
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Hybrid Dynamical Systems with Hybrid Inputs: Definition of
Solutions and Applications to Interconnections

Pauline Bernard1 | Ricardo G. Sanfelice2

1Control and Systems Center, MINES
ParisTech, PSL Research University, 60
Boulevard Saint-Michel, 75006 Paris,
France

2Department of Electrical and Computer
Engineering, University of California,
Santa Cruz, CA 95064, USA
Correspondence
*Pauline Bernard, Email:
pauline.bernard@mines-paristech.fr

Summary

In this paper, we define solutions for hybrid systems with pre-specified hybrid inputs.
Unlike previous work where solutions and inputs are assumed to be defined on
the same domain a priori, we consider the case where intervals of flow and jump
times of the input are not necessarily synchronized with those of the state trajectory.
This happens in particular when the input is the output of another hybrid system,
for instance in the context of observer design or reference tracking. The proposed
approach relies on reparametrizing the jumps of the input in order to write it on a
common domain. The solutions then consist of a pair made of the state trajectory
and the reparametrized input. Our definition generalizes the notions of solutions of
continuous-time and discrete-time systems with inputs. We provide an algorithm that
automatically performs the construction of solutions for a given hybrid input. In the
context of hybrid interconnections, we show how the solutions of the individual sys-
tems can be linked to the solutions of a closed-loop system. Examples illustrate the
notions and the proposed algorithm.
KEYWORDS:
hybrid systems, interconnections, modeling, observers, hybrid inputs

1 INTRODUCTION

1.1 Background
A significant part of control theory consists of studying systems with inputs, whether it be for tracking control, output regulation,
or estimation. In fact, dynamical properties relating inputs, outputs, and the state of single and multiple, interconnected systems
are widely used for analysis and design of feedback control systems, which are naturally interconnected. Notions such as input-
to-state stability (ISS)1,2 have been rendered useful to study interconnection of continuous-time systems via small gain theorems.
Extensions of small gain theorems to discrete-time, switched, and hybrid systems are available in3,4, and5, respectively. Simi-
larly, the so-called output-to-state stability (OSS) notion is convenient to bound the solutions by a function of the output of the
system6; see also its extension to hybrid systems in7. Combining the ideas in the ISS and OSS notions, input-output-to-state
stability (IOSS) provides bounds that depend on the inputs and outputs of the single and multiple systems; see1,8,9. The fact
that these notions relate (functions of) the state to (functions of) the inputs and the state of a system make it very appealing for
the study of interconnections. Indeed, under the appropriate assumptions, interconnections of systems that individually enjoy
properties like ISS and IOSS give rise to closed-loop systems with similar properties, in particular, asymptotic stability.

0This research has been partially supported by the National Science Foundation under Grant no. ECS-1710621 and Grant no. CNS-1544396, by the Air Force Office
of Scientific Research under Grant no. FA9550-16-1-0015, Grant no. FA9550-19-1-0053, and Grant no. FA9550-19-1-0169, and by CITRIS and the Banatao Institute at
the University of California.

2 Bernard ET AL

As the cited literature indicates, results for the study of interconnections of continuous-time and discrete-time systems are for
the case when solutions to the systems are defined for all time, namely, for all continuous time t ∈ [0,∞) and for all discrete time
k ∈ {0, 1, 2,…}, respectively. For these classes of systems, such notions of solutions also apply to their interconnections, due
to the solution to each system being defined for all (continuous or discrete) time. On the other hand, when solutions are defined
over a bounded horizon (or domain) then solutions to the interconnection can only be defined over the smallest such horizon, but,
besides such technicality, interconnections of continuous-time or of discrete-time systems does not raise any critical problems
in what pertains to definition of solutions. On the other hand, defining solutions to hybrid systems – with or without hybrid
inputs – is much more challenging, due to the fact that, in general, solutions to a hybrid system do not have the same domain
of definition. For instance, the notion of solution employed in10 and in11 uses both continuous time t ∈ [0,∞) and a discrete
counter j ∈ {0, 1, 2,…} to parameterize the evolution of the state (and input) trajectories defining a solution. In this setting,
a solution that evolves continuously (or, equivalently, flows) for t1 > 0 seconds at which time instant it jumps, and then flows
until t2 > t1 seconds, and proceeding in this way, continues to flow up to tj+1 > tj , and so forth, is defined on the set

