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Abstract— In this paper, a general framework is proposed
to determine when a scalar function is nonincreasing along
solutions to differential inclusions defined on constrained sets.
To the best of our knowledge, this problem has not been yet
treated in the literature, and is important, for example, for the
analysis of hybrid systems modeled by hybrid inclusions. The
proposed characterizations are infinitesimal and do not require
any knowledge about the system’s solutions. Furthermore, the
problem is addressed under different regularity properties of
the considered scalar function, including the case of lower semi-
continuous functions, the case of locally Lipschitz and regular
functions, and finally the case of continuously differentiable
functions.

I. INTRODUCTION

The study of monotonic behavior of scalar functions along
solutions to continuous-time dynamical systems consists in
establishing necessary and sufficient conditions such that the
considered scalar function is nonincreasing along solutions.
The proposed characterization must be infinitesimal; namely,
involving only the scalar function and the system’s dynamics;
hence, no explicit knowledge about the solutions is required.

The latter problem is one of the fundamental problems
in calculus [1], and has attracted mathematicians’ attention
since the works of Pierre de Fermat in the 17th century on
local extrema for differentiable functions [2]. The difficulty
when addressing such a problem depends on both the sys-
tem’s dynamics and the regularity of the considered scalar
function. The first attempts to address this problem con-
cerned the particular case where both the system’s dynamics
and the considered scalar function are sufficiently smooth. It
is well known in this case, that the problem is solved if and
only if the scalar product between the gradient of the function
and the system’s dynamics is nonpositive when evaluated at
points of the set where the dynamics is defined. When the
considered scalar function is not continuously differentiable,
the problem becomes more difficult since the gradient in this
case may not exist. The first successful characterization for
nonsmooth functions dates back to what is considered as
one of the first results in nonsmooth analysis. This result
uses certain constructs alternative to the gradient, called
the directional subderivatives, proposed by Ulisse Dini in
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1878. Since then, many extensions were presented in the
literature, see [3], [4], [5], [6], in order to cover the general
case where the system’s dynamics is a differential inclusion
and the scalar function is only locally Lipschitz or lower
semicontinuous.

To the best of our knowledge, in all the existing literature,
the system’s dynamics is defined in Rn or in an open set such
that the solutions cannot start from its boundary. The latter
requirement is customarily used when studying continuous-
time dynamical systems. However, such is not necessarily
the case when studying hybrid systems modeled according
to the framework proposed in [7]. Indeed, for general hybrid
systems, the continuous-time dynamics is usually defined in
a closed set, or at least in a closed set relative to a given
open set [8], and the solutions are allowed to start from
its boundary. The set where the continuous-time dynamics
is defined is called the flow set. The latter requirement is
important in order to guarantee some important structural
properties for the set of solutions [7]. In such a scenario of
constrained differential inclusions, the existing characteriza-
tions of monotonicity are not applicable and extra complexity
is added to the problem. Indeed, assume that the system’s
solutions are defined in a closed set. In this case, it is
possible to find elements of the dynamics (vector fields)
not generating solutions, for example, elements pointing
towards the complement of the flow set. Those elements
cannot be considered in the characterization, otherwise, the
characterization will not be necessary, see Example 1. At
the same time, those vector fields, although not generating
solutions, may affect the global behavior of the solutions;
hence, they should be considered in the characterization,
otherwise, it will not be sufficient, see Example 2. In order
to handle such a compromise, extra assumptions relating the
system’s dynamics to the boundary of the flow set must be
considered.

The monotonicity problem along solutions to continuous-
time systems defined in closed sets finds a natural motivation
when studying stability [9] and safety [10] in hybrid sys-
tems. Indeed, many theoretical solution-based constructions
of Lyapunov and barrier functions are proposed in the
literature. Some of those constructions, although shown to be
continuous and locally Lipschitz when the system’s solutions
are unique and the flow set is the whole space, are only lower
semicontinuous in the general case where the solutions are
nonunique or the flow set is restricted.

