute the appropriate initial condition (for part of
the state variable) that results in optimal solution. Moreover, we
utilize the results obtained in Algorithm 1, to speed up the MPC
by constraining the search only inside reachsafeHT , J (χo).

In Figure 9 , trajectories satisfying dynamical and terminal con-
straints listed in (10) are depicted. That is, trajectories reach the
target point ξ1 = 9.7 and ξ2 ∈ [0, 5] with minimal state transition
are shown.

6 CONCLUSION
In this article, we proposed a framework for game design and

quantitative analysis in order to guarantee the best compromise
between the difficulty of the game, the fun and the excitement
acquired. After noticing that the complexity of the game charac-
ter’s dynamics as well as the game environment make the design
process increasingly complicated and time consuming, as opposed
to the traditional iterative processes to manually tune the game
model parameters, we proposed a mathematical framework that
interpret (model) the game evolution with respect to time in terms
of mathematical equations (differential and difference inclusions).
The resulting models belong to the general class of hybrid dynami-
cal systems. We then formulated the game objectives in terms of
the solutions to the obtained hybrid system model. More specifi-
cally, we used the reachability, feasibility and optimality concepts
to guarantee the playability of the game as well as to quantify the
difficulty of the game level.

One way to compute the reachable set when inputs of the sys-
tem are discrete and take finite countable values is to simulate the
system for all possible input sequences. However, computing all
the trajectories from a given initial condition can be a very time
consuming task. Even in the case, where the inputs are boolean (1
or 0), as in the case of Flappy Bird, the number of input sequences
is exponential of the form 2N , where N is the size of the input se-
quences. To address this inadequacy, some algorithms are proposed
in the literature.

Our approach is generic and covers different types of action/arcade
style games with a different level of complexity. The proposed ap-
proach can handle games with dynamic environments such as
different levels of Mario or complex version of Flappy Bird where
traditional path planning can fare poorly. Furthermore, an auto-
matic design process preserving the specified difficulty level can be
achieved using the proposed tools.

Future work includes testing the effectiveness of the proposed
study on various games in both 2d and 3d while analyzing the com-
putational burden, investigation on more elaborated and efficient
approaches to estimate reachable sets with less computational bur-
den, and proposing (and evaluating) new metrics that accurately
evaluate the difficulty of the game with respect to its different
parameters (obstacles, character speed, etc).

Analyzing Action Games: A Hybrid Systems Approach FDG’19, August 26-30, 2019, San Luis Obispo, CA, USA

REFERENCES
[1] Berk Altın, Pegah Ojaghi, and Ricardo G Sanfelice. 2018. A Model Predictive

Control Framework for Hybrid Dynamical Systems. IFAC-PapersOnLine 51, 20
(2018), 128–133.

[2] B. Altin and R. G. Sanfelice. 2019. On Model Predictive Control for Hybrid
Dynamical Systems. In To appear in American Control Conference.

[3] Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. 1993.
Hybrid automata: An algorithmic approach to the specification and verification
of hybrid systems. In Hybrid systems. Springer, 209–229.

[4] J-P Aubin, John Lygeros, Marc Quincampoix, Shankar Sastry, and Nicolas Seube.
2002. Impulse differential inclusions: A viability approach to hybrid systems.
IEEE Trans. Automat. Control 47, 1 (2002), 2–20.

[5] Aaron William Bauer and Zoran Popovic. 2012. RRT-Based Game Level Analysis,
Visualization, and Visual Refinement.. In AIIDE.

[6] Alberto Bemporad and Manfred Morari. 1999. Verification of hybrid systems
via mathematical programming. In International Workshop on Hybrid Systems:
Computation and Control. Springer, 31–45.

[7] R. Goebel, R. G. Sanfelice, and A.R. Teel. 2009. Hybrid dynamical systems. IEEE
Control Systems Magazine 29, 2 (April 2009), 28–93. https://doi.org/stamp/stamp.
jsp?tp=&arnumber=4806347&isnumber=4806311

[8] Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. 2012. Hybrid Dynamical
Systems: modeling, stability, and robustness. Princeton University Press.