([0, t1] × {0}) ∪ ([t1, t2] × {1}) ∪… ∪ ([tj , tj+1] × {j}) ∪…

which is a particular subset of [0,∞) × {0, 1, 2,…}. Due to such parameterization of solution, in principle, the domain of
definition of the solutions to each hybrid system within an interconnection is not the same. Furthermore, when inputs play a
role, the domain of definition of the input may not necessarily match that of the resulting state trajectory. Some of the intricacies
in defining solutions to interconnections of hybrid systems are discussed in12. A particularly extreme case is when one of the
systems in the interconnection has a solution that only evolves continuously (or, equivalently, only flows) and another system
has a solution that only evolves discretely (or, equivalently, only jumps), in which case it is not obvious how to define a solution
to the interconnection due to the difference on the domains. In previous works involving hybrid systems with inputs, the notion
of solution assumes that the domain of the input and of the state trajectory are the same; see, e.g.,5,13,9. In the case of state
feedback, namely, when the input is a function of the state, the input inherits the domain of the state trajectory and the assumption
made in the cited references is justified. It is also justified when designing a controller or an observer for a hybrid (or impulsive)
system with jump times that are synchronized with the plant14,15,16,17, and assumed to be known. In those cases, the definition
of solutions is straightforward.

1.2 Motivation
As motivated in Section 1.1, it is restrictive to assume that the domain of the individual solution to each system in an intercon-
nection of hybrid systems is the same. The main challenge is that the domain of the (hybrid) input to each system in such an
interconnection is not known a priori, due to typically being a function of the output of another hybrid system. This fact prevents
one from assuming (as naturally done for continuous-time and for discrete-time systems) that the domain of the input and of the
state trajectory coincide. In some cases, like when the input is a purely continuous-time signal or a purely discrete-time signal,
one can actually redefine the input on the domain of the state trajectory, leading to matching domains. However, as said above,
such a “pre-processing” of the input cannot be applied to general interconnections of hybrid systems, as it requires altering the
domain of the output of another hybrid system. As pointed out in12 such a modification is far from trivial, and serious difficul-
ties emerge when the jumps of the system are not synchronized with those of the input, leading to very important questions yet
to be answered:

• Assume a hybrid system is flowing and its input jumps before the state reaches its jump set: under which conditions should
we allow the state to jump and continue evolving, and how should this jump be defined?

• Now, conversely, assume that the state of the system reaches its jump set and cannot continue flowing, while the input
is such that it can continue to flow: do we stop the solution or do we allow the system to jump and the input to continue
flowing afterwards?

• Combining those two questions, consider a series interconnection/cascade of hybrid systems: how to define a unified
notion of solution if the jumps of both systems do not occur at the same time?

These problems appear, for instance, in the context of reference tracking when the reference is a hybrid trajectory. In18, the
reference is a trajectory of the system itself and the problem of reconciling the domains is done by designing an extended “closed-
loop” system which naturally puts the reference and the system on the same domains. Similarly, when studying incremental

Bernard ET AL 3

stability for hybrid systems, trajectories with different domains need to be compared and they are typically brought on the same
domain thanks to an extended system19. The issues mentioned above also arise in the context of observer design (and, more
generally, output-feedback), where the input of the hybrid observer is the output of the hybrid plant we want to observe. In20,
the analysis is possible using tools for autonomous hybrid systems thanks to a timer which is used to model the jumps of the
input and by building a closed-loop system whose jumps are solely triggered by the timer.

1.3 Contributions
In this paper, we make the following main contributions:

• Definition of solutions to hybrid systems with hybrid input: in Section 2, we propose a novel definition for solutions to
hybrid systems when the input is a hybrid arc with its own domain, which does not necessarily match the one of the
produced state trajectory. The proposed approach relies on reparametrizing the jumps of the input in order to write it
on a common domain with the state trajectory. The solutions then consist of a pair made of the state trajectory and the
reparametrized input. Our definition generalizes the notions of solutions of continuous and discrete systems with inputs.

• Algorithm for the construction of solutions: we provide in Section 3 an algorithm that automatically performs the construc-
tion of solutions for a given hybrid input. We discuss its numerical implementation and the consequences of numerical
errors on the definition of solutions.