In this paper, we investigate elements needed to address
the monotonicity problem for constrained differential in-
clusions. This problem is studied under different regularity



properties of the considered scalar function including:

• The case of lower semicontinuous functions, where
we transform the problem into characterizing forward
pre-invariance of a closed set. After that, infinitesimal
conditions involving the dynamics, normal, and tangent
cones with respect to the considered closed set are
proposed.

• The case of locally Lipschitz and regular functions,
where the Clarke generalized gradient is used.

• Finally, the case of continuously differentiable functions
is invoked as a particular case of locally Lipschitz and
regular functions where the generalized gradient reduces
to the classical gradient.

To the best of our knowledge, our results are original and
provide useful tools to study stability and safety for hybrid
systems or for general constrained continuous dynamics.
Due to space limitations, proofs and intermediate results are
omitted and will appear elsewhere.

Notation. For x, y ∈ Rn, x> denotes the transpose of x,
|x| the norm of x, |x|K := infy∈K |x−y| defines the distance
between x and the nonempty set K ⊂ Rn, 〈x, y〉 := x>y
the inner product between x and y, and co {x, y} the set of
all convex combinations between x and y. We use int(K) to
denote the interior of K, ∂K its boundary, cl(K) its closure,
and U(K) to denote a sufficiently small open neighborhood
around K. For O ⊂ Rn, K\O denotes the subset of elements
of K that are not in O. By B we denote the closed unit ball in
Rn centered at the origin. For a continuously differentiable
function B : Rn → R, ∇B(x) denotes the gradient of the
function B evaluated at x. By Cp, we denote the set of p-
times differentiable functions with continuous p-th derivative.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Constrained differential inclusions

A constrained differential inclusion Hf := (C,F ) is
defined as the continuous-time system

Hf : ẋ ∈ F (x) x ∈ C ⊂ Rn, (1)

with the state variable x ∈ Rn, the flow set C ⊂ Rn and the
map F : Rn ⇒ Rn. The set C in (1) is not necessarily open
and does not neccessarily correspond to Rn, as opposed to
the existing literature dealing with unconstrained differential
inclusions where C ≡ Rn [6], [5].

Next, we introduce the concept of solutions to Hf .
Definition 1: (Solution to Hf ) A function x : domx →

Rn with domx ⊂ R≥0 and t 7→ x(t) locally absolutely
continuous is a solution to Hf if

(S1) x(0) ∈ cl(C),
(S2) x(t) ∈ C for all t ∈ int(domx),

(S3) dx(t)
dt ∈ F (x(t)) for almost all t ∈ domx.

•
Remark 1: Condition (S1) allows solutions starting from

∂C\C to flow into C such that (S2) is satisfied. Furthermore,

(S2) allows solutions starting from C to reach ∂C\C.
Hence, the symmetry between the forward and the backward
solutions is preserved. •

Remark 2: Constrained differential inclusions Hf =
(C,F ) constitute a key component in the modeling of hybrid
systems. Indeed, according to [7], a general hybrid system
modeled as a hybrid inclusion is given by

H :

{
x ∈ C ẋ ∈ F (x)
x ∈ D x+ ∈ G(x),

(2)

where, in addition to the continuous dynamics Hf = (C,F ),
the discrete dynamics are defined by the jump set D ⊂ Rn
and the jump map G : Rn ⇒ Rn. Furthermore, the solutions
to Hf = (C,F ), according to Definition 1, correspond to the
solutions to H, according to [7, Definition 2.6], that never
jump. •

A solution x to Hf is said to be maximal if there is no
solution z to Hf such that x(t) = z(t) for all t ∈ domx
with domx a proper subset of dom z. Finally, it is said to
be trivial if the set domx contains only one element.