[9] Aaron Isaksen, Daniel Gopstein, and Andrew Nealen. 2015. Exploring Game
Space Using Survival Analysis.. In FDG.

[10] Sertac Karaman and Emilio Frazzoli. 2010. Optimal kinodynamic motion planning
using incremental sampling-based methods. In Decision and Control (CDC), 2010
49th IEEE Conference on. IEEE, 7681–7687.

[11] John Lygeros, Karl Henrik Johansson, Slobodan N Simic, Jun Zhang, and
Shankar S Sastry. 2003. Dynamical properties of hybrid automata. IEEE Transac-
tions on automatic control 48, 1 (2003), 2–17.

[12] Tim Mercy, Wannes Van Loock, and Goele Pipeleers. 2016. Real-time motion
planning in the presence of moving obstacles. In Control Conference (ECC), 2016
European. IEEE, 1586–1591.

[13] Anthony N Michel and Bo Hu. 1999. Towards a stability theory of general hybrid
dynamical systems. Automatica 35, 3 (1999), 371–384.

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[15] J. C. Osborn, B. Lambrigger, and M. Mateas. 2017. HyPED: Modeling and Ana-
lyzing Action Games as Hybrid Systems. In Artificial Intelligence and Interactive
Digital Entertainment Conference.

[16] Ricardo Sanfelice, David Copp, and Pablo Nanez. 2013. A toolbox for simulation
of hybrid systems in Matlab/Simulink: Hybrid Equations (HyEQ) Toolbox. In
Proceedings of the 16th international conference on Hybrid systems: computation
and control. ACM, 101–106.

[17] Ricardo G Sanfelice, Michael J Messina, S Emre Tuna, and Andrew R Teel. 2006.
Robust hybrid controllers for continuous-time systems with applications to
obstacle avoidance and regulation to disconnected set of points. In American
Control Conference, 2006. IEEE, 6–pp.

[18] Noor Shaker, Mohammad Shaker, and Julian Togelius. 2013. Ropossum: An
Authoring Tool for Designing, Optimizing and Solving Cut the Rope Levels.. In
AIIDE.

[19] Adam M Smith. 2013. Open problem: Reusable gameplay trace samplers. In Ninth
Artificial Intelligence and Interactive Digital Entertainment Conference.

[20] AdamM Smith, Mark J Nelson, andMichael Mateas. 2009. Computational Support
for Play Testing Game Sketches.. In AIIDE.

[21] Gillian Smith, Mee Cha, and Jim Whitehead. 2008. A framework for analysis of
2D platformer levels. In Proceedings of the 2008 ACM SIGGRAPH symposium on
Video games. ACM, 75–80.

[22] Steve Swink. 2009. Game feel: a game designer’s guide to virtual sensation. Morgan
Kaufmann.

[23] L Tavermini. 1987. Differential automata and their discrete simulations. Non-
Linear Analysis 11, 6 (1987), 665–683.

[24] Claire J Tomlin, Ian Mitchell, Alexandre M Bayen, and Meeko Oishi. 2003. Com-
putational techniques for the verification of hybrid systems. Proc. IEEE 91, 7
(2003), 986–1001.

[25] Arjan J Van Der Schaft and Johannes Maria Schumacher. 2000. An introduction
to hybrid dynamical systems. Vol. 251. Springer London.

https://doi.org/stamp/stamp.jsp?tp=&arnumber=4806347&isnumber=4806311
https://doi.org/stamp/stamp.jsp?tp=&arnumber=4806347&isnumber=4806311

	Abstract
	1 INTRODUCTION
	2 Hybrid Systems
	3 Videogames As Hybrid Systems
	4 Reachability and Feasibilty
	4.1 Reachability
	4.2 Feasibility

	5 Path Planning using MPC
	5.1 Outline of Approach
	5.2 MPC Formulation for Planning

	6 CONCLUSION
	References