• Application to interconnection of hybrid systems and link with closed-loop dynamics: in the particular case of series and
feedback interconnections between two hybrid systems, we investigate in Section 4 the link between the solutions obtained
from our definition, to those of an appropriately defined closed-loop system, crucial for Lyapunov-based designs.

All of the proposed notions are illustrated on examples. In particular, we show how our definition enables to define a hybrid
observer for a hybrid plant, and provide a sufficient condition for observer design via a closed-loop system in Section 4.1.

2 SOLUTIONS TO HYBRID DYNAMICAL SYSTEMS
WITH INPUTS

For starters, the definition of a solution to a continuous-time system with inputs of the form ẋ = f (x, u) requires the following
data: an initial state x0 and an input signal t → u(t) (typically satisfying basic regularity properties). Then, a solution to the
system is typically given by an absolutely continuous function t → �(t) such that �(0) = x0 and �̇(t) = f (�(t), u(t)) is satisfied
on the domain of definition of u and �. Those domains typically coincide unless � terminates before u, in which case the domain
of u is simply truncated. A notion of solution for discrete-time systems with inputs can be defined similarly.
As pointed out in Section 1, the definition of a solution to a hybrid system with inputs is more intricate when we do not

rely on the assumption that the domain of the input and of the state trajectory coincide. In this section, we define a notion of
solution for hybrid systems with a hybrid arc as input. Due to the likely mismatch between the jump times of the given input
u and of the actual state trajectory � to be generated, the proposed notion jointly parametrizes u and � in what we refer to as a
j-reparametrization.
We first recall the following definitions and notation. For more details about those definitions, the reader is referred to21.

Definition 1 (hybrid time domain). A set E ⊆ ℝ≥0 × ℕ is a hybrid time domain if for each (T ′, J ′) ∈ E, the truncation
E ∩

(

[0, T ′] × {0, 1,… , J ′}
) can be written as ⋃J−1

j=0
(

[tj , tj+1], j
) for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 … ≤ tJ

and J ∈ ℕ.
Definition 2 (hybrid arc). A function � ∶ dom� → ℝn is a hybrid arc if dom� is a hybrid time domain and for each j ∈ ℕ,
t → �(t, j) is locally absolutely continuous on {t ∶ (t, j) ∈ dom� }.

Notation We denote by ℝ (resp. ℕ) the set of real numbers (resp. integers), and ℝ≥0 ∶= [0,+∞), ℝ>0 =∶ (0,+∞), and
ℕ>0 ∶= ℕ ⧵ {0}. For a set , cl() will denote its closure, int() its interior and card its cardinality (possibly infinite). We
denote ⊊ for a strict inclusion and ⊆ for a nonstrict inclusion. If ⊆ ℝp, we define the distance of z ∈ ℝp to by

|z| = inf
z′∈

|z − z′| .

4 Bernard ET AL

For a hybrid arc (t, j) → �(t, j) defined on a hybrid time domain dom�, we denote domt � (resp. domj �) its projection on
the time (resp. jump) axis, and for a positive integer j, tj(�) the time stamp associated to jump j (i.e., the only time satisfying
(tj(�), j) ∈ dom� and (tj(�), j − 1) ∈ dom�), and j(�) the largest interval such that j(�) × {j} ⊆ dom�. We define also
 (�) = {tj(�) ∶ j ∈ domj � ∩ ℕ>0} as the set of jump times, T (�) = sup domt � ∈ ℝ≥0 ∪ {+∞} the maximal time of the
domain, J (�) = sup domj � ∈ ℕ ∪ {+∞} the total number of jumps, and, for a time t in ℝ≥0, t(�) = {j ∈ ℕ>0 ∶ tj(�) = t}
the set of jump counters associated to the jumps occurring at time t. It follows that cardt(�) is the number of jumps of �
occurring at time t.

2.1 j-reparametrization of hybrid arcs
We define a j-reparametrization of a hybrid arc as follows.
Definition 3. Given a hybrid arc �, a hybrid arc �r is a j-reparametrization of � if there exists a function � ∶ ℕ → ℕ such that

�(0) = 0 , �(j + 1) − �(j) ∈ {0, 1} ∀j ∈ ℕ (1)
and

�r(t, j) = �(t, �(j)) ∀(t, j) ∈ dom�r . (2)
The hybrid arc �r is a full j-reparametrization of � if

dom� =
⋃

(t,j)∈dom�r
(t, �(j)) , (3)

or, equivalently, domt � = domt �r and J (�) = �(J (�r)). We will say that � is a j-reparametrization map from � to �r.
In other words, �r takes at each time t the same values as �, but maybe associated to a different jump index, because �r

may have trivial jumps added to its domain. If the whole domain of � is spanned by �r, the reparametrization is said to be full.
Indeed, (3) says that dom� is the image of dom�r by the map

(t, j) → (t, �(j)) .

