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Abstract— We propose a set-based predictive control frame-
work to predict inbound dynamic obstacles and optimize
trajectories in the interest of safely guiding a vehicle towards
a target. To account for uncertainties, the set-based controller
generalizes conventional model predictive control and predicts
the set that the state of a dynamical system might belong to.
This generalization is used to formulate collision avoidance as
a hard constraint in the set-based predictive control algorithm.
As a proof-of-concept, the proposed framework is applied to a
ground vehicle attempting to reach a target while anticipating
and evading collisions with obstacles in the operating environ-
ment. Other applications of the controller and the associated
optimal control problem are discussed.

I. INTRODUCTION

Recent research interest in autonomous vehicles for use
in civilian and military applications has been increasingly
ubiquitous. Modern autonomous vehicles are involved in nu-
merous applications ranging from rescue missions to package
deliveries. For many autonomous systems, model predictive
control (MPC) is preferred as a control strategy since col-
lision avoidance can be embedded into the constraints of
the corresponding optimal control problem, along with other
hard constraints such as actuator limitations. A supervisory
controller based on nonlinear MPC is used in [1] for a
pursuit-evasion game involving two fixed-wing autonomous
aircrafts. An MPC scheme that integrates tracking and sta-
bilization with a higher priority on collision avoidance was
discussed in [2]. In [3], nonstationary obstacles on the path
of an autonomous are avoided using MPC, where collision
avoidance is embedded as a soft constraint with high cost.
The control strategy in [3] is implemented in a hierarchical
fashion, where a high-level central MPC schemes supervises
low-level local MPC schemes. A numerical method for
aerial pursuit-evasion games is solved via MPC in [4]. Soft
constraints are also used in the MPC formulation of [5]
to ensure that a network of three autonomous helicopters
operate without collisions in a shared environment. A target
seeking scenario in an a priori unknown environment with
obstacles is realized via MPC in [6]. A predictive controller
is used in [7] for lane keeping and collision avoidance of an
autonomous ground vehicle. Recently, MPC was extended to
hybrid dynamical systems in [8], [9].
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This paper proposes a novel collision detection and avoid-
ance strategy based on set-based predictive control. Building
from the so-called set dynamical systems framework in [10],
[11], [12], where the state of a system is identified by a
set rather than a point, the set-based predictive controller
generalizes conventional MPC along the lines of the tube-
based MPC approach [13]. Although collision detection
and evasion have been presented in [3],[7],[14] modeling
uncertainties that arise due to disturbances and measurement
noise has not been studied to the best of our knowledge.
In order to account for these unseen dynamical behaviors,
we propose a method by which a controller will predict
sequences of sets that the state of a discrete-time dynamical
system might belong to, and imposes constraints on the
predicted sets for robustness purposes.

Unlike other set-based approaches in the conventional
MPC literature (for example, [15], [16], [17]—see also
the survey [18] for the tube-based MPC technique), where
the optimal control problem is to minimize solutions of a
“classical” dynamical system (in the sense that the state is
identified by a point), the optimal control problem associated
with our strategy is to minimize solutions of a set dynamical
system. In other words, the minimization associated with
our strategy occurs over sequences of sets, rather than
points. In addition to collision detection and avoidance, the
proposed strategy can find use in various applications such
as uncertainty propagation, reachable set computation, and
safety analysis for conventional discrete-time systems. A
detailed comparison of the proposed strategy with existing
collision and avoidance schemes is outside the scope of this
exploratory work, and will be tackled in the future.

The rest of the paper is organized as follows. Section II
outlines the collision detection and evasion problem and
details our proposed solution based on set-based predictive
control. As a proof-of-concept, in Section III, simulation
results for the proposed control algorithm are validated
via simulations, followed by experimental results for an
autonomous ground vehicle seeking a target in the presence
of obstacles. Concluding remarks are given in Section IV.