Throughout this paper, we assume that the set-valued map
F satisfies the following conditions:

(i) F : Rn ⇒ Rn is locally Lipschitz,
(ii) F (x) is convex and closed for all x ∈ C.
Definition 2: A set-valued map F : Rn ⇒ Rn is said to

be locally Lipschitz if for each compact set K ⊂ Rn there
exists k > 0 such that, for all x ∈ K and y ∈ K,

F (y) ⊂ F (x) + k|x− y|B. (3)

•

B. The monotonicity problem along solutions

Problem 1: Given a constrained differential inclusion
Hf = (C,F ), provide necessary and sufficient conditions
such that the following property holds:

(?) A scalar function B : Rn → R is nonincreasing along
the solutions to Hf ; namely, for every solution t 7→ x(t),
the map t 7→ B(x(t)) is nonincreasing 1.

•
It is to be noted that the required conditions to solve

Problem 1 need to be infinitesimal; namely, involving only
the scalar function B, the map F , and the flow set C. Indeed,
Problem 1 is a fundamental problem in calculus [4]. The first
attempts to address it were generally concerned with the case
where: n = 1, the function B ∈ C1, F (x) = 1 for all x ∈ C,
and C ≡ R [1]. It is well known, in this case, that B is
nonincreasing along the solutions to Hf if and only if

∇B(x) ≤ 0 ∀x ∈ C ≡ Rn.

A similar statement can be derived when n > 1 and
F a general n-dimensional map. Indeed, the monotonicity

1Or, equivalently, B(x(t1)) ≤ B(x(t2)) for all (t1, t2) ∈ domx ×
domx with t1 ≥ t2.



problem is solved in this case, if and only if

〈∇B(x), v〉 ≤ 0 ∀v ∈ F (x), ∀x ∈ C ≡ Rn. (4)

When the function B is not continuously differentiable,
the problem becomes more difficult. Indeed, the gradient∇B
cannot be used in this case. Useful tools are proposed in [5]
to cover the general case where the function B is only lower
semicontinuous, F satisfies (i)-(ii), and the set C is open.

Definition 3 (Lower semicontinuous scalar function): A
function B : Rn → R is said to be lower semicontinuous
at x ∈ Rn if, for each sequence {xn}n∈N ⊂ Rn with
limn→∞ xn = x ∈ Rn, we have limn→∞B(xn) ≥ B(x).
The function B is said to be lower semicontinuous if it is
lower semicontinuous at each x ∈ Rn. •

When the set C is not Rn and nontrivial solutions to Hf
start from ∂C, the existing characterizations of monotonicity
addressing Problem 1 are not applicable. Indeed, let us
assume that C is closed, then an extra complexity is added
to the problem since, when x ∈ ∂C ∩ C, only vectors in
F (x) that generate nontrivial solutions should be considered
in the characterization, otherwise, the characterization will
not be necessary (this is clarified later in Example 1).
However, the vectors in F (x) not generating solutions may
affect the global behavior of the solutions in a way that
renders the map t 7→ B(x(t)) fails to be nonincreasing. The
latter is more likely to happen when B is discontinuous.
Consequently, the elements of F (x) not generating solutions
should be included in the characterization, otherwise, it may
not be sufficient (see forthcoming Example 2). To manage
such a compromise, in the general case where B is lower
semicontinuous and (C,F ) satisfy (i)-(ii), extra assumptions
need to be assumed for F (x) for x’s nearby the set ∂C.

C. Motivation

Problem 1 finds a natural motivation when studying stabil-
ity and safety for hybrid systems and constrained differential
inclusions; see, e.g., [10] and [9]. To illustrate this point, for a
system Hf = (C,F ) such that (i)-(ii) hold, and C is closed,
consider the safety problem defined by the initial and unsafe
sets χo ⊂ C and χu ⊂ C, respectively, with χo ∩ χu = ∅.
The system Hf is safe with respect to (χo, χu) provided
that each solution starting from χo never reaches χu. It has
been shown recently in [10] that safety of Hf with respect
to (χo, χu) is satisfied if and only if there exists a lower
semicontinuous (barrier) function B : R≥0 × Rn → R that
is nonincreasing along solutions to Hf and that satisfies{

B(t, x) > 0 ∀x ∈ χu ∀t ≥ 0,
B(t, x) ≤ 0 ∀x ∈ χo ∀t ≥ 0.