Example 1. Consider the hybrid arc � defined on dom� = ℝ × {0} by
�(t, j) = t ∀(t, j) ∈ dom� ,

and �r defined on dom�r = {0} × ℕ by
�r(t, j) = 0 ∀(t, j) ∈ dom�r .

The hybrid arc �r is a j-reparametrization of � with reparametrization map �(j) = 0 for all j ∈ ℕ. However, it is not a full
reparametrization of � because all of its domain is not spanned.
Now take � defined on dom� = ([0, 1] × {0}) ∪ ([1, 2] × {1}) by

�(t, j) = t − j ∀(t, j) ∈ dom� .

In other words, � flows for t ∈ [0, 1] from 0 until reaching 1, then jumps back to 0, and flows again for t ∈ [1, 2]. Consider �r
defined on dom�r = ([0, 1∕2] × {0}) ∪ ([1∕2, 1] × {1}) ∪ ([1, 2] × {2}) by

�r(t, j) =
{

t ∀(t, j) ∈ [0, 1∕2] × {0} ∪ ([1∕2, 1] × {1}),
t − 1 ∀(t, j) ∈ [1, 2] × {2}

Then, it is easy to check that �r is a full j-reparametrization of � with � such that �(0) = 0, �(1) = 0, �(2) = 1.
Actually, given �, an infinite number of reparametrizations can be obtained by limiting the domain or adding trivial fictitious

jumps, by changing �. △

2.2 Solutions to hybrid systems with hybrid inputs
Consider the hybrid system

{

ẋ ∈ F (x, u) (x, u) ∈ C
x+ ∈ G(x, u) (x, u) ∈ D

, y = ℎ(x, u) (4)

Bernard ET AL 5

with state x taking values inℝdx , input u taking values inℝdu , flow map F ∶ ℝdx ×ℝdu ⇉ ℝdx , jump mapG ∶ ℝdx ×ℝdu ⇉ ℝdx ,
flow set C ⊆ ℝdx ×ℝdu and jump set D ⊆ ℝdx ×ℝdu . We adopt the following definition.
Definition 4. Consider a hybrid arc u. A pair � = (x, ur) is a solution to with input u and output y if
1) dom x = dom ur(= dom�)

2) ur is a j-reparametrization of u with reparametrization map �u, and with also cardT (u)(�) = cardT (u)(u) if this
reparametrization is full.

3) for all j ∈ ℕ such that j(�) has nonempty interior,
(x(t, j), ur(t, j)) ∈ C ∀t ∈ int j(�)

ẋ(t, j) ∈ F (x(t, j), ur(t, j)) for a.a. t ∈ j(�)

4) for all t ∈ (�), denoting j0 = mint(�) and nu = card t(u), we have
a) for all j ∈ t(�) such that j < j0 + nu, we have �u(j) = �u(j − 1) + 1, and:

if j = j0 and t > 0,
- (x(t, j0 − 1), ur(t, j0 − 1)) ∈ C ∪D
- x(t, j0) ∈ G0

e (x(t, j0 − 1), ur(t, j0 − 1))

else
- (x(t, j − 1), ur(t, j − 1)) ∈ cl(C) ∪D
- x(t, j) ∈ Ge(x(t, j − 1), ur(t, j − 1))

with

G0
e (x, u) =

⎧

⎪

⎨

⎪

⎩

x if (x, u) ∈ C ⧵D
G(x, u) if (x, u) ∈ D ⧵ C
{x,G(x, u)} if (x, u) ∈ D ∩ C

, Ge(x, u) =

⎧

⎪

⎨

⎪

⎩

x if (x, u) ∈ cl(C) ⧵D
G(x, u) if (x, u) ∈ D ⧵ cl(C)
{x,G(x, u)} if (x, u) ∈ D ∩ cl(C)

b) for all j ∈ t(�) such that j ≥ j0 + nu, we have �u(j) = �u(j − 1) and
- (x(t, j − 1), ur(t, j − 1)) ∈ D
- x(t, j) ∈ G(x(t, j − 1), ur(t, j − 1))

5) for all (t, j) ∈ dom�,
y(t, j) = ℎ(x(t, j), ur(t, j)) .