Notation: We use R to represent real numbers and R�0

its nonnegative subset. The set of nonnegative integers is
denoted N. The 2-norm is denoted |.|. The distance of a vec-
tor x 2 Rn to a nonempty set A ⇢ Rn is |x|A := inf

a2A |x�
a|. Let X,Y ⇢ Rn. The notation X ⇢ Y indicates that X
is a subset of Y , not necessarily proper. The Minkowski
sum of X and Y is denoted X + Y . The notation P(X)

denotes the set of nonempty subsets of X . Pn

p

denotes the
set of compact convex polytopes in Rn with p vertices.
For any x 2 Rn and y 2 Rm, (x, y) :=

⇥
x> y>

⇤>. Given



a (set-valued) mapping F and a set X in its domain, we
use F (X) to denote the image of X under F .

II. SET-BASED PREDICTIVE CONTROL

Consider the discrete-time dynamical system

x+

= f(x, u, w) (1)

with state x 2 Rn, input u 2 Rm, and disturbance w 2 Rl,
where f : Rn⇥Rm⇥Rl ! Rn. In (1), x+ denotes the value
of the state x after a discrete transition under the input u and
disturbance w. In the presence of measurement noise, at any
discrete time j 2 N, the value of the state x

j

is not known
with certainty, but can be estimated to belong to a set X

j

. For
example, if the additive noise v

j

2 Rn satisfies |v
j

|  �, then
given the state measurement x̂

j

= x
j

+v
j

, we have x
j

2 X
j

,
where X

j

= {x 2 Rn

: |x � x̂
j

|  �}. More generally,
suppose that w

j

2 W and (�v
j

) 2 V for some sets W
and V , at every j 2 N. By (1),

x
j+1

= f(x̂
j

� v
j

, u
j

, w
j

) 2 f(x̂
j

+ V, u
j

,W )

= f(X
j

, u
j

,W ) =: F (X
j

, u
j

) (2)

where F : Rn ⇥ Rm ◆ Rn is a set-valued mapping.
Set-based approaches along the lines of the difference

inclusion x+ 2 F (x, u) are common in the robust MPC
literature [13], where the optimal control problem is designed
to constrain trajectories (or solutions) x

0

, x
1

, . . . , x
N

to se-
quences of sets X

0

, X
1

, . . . , X
N

, or “tubes”, so that x
j

2 X
j

for all j 2 {0, 1, . . . , N}. As a key difference with those
approaches, in this paper, we deal directly with trajectories
given by sequences of sets X

0

, X
1

, . . . , that are not neces-
sarily tubes [10], [11], [12].

A. The Predictive Control Problem

We propose a set-based predictive control scheme for
discrete-time systems with solutions given by sequences of
sets. Given the difference inclusion x+ 2 F (x, u) model-
ing the system to control, which can arise from factoring
in uncertainties in (1), instead of predicting sequences of
points x

0

, x
1

, . . . , x
N

2 Rn and selecting the sequence
with the least cost, we propose to predict sequences of
sets X

0

, X
1

, . . . , X
N

⇢ Rn and select the sequence with
the least cost for the set dynamical system

X+

= F (X,U). (3)

As in standard MPC, the ingredients of this controller
include a prediction horizon N � 1, a control horizon M
with 1  M  N , a stage cost L : P(Rn ⇥ Rm

) ! R�0

,
a terminal cost V : P(Rn

) ! R�0

, a mixed-constraint
set C ⇢ P(Rn ⇥ Rm

), and a terminal constraint set X
V

⇢
P(Rn

). Note that L (respectively, V ) assigns a cost to
every nonempty subset of Rn ⇥ Rm (respectively, Rn) as
opposed to the formulation in [13]. Similarly, the constraint
set C (respectively, X

V

) is a collection of nonempty subsets
of Rn ⇥ Rm (respectively, Rn).

The proposed controller operates by solving the following
problem to predict input sets U?

0

, U?

1

, . . . , U?

N�1

such that the

solution X?

0

, X?

1

, . . . , X?

N

of the set dynamical system (3)
minimizes the cost in (4), subject to constraints.

Problem 2.1: Given the prediction horizon N , stage
cost L, terminal cost V , constraint sets C and X

V

, and
initial condition set X

0

, find sequences X?