(5)

That is, solving Problem 1 for a lower semicontinuous
function B along the solutions to the constrained differential
inclusion H̃f = (C̃, F̃ ), with x̃ := [x t]>, C̃ := R≥0 × C
and F̃ (x̃) := [1 F (x)]>, allows infinitesimal characteriza-
tion of safety in terms of barrier functions.

III. BACKGROUND

In this section, we recall useful notions from the context
of set-valued and non-smooth analysis [2], [5].

Definition 4 (Lower semicontinuous set-valued map):
A set-valued map F : Rn ⇒ Rn is said to be lower
semicontinuous or inner semicontinuous at x ∈ Rn if,
for any ε > 0 and any yx ∈ F (x), there exists U(x)
such that, for any z ∈ U(x), there exists yz ∈ F (z) such
that |yz − yx| ≤ ε. Furthermore, it is said to be lower
semicontinuous or inner semicontinuous if it is so for all
x ∈ Rn. •

When a scalar function B : Rn → R is at least lower
semicontinuous, its epigraph, given by

epiB := {(x, r) ∈ Rn × R : r ≥ B(x)} , (6)

can be used to address Problem 1. Indeed, the epigraph of
a lower semicontinuous function is always closed and the
following property holds [5].

Lemma 1: A lower semicontinuous function B : Rn → R
is nonincreasing along the solutions to Hf if and only if the
closed set epiB ∩ (cl(C) × R) is forward pre-invariant for
the differential inclusion[

ẋ
ṙ

]
∈
[
F (x)

0

]
(x, r) ∈ C × R; (7)

namely, the maximal solutions to Hf starting from the set
epiB ∩ (cl(C)× R) remain in it. �

Lemma 1 transforms Problem 1 into characterizing for-
ward pre-invariance of a closed set for the augmented dynam-
ics (7). Forward pre-invariance has been extensively studied
in the literature, see, e.g., [11], [5]. Infinitesimal conditions
for forward pre-invariance involving F and tangent cones
with respect to the considered closed set are shown to be
necessary and sufficient when C ≡ Rn.

Definition 5: The contingent cone of K at x is given by

TK(x) :=

{
v ∈ Rn : lim inf

h→0+

|x+ hv|K
h

= 0

}
. (8)

•
Definition 6: The Clarke tangent cone of K at x is given

by

CK(x) :=

{
v ∈ Rn : lim sup

y→x,h→0+

|y + hv|K
h

= 0

}
. (9)

•
Definition 7: A set K ⊂ Rn is said to be regular if

TK(x) = CK(x) for all x ∈ K. •
Definition 8: The proximal normal cone NP

S associated
with the set S ⊂ Rn evaluated at x ∈ cl(S) is given by

NP
S (x) := {ζ ∈ Rn : ∃t > 0 so that |x+ tζ|S = t|ζ|} .

(10)
•

The map NS
P is a cone; hence, closed and {0} ∈ NP

S (x) for
all x ∈ cl(S).



Definition 9: The proximal subdifferential of a lower
semicontinuous function B : Rn → R is the set-valued map
∂PB : Rn ⇒ Rn such that, for all x ∈ Rn,

∂PB(x) :=
{
ζ ∈ Rn : [ζ> − 1]> ∈ NP

epiB(x,B(x))
}
.

(11)

Moreover, each vector ζ ∈ ∂PB(x) is said to be a proximal
subgradient of B at x. •

When the function B is locally Lipschitz, its generalized
gradient, denoted by ∂B, constitutes a useful tool to address
Problem 1. The following definition is meaningful due to the
equivalence in [5, Theorem 8.1].