The solution � is said to be maximal if there does not exist any other solution �̃ such that
dom� ⊂ dom �̃ , �̃(t, j) = �(t, j) ∀(t, j) ∈ dom� .

The set of maximal solutions to initialized in 0 with input u is denoted (0; u). △

Conditions 1) and 2) say that ur is a j-reparametrization of u that is defined on the same domain as x, and that when the whole
domain of u is spanned (namely, ur is a full reparametrization u), the solution stops evolving whenever u does. Indeed, in that
case, by Definition 3, domt � = domt u (in particular T (�) = T (u)), and if T (u) ∈ domt �, the extra condition cardT (u)(�) =
cardT (u)(u) says that � jumps as many times as u at its final time, similarly to solutions of discrete systems with input.
At a time t where the input does not jump (nu = 0), x can jump according to its own jump map G if � is in D by Condition

4b). In that case, ur contains a trivial jump, namely for all j ∈ t(�),
ur(t, j) = ur(t, j − 1) , �u(j) = �u(j − 1) .

On the other hand, at a time t where the input jumps, Condition 4a) says that:
- at the first jump if t > 0, �must be inC∪D and x is reset either trivially (via the identity) or to a point inG(x, u) according
to G0

e .
- for the remaining jumps of u, or if t = 0, those conditions are relaxed with Ge, replacing C by cl(C).

6 Bernard ET AL

After all the jumps of u have been processed, � can carry on jumping if it is inD, with x reset to a point ofG(x, u) and recording
trivial jumps in ur according to Condition 4b).
The difference between G0

e and Ge in Condition 4a) is that x is forced to jump according to G if � is in D ⧵ C instead of
D ⧵ cl(C). This stricter condition at the first jump of u after an interval of flow is to avoid the situation where � would leave C
after flow and then be allowed to flow again from the same point after the jump of u; namely it prevents flows through a hole
of C . This condition is already enforced when the input does not jump (nu = 0) by conditions 3) and 4b). In other words, if �
leaves C after an interval of flow, it either jumps according to G if it is in D or dies. Hence the condition that � should be in
C ∪D instead of cl(C) ∪D at the first jump of u. On the other hand, for the remaining jumps of u or at t = 0, there is no reason
to force x to jump with G on cl(C) ⧵ C since x could possibly flow into C . That is why G0

e is relaxed into Ge. This distinction
disappears if C is closed. Note that more generally, the solution stops if � leaves cl(C) ∪D.
Remark 1. Condition 4) imposes that at a given time, u performs all its jumps consecutively and right away. This choice is
important because it determines which value of u is used in the jump map of x. In particular, it enables to recover the definition
of solutions of discrete systems with input if F ≡ ∅ and C = ∅. Not forcing the jumps of u to be processed right away would
lead to a richer set of solutions where x and u jump either simultaneously or not, and with any ordering. In that case, Conditions
4) would be replaced by :
4’) for all t ∈ (�) and for all j ∈ t(�),

either
⎧

⎪

⎨

⎪

⎩

(x(t, j − 1), ur(t, j − 1)) ∈ cl(C) ∪D
x(t, j) ∈ Ge(x(t, j − 1), ur(t, j − 1))

�u(j) = �u(j − 1) + 1

or
⎧

⎪

⎨

⎪

⎩

(x(t, j − 1), ur(t, j − 1)) ∈ D
x(t, j) ∈ G(x(t, j − 1), ur(t, j − 1))

�u(j) = �u(j − 1)

,

with cl(C) replaced by C for j = j0 if t > 0. With this alternate definition, it would no longer make sense to require
cardT (u)(�) = cardT (u)(u) at the boundary of the time domain in Condition 2), which would be simplified into
2’) ur is a j-reparametrization of u with reparametrization map �u.