:= {X?

j

}N
j=0

and U?

:= {U?

j

}N�1

j=0

minimizing the cost

J (X?, U?

) :=

0

@
N�1X

j=0

L(X?

j

, U?

j

)

1

A
+ V (X?

N

), (4)

subject to the constraints X?

0

= X
0

and
8
><

>:

X?

j+1

= F (X?

j

, U?

j

) 8j 2 {0, 1, . . . , N � 1}
(X?

j

, U?

j

) 2 C 8j 2 {0, 1, . . . , N � 1}
X?

N

2 X
V

.

The optimal input sequence is applied until time step M ,
at which point the process is repeated for the new initial con-
dition. That is, the sequence U?

0

, U?

1

, . . . , U?

M�1

is applied to
obtain the solution X?

0

, X?

1

, . . . , X?

M

, and then Problem 2.1
is re-solved by setting the initial condition set X

0

= X?

M

.
This process is summarized in Algorithm 1, where i is the
time step of the closed loop and bX := { bX

i

}1
i=0

is the
resulting closed-loop state trajectory.

Algorithm 1: Set-based predictive control.

1 Obtain initial system state bX
0

, set i = 0 and X
0

=

bX
0

2 while True do
3 Solve Problem 2.1
4 j = 0

5 for j  M � 1 do
6 bX

i+1

=X?

j+1

= F (X?

j

, U?

j

)

7 i = i+ 1, j = j + 1

8 end
9 Set X

0

= X?

M

10 end

Remark 2.2: In tube-based MPC, the minimization is per-
formed over nominal point-based trajectories, and the con-
straints are defined using subsets of Rn and Rm. To ensure
that constraints are satisfied under uncertainties, an auxiliary
controller is employed to steer trajectories towards that of the
nominal system. In contrast, the minimization in Problem 2.1
is performed directly over set-based trajectories, and the
constraints are defined using power sets of Rn and Rm.
As such, the proposed framework differs considerably from
tube-based MPC and similar set-based methodologies.

B. Applications

The formulation in (2) shows that the set dynamical
system (3) can be used to compute uncertainty propagation
in the discrete-time system (1). In addition, as noted in [10],
the set dynamical system in (3) arises in a wide range of
problems. Below, we discuss three example applications.



1) Reachable Set Computation: The system in (3) can
be used to compute the reachable set of (1) from an initial
set X

0

up to timestep N if F (X,U) = f(X,U, 0). To
compute reachable sets using Problem 2.1, the stage cost
and terminal cost can be selected such that

L(X,U) = V (X) =

a

1 + b
R
Rn

ı
X

(x) dx
(5)

for some a, b > 0, where ı
X

is the indicator function of X .
Roughly speaking, L(X,U) = V (X) � a > 0 is inversely
proportional to the volume of X , so minimizing the cost
in (4) leads to larger sets. The constraint sets can be selected
as C = P(X ⇥ U) and X?

N

= P(X ) for some X ⇢ Rn

and U ⇢ Rm, representing the state and the input constraints,
respectively. To make this problem tractable, it would be
necessary that U 6= Rm. When the initial set X

0

has
no volume, the integral in (5) can be replaced with other
mappings measuring the size of X .

2) Safety Analysis: When the mapping F in (3) is derived
via (2), a robust safety analysis for (1) can be conducted by
checking whether given a closed safe set K and K 0 ⇢ K,
there exists a sequence of inputs U

0

, U
1

, . . . such that the
corresponding solution X

0

, X
1

, . . . of (3) satisfies X
j

⇢ K
for all j 2 N when X

0

= K 0. If the state and the input
constraints can again be represented by some sets X ⇢ Rn

and U ⇢ Rm, safety analysis can be conducted by repeatedly
solving Problem 2.1 as in Algorithm 1, with C = P(X ⇥
U), X

V

= P(Rn

) and L(X,U) = V (X) = sup

x2X

|x|
K

.
If K 0

= K and U = {0}, this problem reduces to the forward
invariance problem for the inclusion x+ 2 F (x, 0).