Definition 10: Let B : Rn → R be locally Lipschitz. Let
Ω be any subset of zero measure in Rn, and let ΩB be the set
of points in Rn at which B fails to be differentiable. Then

∂B(x) := co
{

lim
i→∞

∇B(xi) : xi → x, xi /∈ ΩB , xi /∈ Ω
}
.

(12)
•

Next, we introduce the notion of regular functions. The
definition we provide here is meaningful due to [5, Proposi-
tion 7.3].

Definition 11: A locally Lipschitz function B : Rn → R
is regular if epiB is regular according to Definition 7. •

IV. MAIN RESULTS

In this section, inspired by [5], we formulate necessary
and sufficient infinitesimal conditions solving Problem 1
when the set C in Hf is not necessarily Rn and nontrivial
solutions start from ∂C. Before going further we introduce
the following useful set C̃:

C̃ := {xo ∈ cl(C) : ∃x ∈ S(xo), domx 6= {0}} , (13)

where S(xo) is the set of solutions starting from xo.

A. The case of lower semicontinuous functions

Our approach in this case is based on characterizing for-
ward pre-invariance of the set epiB ∩ (cl(C)×R) according
to Lemma 1 using infinitesimal conditions. We consider the
following assumptions on the data (C,F ) of Hf .

(M1) For any xo ∈ ∂C∩C̃, if F (xo)∩TC(xo) 6= ∅, then, for
any vo ∈ F (xo) ∩ TC(xo), there exists a continuous
selection v : ∂C ∩ U(xo) → Rn such that v(x) ∈
F (x)∩TC(x) for all x ∈ ∂C∩U(xo) and v(xo) = vo.

(M2) For any xo ∈ ∂C ∩ C̃, F (x) ⊂ TC(x) for all x ∈
U(xo) ∩ ∂C.

The relevance of (M1) and (M2) are discussed in the
sequel. Furthermore, we consider the following condition.

〈ζ, v〉 ≤ 0 ∀[ζ> α]> ∈ NP
epiB∩(C×R)(x,B(x)),

∀v ∈ F (x) ∩ TC(x), ∀x ∈ C̃. (14)

The following result solves Problem 1 and its proof is
inspired from [11, Theorem 5.3.4] and [5, Theorem 3.8].

Theorem 1: Consider a system Hf = (C,F ) such that
(i)-(ii) hold and let B : Rn → R be a lower semicontinuous
function. Then,

• (14) + (M2) ⇒ (?).
• Conversely, (?) + (M1) ⇒ (14).

Consequently, when (M1)-(M2) hold, (?) ⇔ (14). �

Remark 3: (M1) ensures the existence of a nontrivial
solution (i.e., solution whose domain is not a singleton)
along each direction in the intersection between the images
of F and the contingent cone TC . The latter requirement
is necessary in order to prove the necessary part of the
statement in the general case where C is not Rn and
nontrivial solutions start from ∂C. •

To illustrate the observation about (M1) in Remark 3, in
the following example, we consider the particular situation
where (i)-(ii) hold, the function B is nonincreasing along the
solutions but (M1) is not satisfied and, for some x ∈ C̃, there
exist v ∈ F (x) ∩ TC(x) such that (14) is not satisfied.

Example 1: Consider the system Hf = (C,F ) with x ∈
R2,

F (x) := co
{

[1 0]>, [− cos(x21) sin(x21)]>
}
∀x ∈ C,

and C :=
{
x ∈ R2 : x2 = 0

}
. Furthermore, consider the

function B(x) := −x1. It is easy to see that F satisfies
both (i) and (ii). Furthermore, starting from any xo :=
[xo1 xo2]> ∈ C, the only nontrivial solution is given by
x(t) = [xo1 + t 0]> for all t ≥ 0; hence, C̃ = C and B is
nonincreasing along each nontrivial solution. However, when
xo = 0, we show that, for vo := [−1 0]> ∈ F (0) ∩ TC(0),
condition (14) is not satisfied. Indeed, it is easy to see that

NP
epiB∩(C×R)(x,B(x)) =

{
−[1 α 1]> : α ∈ R

}
∀x ∈ C.