This richer set of solutions is particularly relevant when several jumps having a common time stamp represent in fact jumps
occurring very close in time. In this case, we do not know if the jump of u truly happens before or after a possible jump of x,
and it makes sense to take any value of u at that time in the jump map of x. △

Remark 2. Another way of building solutions to a hybrid system with a hybrid input u would be to look for solutions that jump
whenever u jumps. In other words, a jump of u would force a jump of the state according to its own jump map. However, this
would significantly limit the number of solutions since the state would need to be in its jump set every time the input jumps.
Besides, the value of the input does not always contain the information about its forthcoming jump, as illustrated in Section 5,
thus preventing the implementation of such an approach. In particular, in the context of observer design, the hybrid input is the
output from the observed hybrid plant: the jumps of the observer and of the plant cannot always be synchronized. △

Remark 3. In the case where dom x = dom u is assumed from the start as in5, ur is equal to u and Conditions 1) and 2) in
Definition 4 are automatically satisfied. Also, in such a case, in Condition 4), the number of jumps of u is equal to the number
of jumps of x so that Condition 4b) holds vacuously. The only difference with the definition of solutions in5 is in the way we
define the jumps in Condition 4a). In5, (x, u) would jump only in D and x would always be reset to values in G(x, u). This case
is covered by the definition of G0

e (resp. Ge), but we also allow trivial jumps of x when u jumps and (x, u) is in C (resp. cl(C))
(see examples in Section 2.3). △

2.3 Examples
The purpose of this section is to illustrate the notions introduced in Definitions 3 and 4. For that, let us consider a series
interconnection of two hybrid systems a and b, where the output of a is the input to b, namely

a

{

ẋa ∈ Fa(xa) xa ∈ Ca
x+a ∈ Ga(xa) xa ∈ Da

, ya = ℎa(xa) , b

{

ẋb ∈ Fb(xb, ya) (xb, ya) ∈ Cb
x+b ∈ Gb(xb, ya) (xb, ya) ∈ Db

(5)
Example 2 (Observer design). An important kind of interconnection of this type is the cascade of a plant with its observer. In
that case,a is a hybrid plant whose state we want to estimate, andb plays the role of the observer whose input is the output ya

Bernard ET AL 7

of the planta. Typically, the goal of the observerb is to provide as output yb an estimate x̂a of xa. This is rendered possible
by Definition 4 which defines solutions even when the jumps of ya (i.e. of the plant) are not synchronized with those of the
observer. A sensible definition could thus be the following.
Definition 5. b is an observer for a on a,0 ⊆ ℝdxa relative to a set , if there exists a subset b,0 of ℝdxb such that for any
xa ∈ a

(a,0) with output ya and for any (xb, yra) ∈ b
(b,0; ya):

(a) yra is a full j-reparametrization of ya, with associated reparametrization map �a ;
(b) considering the corresponding full j-reparametrization of xa defined by

xra(t, j) = xa(t, �a(j)) ∀(t, j) ∈ dom�b ,

we have
lim |

|

|

(

yb(t, j), xra(t, j)
)

|

|

|
= 0 . (6)

Condition (a) ensures that the solution to the observer b exists as long as the underlying solution xa to a does. This is
important in observer design and comes as an extra constraint besides those of Definition 4. As for Condition (b), it traduces the
intuitive idea of “yb converges to xa” (in the sense of), even if those hybrid arcs do not have the same domain. This is done by
reparametrizing xa into xra defined on the domain of xb thanks to Definition 3 and 4. Note that the argument of the limit in (6) is
intentionally omitted because it depends on whether we ask for convergence only for complete solutions when t+j → +∞, or for
any solution when (t, j) approaches the boundary of the domain. Regarding, ideally, we would like diagonal, i.e., given by

 =
{

(xa, yb) ∈ ℝdx ×ℝdx ∶ xa = yb
}

but it is in general difficult to obtain unless Ga = Id or the observer becomes perfectly synchronized with the plant after some
time. Indeed, if xa and yb don’t jump exactly at the same time and Ga ≠ Id, the mismatch yb−xa cannot be made small however
small the delay at the jumps is: this is the so-called peaking phenomenon. In that case, denoting