3) Collision Avoidance: An autonomous vehicle with the
dynamics in (1) that is trying to reach a target set X⇤

while avoding obstacles can be controlled by the predictive
control strategy of Algorithm 1. To ensure convergence to
the target, the cost functions L and V can be designed such
that L(X,U) = V (X) = 0 if X ⇢ X⇤. Obstacle avoidance
can be ensured by choosing C to be a subset of P(X⇥U) for
a state constraint set X and input constraint set U . Next, we
detail the application of Algorithm 1 to collision avoidance.

C. Collision Detection and Evasion for Autonomous Vehicles
We consider a scenario in which a vehicle with the

dynamics in (1) has to avoid a stationary obstacle represented
by a set Y and reach a target set X⇤. We assume that the
dynamics in (1) are overapproximated by the set-based dy-
namics in (3), where the set state X and input U are compact
convex polytopes, and F maps compact convex polytopes
to compact convex polytopes. The choice of polytopic sets
are meant to facilitate computations, especially in the case
where the mapping F is affine and single valued: since affine
transformations map vertices to vertices, the set F (X,U) is
precisely the convex hull of F (XV , UV

), where XV and UV

are the set of vertices of X and U , respectively. Such a
scenario can arise when the mapping f is affine and the
set W in (2) is also taken to be a compact convex polytope.
In the case where the mapping f in (1) is not affine, F can
be nevertheless be chosen such that F (X,U) � f(X,U) is
a compact convex polytope.

Remark 2.3: A similar set-based approach to motion plan-
ning is proposed in [19], where the focus is on the reachable
set computation of nonlinear systems under disturbances,
with initial conditions belonging to zonotopic sets.

1) Selecting the Cost Functions and the Terminal Con-
straint: To ensure that the vehicle can reach the target X⇤

in the absence of collisions, the cost functions L and V can
be designed to have distance-like properties. The terminal
constraint set X

V

should be selected so that X
V

\ X⇤ is
nonempty, as the converse would prevent the vehicle from
reaching X⇤ when M = N—this is similar to conventional
MPC, where X⇤ would be the origin, and X

V

would be a
neighborhood of the origin. For simplicity, we let L(X,U) =P

p

i=1

|x
i

|
X

⇤ and V (X) = c
P

p

i=1

|x
i

|
X

⇤ for some c > 0,
where x

0

, x
1

, . . . , x
p

are the vertices of X .
2) Encoding Safety Constraints into C: The mixed con-

straint set C can be utilized to prevent collisions between
the vehicle and the obstacle. The state could be subject
to X ⇢ X , where X is the state constraint set, and the
input could be subject to U ⇢ U , where U is the input
constraint set. The set X typically models the geometry of
the operating environment of the vehicle-obstacle system,
while the input constraint set U could arise due to actuator
limitations like saturation. Denote by H an output mapping
so that collisions correspond to H(X) intersecting Y . Then,
the mixed constraint set can be selected as

C = {X ⇥ U ⇢ X ⇥ U : �(H(X), Y ) � &}
\
�
Pn

p

x

⇥ Pm

p

u

�
\ bC, (6)

for some & > 0 and p
x

, p
u

2 N. Above, the map-
ping �(H(X), Y ) := inf

(x,y)2X⇥Y

|H(x)� y| is a measure
of the shortest path between the sets H(X) and Y , and the
generic set bC ⇢ P(Rn ⇥ Rm

) can be used to encode other
constraints. In most cases, H would be a linear function
extracting the position coordinates.

Other safety constraints can also be encoded in C. In
particular, the trajectory of the vehicle in the intersample
period can be approximated by con(X [ F (X,U)), the
convex hull of X and F (X,U), and the term H(X) in (6)
can be replaced with H (con (X [ F (X,U))).

D. Challenges of Problem 2.1 and Algorithm 1

From a computational standpoint, there are several chal-
lenges associated with Problem 2.1 and Algorithm 1.
(C1) The presence of state and input sets, along with the

constraints, prevents the use of standard techniques
to solve Problem 2.1, making its solution difficult in
general.