Hence,

〈ζ, vo〉 = 1 > 0 ∀[ζ − 1]> ∈ NP
epiB∩(C×R)(0, 0).

�

The following result shows that in some situations (M1)
is not needed. However, such situations require that the set
C̃ and the function B satisfy the following extra properties:

(p1) x 7→ blckdiag {In, 0}NP
epiB∩(C×R)(x,B(x)) is lower

semicontinuous on C̃,
(p2) U(x)∩ int(C) 6= ∅ for all x ∈ ∂C∩C and for all U(x).

Theorem 2: Consider a system Hf = (C,F ) such that
(i)-(ii) hold and let B : Rn → R be a lower semicontinuous
function. Then,

• (?) + (p1) + (p2) ⇒ (14).

Consequently, when (M2) and (p1)-(p2) hold, (?)⇔ (14). �
In the following example, we present a constrained system

Hf = (C,F ) where (M2) is not satisfied, the condition in
Theorem 1 is satisfied, and there exists a lower semicontinu-
ous function B that fails to be nonincreasing along solutions.



Example 2: Consider the system Hf = (C,F ) with x ∈
R2,

F (x) :=

{
[1 [−1, 1]x1]> if x1 ≥ 0

[1 0]> if x1 < 0

}
∀x ∈ C,

C :=
{
x ∈ R2 : |x2| ≥ x21

}
∪
{
x ∈ R2 : x1 ≤ 0

}
∪
{
x ∈ R2 : x2 = 0

}
.

Furthermore, consider the lower semicontinuous function

B(x) :=

{
0 if x2 ≤ 0
1 if x2 > 0.

We will show that in this case all of the conditions in
Theorem 1 are satisfied except (M2) and that the set epiB ∩
(cl(C) × R) is not forward pre-invariant; thus, B is not
nonincreasing along the solutions to Hf . Indeed, we start
noting that

epiB =
{

(x, r) ∈ R3 : x2 ≤ 0, r ≥ 0
}
∪{

(x, r) ∈ R3 : x2 > 0, r ≥ 1
}
,

epiB ∩ (C × R) ={
(x, r) ∈ R3 : x2 ≤ 0, r ≥ 0, x1 ≤

√
−x2

}
∪{

(x, r) ∈ R3 : x2 > 0, r ≥ 1, x1 ≤
√
x2
}
∪{

(x, r) ∈ R3 : x1 ≥ 0, r ≥ 0, x2 = 0
}
.

Furthermore, it is easy to see that F is locally Lipschitz and
F (x) is convex and compact for all x ∈ R2, hence, (i) and
(ii) are both satisfied. Now, in order to show that (M1) is
satisfied, we pick xo ∈ ∂C, which implies that

xo := [xo1 xo2]> ∈
{
x ∈ R2 : x1 =

√
|x2|
}
∪{

x ∈ R2 : x1 ≥ 0, x2 = 0
}
,

and

F (xo) ∩ TC(xo) =

 [1 xo1]> if xo2 > 0
[1 0]> if xo2 = 0

[1 − xo1]> if xo2 < 0.

Hence, when xo2 > 0, vo = [1 xo1]> and the continuous
selection is given by v(x) = [1 x1]> ∈ F (x) ∩ TC(x)
for all x ∈ ∂C ∩ U(xo) and for U(xo) sufficiently small.
Next, when xo2 < 0, vo = [1 − xo1]> and the continuous
selection is given by v(x) = [1 −x1]> ∈ F (x)∩TC(x) for
all x ∈ ∂C∩U(xo) and for U(xo) sufficiently small. Finally,
when xo2 = 0, vo = [1 0]> and the continuous selection is
given by

v(x) =

 [1 x1]> if x2 > 0
[1 0]> if x2 = 0

[1 − x1]> if x2 < 0

 ∈ F (x) ∩ TC(x)

for all x ∈ ∂C ∩ U(xo) and for U(xo) sufficiently small.
Thus, (M1) is satisfied. Finally, to show that (14) is satisfied,
we start noticing that

∂(epiB) ∩ (C × R) ={
(x, r) ∈ R3 : x2 < 0, r = 0, x1 ≤

√
−x2

}
∪{

(x, r) ∈ R3 : x2 > 0, r = 1, x1 ≤
√
x2
}
∪{

(x, r) ∈ R3 : x2 = 0, 0 ≤ r ≤ 1
}
.