Ga(xa) =
{

Ga(xa) if xa ∈ Da
∅ otherwise

we can only hope to stabilize the set
 =

{

(xa, yb) ∈ ℝdx ×ℝdx ∶ xa = yb or xa ∈ Ga(yb) or yb ∈ Ga(xa)
}

,

as in20, or even
 =

{

(xa, yb) ∈ (Ca ∪Da ∪ G(Da))2 ∶ ∃k ∈ ℕ ∶ xa ∈ Gk
a(yb) or yb ∈ Gk

a(xa)
}

when consecutive jumps are possible, as in18. △

Example 3 (Output reference tracking). Another important application is the cascade of a hybrid exosystem a generating a
reference ya that a controlled plantb must follow. In other words, we want yb to track ya. This is rendered possible by Definition
4 which defines solutions even when the jumps of ya (i.e. of the exosystem) are not synchronized with those of the plant. In the
same spirit as the observer, we can define:
Definition 6. b asymptotically tracksa on 0 ⊆ ℝdx relative to a set, if there exists a subset b,0 of ℝdxb such that for any
xa ∈ a

(a,0) with output ya and for any (xb, yra) ∈ b
(b,0; ya):

(a) yra is a full j-reparametrization of ya, with associated reparametrization map �a ;
(b) we have

lim |

|

|

(

yb(t, j), yra(t, j)
)

|

|

|
= 0 . (7)

The main difference with an observer is that here yb only has to reproduce ya, and not the entire state xa. However, the peaking
phenomenon remains when the jumps of yb are not exactly synchronized with those of ya. △

Suppose now we want to use the output ya of a to make b jump according to Gb whenever a jumps. We will consider
two settings:

8 Bernard ET AL

• “Jump triggering”: the information of an upcoming jump of a is contained in ya before it happens, namely there exists
a subset Ya of ℝdya such that a jumps if and only if ya ∈ Ya. In that case, we would like to design Cb and Db so that b
jumps according to Gb synchronously with a whenever ya ∈ Ya;

• “Jump detection”: the information of a jump of a can be detected in ya after it has happened, namely we would like to
design Cb and Db to make b jump right after a.

Example 4 (Jump triggering). We start by assuming there exists a subset Ya of ℝdya such that a jumps if and only if ya =
ℎa(xa) ∈ Ya, namely xa ∈ Da ⇔ ℎa(xa) ∈ Ya and no flow is possible from cl(Ca) ∩Da. An example of this situation presented
in22 is the resettable timer defined by

a

{

�̇ = −1 � ∈ Ca ∶= [0, sup] ∩ℝ
�+ ∈ � ∈ Da ∶= {0}

, ya = � (8)
where is a closed subset of ℝ, containing the possible lengths of flow interval between successive jumps. Because no flow is
possible from Ca ∩Da = {0}, we know a is going to jump if and only if ya = 0. Therefore, Ya = {0}.
To synchronize b with a a natural choice is

Cb = ℝdxb × (ℝdya ⧵ Ya) , Db = ℝdxb × Ya . (9)
Let us build solutions to b according to Definition 4. Take xa(0, 0) ∈ cl(Ca) ∪Da and consider a maximal solution xa to a.
Take xb(0, 0) ∈ ℝdxb . If the domain of xa is reduced to {(0, 0)}, then T (ya) = 0 and cardT (ya) = 0 so that xb also stops at
xb(0, 0) according to Condition 2) of Definition 4. Now assume dom xa ≠ {(0, 0)}.
First consider the case where ya(0, 0) ∉ Da. Then, xa necessarily flows for t ∈ 1, with 1 a nonempty interval of ℝ≥0. By

definition of Ya, ya(t, 0) ∉ Ya for t ∈ [0, sup1), so b flows too for t ∈ ′
1 with ′

1 ⊆ 1 and yra ∶= ya on ′
1 × {0}. The only

way we can have ′
1 ⊊ 1 is if xb explodes in finite time: in that case the solution stops. Otherwise, ′

1 = 1. Now either the
whole domain of xa has been browsed, in which case xb stops, or xa jumps at time t1 = max1 and necessarily ya(t1, 0) ∈ Ya. If
ya(t1, 1) ∉ Ya, xa jumps only once, i.e.t1(ya) = {1} and nya = 1; otherwise, consecutive jumps happen witht1(ya) = {1, 2,…}
until ya ∉ Ya. Since (xb, ya)(t1, 0) ∈ Db ⧵ Cb and t1 > 0, xb is reset to a point in Gb((xb, ya)(t1, 0)) according to G0

e in the first
part of Condition 4a) in Definition 4 with j = 1 = j0 and t1 > 0. We thus take yr ∶= y on ([0, t1] × {0}) ∪ ({t1} × {1}). After
this first jump,

• either ya(t1, 1) ∉ Ya, so that nya = 1, and xa flows for t ∈ 2. Since (xb, ya)(t1, 1) ∈ Cb ⧵ Db, xb cannot jump further
according to Condition 4b) of Definition 4 with j = 2 ≥ j0 + ny: xb flows and we start again with the same reasoning.