(C2) The computational burden associated with a numerical
solution of Problem 2.1 can be high enough to prevent
online implementation.

(C3) Perturbations on the set dynamical system (e.g. delays,
unmodeled dynamics) can adversely affect the perfor-
mance of Algorithm 1 and lead to constraint violations.

In essence, the above challenges are similar to those
arising in the context of conventional optimal control and



MPC. Although Problem 2.1 is somewhat conceptual, it
can be solved in certain cases. For example, in the case of
the scenario described in Section II-C, Problem 2.1 can be
solved using nonlinear programming methods. In general,
Problem 2.1 can be solved suboptimally with acceptable
computational burden. The amount of computational burden
deemed acceptable would naturally depend on the applica-
tion. For online implementation of Algorithm 1, if (3) is
derived from continuous-time dynamics, the time to compute
should to be reasonably smaller than the sampling period.

These challenges are discussed further in Section III. In
particular, as a proof-of-concept, we show how Algorithm 1
can be used in an applied setting, demonstrating the value
of the proposed framework. The simulations in Section III
show how (C1)-(C2) can be addressed by careful selection
of the constraints and costs. To address (C2)-(C3) and show
that Algorithm 1 can tolerate perturbations while running
fast enough for online implementation, experiments are con-
ducted in Section III-D, with the results in Section III-C
forming a baseline for comparison.

III. APPLICATION TO COLLISION DETECTION AND
EVASION FOR VEHICLES

We now show how the set-based predictive control scheme
outlined in Section II can be effectively applied to a ground
vehicle in the presence of static and dynamic obstacles.

A. Vehicle and Obstacle Dynamics

We model our ground vehicle using the Dubins model

q̇
1

= v cos(✓),

q̇
2

= v sin(✓),

˙✓ = (v/L) tan(�) =: !,

(7)

where q
1

and q
2

are the Cartesian coordinates, ✓ is the
heading angle, v is the speed, L is the length of the vehicle,
and � is the steering angle. The exact discretization of (7)
with the step size T yields the model

x+

= f(x, u, w) =

2

4
q
1

+ u
1

2 cos(✓+u2) sin(u2)

!

q
2

+ u
1

2 sin(✓+u2) sin(u2)

!

✓ + 2u
2

3

5 ,

where x := (q
1

, q
2

, ✓) and u := (u
1

, u
2

) = (v, T!/2).
Although the system in (3) allows for the explicit inclusion
of disturbances, for simplicity, the set dynamical system
which we will use for prediction purposes will be given
by the mapping F (X,U) = f(X,U, 0), and the effects of
disturbances on (7) will be embedded into the set state X .

B. Constraint Selection

For simplicity, we do not impose any state constraints on
the vehicle, i.e., X = R3. Similarly, X

V

= R3. The target
set is taken as X⇤

= {�0.50}⇥ {0.06}⇥ R, and the input
constraint set U in (6) is taken as

U = {(u
1

, u
2

) : 0  u
1

 �,�(T↵)/2  u
2

 (T↵)/2} .

Here, � � 0 and ↵ � 0 limit the magnitude of the vehicle’s
speed in m/s and steering angle in radians, respectively.

For Problem 2.1 to be computationally viable for real-
time implementation, a concern raised in (C2), inputs for
set dynamics, as in (3), are taken to be singletons. That is,
for each j 2 {0, 1, . . . , N � 1}, the decision variable U?

j

of
Problem 2.1 is chosen from subsets of Rp consisting of a
single element, i.e., we only consider the case where p

u

= 1

in (6). Furthermore, we assume a scenario where the state
components (q

1

, q
2

) are subject to uncertainty, while ✓ can
be measured exactly. More specifically, we assume that

x 2 [z
1

, z
2

]⇥ [z
3

, z
4

]⇥ {z
5

} ⇢ R⇥ R⇥ R (8)

for some z
1

, z
2

, z
3

, z
4

, z
5

. The rectangular set in (8) cor-
responds to the translation of the set V in (2). To formalize
this in (6), we take p

x

= 4 and bC = P(R2

) ⇥ R ⇥ P(R),
as n = 3 and m = 1; i.e. any (X,U) 2 C should be such that
the projection of X onto the ✓ space should be a singleton.
The output mapping H is chosen as a linear mapping such
that H([z