That is, it is easy to see that for any x ∈ C, which
implies that (x,B(x)) ∈ ∂(epiB) ∩ (C × R), we have
[F (x) ∩ TC(x) 0]> ⊂ T∂(epiB)∩(C×R)(x,B(x)); hence,
(14) follows from [11, Proposition 3.2.3]. Finally, in order
to show that epiB∩ (C×R) is not forward pre-invariant for
(7), we consider the function (x(t), B(xo)) := [t t2 0]> ∈
(C × R) for all t ≥ 0, which is absolutely continuous and
solution to the differential equation (ẋ, ṙ) = ([1 x1]>, 0) ∈
(F (x), 0). Hence, using Lemma 1, we conclude that B is
not nonincreasing along the solutions to Hf . �

In the following, we show how Theorem 1 applies to
address Problem 1 on a concrete example.

Example 3: The continuous dynamics of the bouncing-
ball hybrid model is given by Hf := (C,F ) with F (x) :=
[x2 −γ]> and C :=

{
x ∈ R2 : x1 ≥ 0

}
. The constant γ > 0

is the gravitational acceleration. First, F is single valued and
continuously differentiable; hence, (i) and (ii) hold. Second,
note that C̃ := C\

{
x ∈ R2 : x1 = 0, x2 ≤ 0

}
. Hence,

starting from xo ∈ C̃ ∩ ∂C =
{
x ∈ R2 : x1 = 0, x2 > 0

}
,

F (xo) = [xo2 − γ]> ∈ TC(xo); thus, (M2) follows.
Moreover, (M1) is also satisfied since ∂C ∩ C̃ is open
and, for each xo ∈ ∂C ∩ C̃, F (xo) ∈ TC(xo). Finally,
using Theorem 1, we conclude that a lower semicontinuous
function B : R2 → R satisfies (?) if and only if (14)
holds. In particular, the energy function of the bouncing ball
satisfies (14) since, by definition, it cannot increase along the
solutions. �

In the sequel, we will show that the inequality in (14)
does not need to be checked for all [ζ> α]> ∈
NP

epiB∩(C×R)(x,B(x)) when x ∈ int(C). That is, when
x ∈ int(C), we will show that it is enough to verify
the inequality in (14) only for the vectors [ζ> α]> ∈
NP

epiB∩(cl(C)×R)(x,B(x)) with α = −1 to conclude that

it holds for all [ζ> α]> ∈ NP
epiB∩(C×R)(x,B(x)).

Proposition 1: Consider a system Hf = (C,F ) such that
(i)-(ii) hold, and let B : Rn → R be a lower semicontinuous
function. The inequality in (14) is satisfied at x ∈ int(C) if

〈ζ, η〉 ≤ 0 ∀ζ ∈ ∂PB(x), ∀η ∈ F (x). (15)

�

When the set C ≡ Rn or when C̃ is open, in [5, Theo-
rem 6.3], a necessary and sufficient infinitesimal condition
involving only ∂PB and the map F is provided such that
(?) holds. Indeed, consider the condition

〈ζ, η〉 ≤ 0 ∀ζ ∈ ∂PB(x), ∀η ∈ F (x), ∀x ∈ int(C).
(16)

Also, we consider the following assumptions on the solutions
to Hf and the considered scalar function B.

(a1) For every nontrivial solution x starting from xo ∈ ∂C,
there exists ε > 0 such that x((0, ε], xo) ⊂ int(C).

(a2) B is continuous on ∂C ∩ C̃.

In the following statement, we recover [5, Theorem 6.3] as
a direct consequence of Theorem 1 and Proposition 1.



Corollary 1: Consider a system Hf = (C,F ) such that
(i)-(ii) hold and let B : Rn → R be a lower semicontinuous
function. Then,

• (?) ⇒ (16).
• When C̃ is open or when (a1)-(a2) hold, (?) ⇔ (16).

�

B. The case of Lipschitz and regular functions

When the function B is locally Lipschitz, we show that
(M2) is not required. Indeed, such a relaxation is possible
since the generalized gradient ∂B introduced in Definition 10
will be used instead of the proximal subdifferential. Consider
the following condition:

〈ζ, η〉 ≤ 0 ∀ζ ∈ ∂B(x), ∀η ∈ F (x) ∩ TC(x), ∀x ∈ C̃.
(17)

Theorem 3: Consider a system Hf = (C,F ) such that
(i)-(ii) and let B : Rn → R be a locally Lipschitz function.
Then,

• (17) ⇒ (?).
• When (M1) holds and B is regular, (?) ⇔ (17).

�

As in Corollary 1, when the solutions to Hf do not flow
in ∂C (i.e., (a1) holds), the following condition is used.

〈ζ, η〉 ≤ 0 ∀ζ ∈ ∂B(x), ∀η ∈ F (x), ∀x ∈ int(C). (18)

Corollary 2: Consider a system Hf = (C,F ) such that
(i)-(ii) hold and let a locally Lipschitz function B : Rn → R.
Then,

• When B is regular, (?) ⇒ (18).
• Conversely, when (a1) holds, (18) ⇒ (?).

Consequently, when B is regular and (a1) holds, (?)⇔ (18).
�

C. The case of C1 functions

When a function B : Rn → R is C1, ∂B ≡ ∇B; hence,
(17) becomes

〈∇B(x), η〉 ≤ 0 ∀η ∈ F (x) ∩ TC(x), ∀x ∈ C̃. (19)

Similarly, (18) becomes

〈∇B(x), η〉 ≤ 0 ∀η ∈ F (x) ∩ TC(x), ∀x ∈ int(C). (20)

The following corollaries are in order.
Corollary 3: Consider a system Hf = (C,F ) such that

(i)-(ii) and let B : Rn → R be a C1 function. Then,

• (19) ⇒ (?).
• When (M1) holds, (?) ⇔ (19).

�

Next, using the continuity argument in Theorem 2 under
(p2), we will show that (M1) is also not required.

Corollary 4: Consider a system Hf = (C,F ) such that
(i)-(ii) hold and let B : Rn → R be a C1 function. Assume
further that (p2) holds. Then,

• (?) ⇔ (19).

�

Example 4: Consider the constrained system Hf =
(C,F ) introduced in Example 2. We already showed that
(i) and (ii) hold. Moreover, we will show that (p2) is also
satisfied. Indeed, for any xo ∈ ∂C∩C, i.e. xo = [xo1 0]> for
some xo1 ∈ R, there exists ε > 0 such that xε = [xo1 ε]> ∈
int(C) can be made arbitrary close to xo; thus, (p2) follows.
Hence, using Corollary 4, we conclude that a C1 function
B : R2 → R satisfies (?) if and only if (19) is satisfied. �

Finally, Corollary 2 reduces to the following statement.
Corollary 5: Consider a system Hf = (C,F ) such that

(i)-(ii) hold and let a C1 function B : Rn → R. Then,

• (?) ⇒ (20).
• When (a1) holds, (20) ⇔ (?).

�

V. CONCLUSION

This paper proposed characterizations of nonincreasing
behavior of scalar functions along solutions to differential
inclusions defined in a non-necessarily open flow set. Such
a problem arises naturally from the context of study of hybrid
systems. Therefore, different classes of scalar functions are
considered, including lower semicontinuous, locally Lips-
chitz and regular, and continuously differentiable functions.
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