1

, z
2

]⇥ [z
3

, z
4

]⇥ {z
5

}) = [z
1

, z
2

]⇥ [z
3

, z
4

].
The selection of the constraints with this structure ensures

that the set F (X,U) is of the same size as X (in terms
of its area in the (q

1

, q
2

) space), and prevents a scenario
where the resulting system is “uncontrollable”. The choice of
rectangular sets further reduces the computational burden of
computing the propagation of the polytope in (8), which can
be represented by a matrix in R3⇥4 (or equivalently a vector
in R12): since the dynamics of q

1

and q
2

are decoupled,
letting z := (z

1

, z
2

, z
3

, z
4

, z
5

), where z
i

’s come from (8),
for prediction purposes, we rely on the discrete-time model

z+ = z +

2

666664

Tu
1

2 cos(z5+u2) sin(u2)

u2

Tu
1

2 cos(z5+u2) sin(u2)

u2

Tu
1

2 sin(z5+u2) sin(u2)

u2

Tu
1

2 sin(z5+u2) sin(u2)

u2

2u
2

3

777775
. (9)

Section II-C outlines the safety constraint, which requires
the nontrivial computation of �(H(X), Y ) in (6). This can be
accomplished by minimizing |P

1

�
1

�P
2

�
2

|2 via a quadratic
program, where, for each i 2 {1, 2}, P

i

2 Rn⇥p

i represents
a polytope with each column corresponding to a vertex,
and �

i

2 Rp

i is subject to constraints such that P
i

�
i

represents convex combinations.

C. Nominal Results

The simulations1, conducted on a MacBook Pro com-
puter with 2.5 GHz Intel core i5 processor and 8GB RAM,
were run with the step size T = 0.05 s, N = 8,
M = 2, & = 0.05 m. The parameters for the input con-
straints were chosen as � = 0.78 and ↵ = ⇡/6. The
simulations assume a 2.5 m⇥3.0 m operating environment,
with a rectangular obstacle with dimensions 0.05 m⇥0.05 m
centered at (0.025, 0.083). The size of the set used for the
vehicle is the same size as the vehicle used in the upcom-
ing experiments, namely 0.451 m⇥0.331 m. As opposed to
solving the quadratic program discussed in Section (III-B),

1github.com/HybridSystemsLab/SetBasedPredictionCollisionAndEvasion



to address (C2), we underapproximate the minimum dis-
tance between the two rectangular polytopes with the for-
mula max{|c

1

� c
2

| � (r
1

+ r
2

), 0}, where c
i

is the center
coordinate of polytope i and r

i

is the distance from c
i

to a
vertex of polytope i, corresponding to the distance between
circular overapproximations centered at x

i

with radius r
i

. For
180 optimization tasks, the resulting runtime of the modified
algorithm has an average of 0.1008 seconds with standard
deviation of 0.0558 seconds. The minimum and maximum
runtimes are 0.0361 and 0.3607 seconds, respectively.
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Fig. 1: Simulation results from nine initial conditions.

Figure 1 shows that the algorithm is successful in avoiding
the obstacle and converges to a region near the target (⇤).
For each trajectory, the set of states in the same prediction
horizon use the same color. The prediction horizons start
colored in blue and gradually transitions to red. It can be seen
in Figure 2 that the safety constraints are satisfied at all times.
The dashed line at the top subfigure depicts & and the tra-
jectories converge to a small neighborhood. The dashed line
at the bottom subfigure depicts D

min

= 2(

p
L2

+W 2

) =

1.1184, where L is the length and W is the width of the
rectangle polytope.
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Fig. 2: Top: Minimum distance from polytope to obtacle.
Bottom: Sum of distances between vertices and obstacle.

To fully use the predictive qualities of this algorithm,
simulations were run with a dynamic obstacle from four
different initial conditions. The obstacle state was subject to
the same polytopic constraints as the vehicle, evolving under
the effect of a known constant input with 0  u

1

 �. As

such, the model in (9) was used to predict the motion of the
obstacle. The parameters used for these simulations were the
same as the static obstacle case except for the target, which
was taken as X⇤

= {0}⇥ {0}⇥R. Figure 3 shows that the
vehicle can successfully converge to a neighborhood of the
target while avoiding collisions.
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Fig. 3: Dynamic obstacle simulations data, as in Figure 2.

D. Experimental Results
To demonstrate the applicability of Algorithm 1 in a

real-world setting, experiments reproducing the simulation
scenarios with a stationary obstacle were carried out. In
particular, we show that despite the challenges outlined
in (C1)-(C3), Algorithm 1 guides the vehicle toward the
target while avoiding collision with the obstacle. In addi-
tion, we discuss the effects of uncertainties arising from
computational delays, the simplicity of the employed model
in (7), and quantify the time-to-compute the control input for
Problem 2.1.

1) Experimental setup: The considered experimental sys-
tem is a multi-node robotic system comprising a Windows
computer with Intel i5 dual core (3.20 and 3.19 GHz)
processor and 8 GB RAM, a motion capture system, a
radio-frequency (RF) communication system, and a radio-
controlled (RC) vehicle (communication up to 2.4 GHz).
Data from eight Flex-13 cameras are transferred to MATLAB
with the OptiTrack motion-capture software. A near real-time
communication between MATLAB and the motion capture
hardware is managed using the OptiTrack NatNet library,
yielding a minimal communication latency of 8.3 ms.

2) Analysis of Experimental Results: A series of initial
conditions are considered to confirm the simulation results
in Section III-C (Figure 4). As in Figure 1, each initial
condition is marked by a 6 edged star, the obstacle is
marked by a red rectangle, and the target is marked by black
star. Continuous red lines show the phase portraits of the
vehicle trajectories. As in Figure 1, the set of states in the
same prediction horizon are colored similarly for each run.
From the latter color coding, one can observe the existence
of a gap between consecutive set states at certain times
due to computational delays, a phenomenon not observed
in the simulations. Nevertheless, despite delays and model
uncertainties, the vehicle successfully avoids the obstacle and
reaches a neighborhood of the target.
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Fig. 4: Experimental results corresponding to Figure 1.
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Fig. 5: Mean (circle) and median (star) of computational
time.

The dependency of the computational delay on the dis-
tance between the vehicle and obstacle is illustrated in
Figure 5. That is, the predicted trajectories illustrated in
Figure 4 are categorized according to the initial distance
from the vehicle to the obstacle. For example, all predicted
trajectories where the vehicle-distance is less than 0.4 m
belong to the same category. For each category, we gather all
the computational latency and report the mean and median
on Figure 5. As it can be seen from there, the computation
time increases as the vehicle gets closer to the obstacle. The
median computation time is approximated by the polynomial
(the blue dashed line) t

c

(d) = �0.07(d)3 + 0.26(d)2 �
0.32(d)+0.15, where d denotes the distance from the vehicle
to the obstacle.

Despite some performance degradation, the results illus-
trate the effectiveness of the proposed algorithm on an
experimental platform in the presence of the challenges listed
in (C1)-(C3). This motivates the use of set-based predictive
control for motion planning and control in mobile robotics,
as well as the development of formal stability guarantees for
Algorithm 1 and numerical tools to solve Problem 2.1.

IV. CONCLUSION

This paper presented a set-based predictive control ap-
proach to collision avoidance and path planning, derived
from the extension of optimal control problems in MPC to
set dynamical systems, to account for uncertainties. Simula-
tion and experimental results show that the optimal control
problem can be solved suboptimally to reduce computational
burden, and in doing so, guide an autonomous vehicle safely
towards a target. Future work will focus on the development
of numerical tools and formal feasibility/stability guarantees.
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