• or ya(t1, 1) ∈ Ya so that xa jumps again and nya ≥ 2. If ya(t1, 1) ∈ int(Ya), then (xb, ya)(t1, 1) ∈ Db ⧵ cl(Cb) and xb
jumps to xb(t1, 2) ∈ Gb((xb, ya)(t1, 1)) according to the second part of Condition 4a) in Definition 4 with j = 2 < j0 + ny.
However, if ya(t1, 1) ∈)Ya, then (xb, ya)(t1, 1) ∈ Db ∩ cl(Cb), and xb jumps to xb(t1, 2) ∈ {xb(t1, 1)} ∪Gb((xb, ya)(t1, 1)).
We also take yr ∶= y on ([0, t1] × {0}) ∪ ({t1} × {1, 2}) and we then start again with the same reasoning.

If now ya(0, 0) ∈ Ya, xa starts with a jump. If ya(0, 0) ∈ int(Ya), then (xb, ya)(0, 0) ∈ Db ⧵ cl(Cb) and xb jumps to xb(0, 1) ∈
Gb((xb, ya)(0, 0)) according to the second part of Condition 4a) inDefinition 4with j = 1 = j0. However, if ya(0, 0) ∈ Ya⧵int(Ya),
then (xb, ya)(0, 0) ∈ Db ∩ cl(Cb), and xb jumps to xb(0, 1) ∈ {xb(0, 0)} ∪ Gb((xb, ya)(0, 0)). Then, we carry on with the same
reasoning in the bullets above.
So we conclude thatb jumps only whena jumps and inherits the domain of its input ya, so that yra = ya (unless xb escapes

in finite time while flowing with Fb). Besides, if ya cannot be in Ya ⧵ int(Ya) after a jump of a, i.e. if
ℎa(Ga(Da)) ∩ (Ya ⧵ int(Ya)) = ∅ , (10)

b jumps according to Gb every time a jumps, except maybe at t = 0 where one trivial jump may be allowed if ya(0, 0) ∈
Ya ⧵ int(Ya). To ensure this, the first part of Condition 4a) was crucial to force xb to be reset to a point in Gb(xb, ya) when
(xb, ya) ∈ Db ⧵ Cb. If we had used Ge instead of G0

e , trivial jumps would have been allowed since (xb, ya) ∈ Db ∩ cl(Cb) at the
jumps. Instead, if ya is in Ya ⧵ int(Ya) after a jump ofa, trivial jumps ofb are allowed byGe, thus losing the property of jump
triggering. △

Example 5 (Jump detection). Consider now the relaxed case where we allow b to jump according to Gb right after a has
jumped. In other words, the jumps ofa can be detected in ya after they have happened, for instance because ya is in a specific

Bernard ET AL 9

set after the jump or because the jump creates a discontinuity in ya. This is the case of the timer
a

{

�̇ = 1 � ∈ Ca ∶= [0, sup] ∩ℝ
�+ = 0 � ∈ Da ∶= , ya = � (11)

which creates the same time domains as (8), but this time the information of its jumps is encoded in the output only after they
have happened, namely when ya has been reset to 0.
In order to force b to jump with Gb right after every jump of a, we need to choose Cb and Db such that:
• (xb, yra) is not in cl(Cb) after the jumps of a, otherwise flow is allowed before b has jumped using Gb;
• after a jump ofb using Gb, (xb, yra) should no longer be inDb unlessa jumps again, otherwise further jumps ofb are

allowed.
Assume the jumps of a create a discontinuity in ya which is lower-bounded by some positive scalar �, and that there exists

a continuous map Fya such that along the flow dynamics of a, ya is solution to
ẏa = Fya(ya) .

Then, the jump detection can be modeled by adding a memory state ŷa to b which copies ya and triggers the jumps in b
whenever ŷa − ya is larger than �, namely

̃b

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋb ∈ Fb(xb, ya) (xb, ŷa, ya) ∈ C̃b
̇̂ya = Fya(ya)

x+b ∈ Gb(xb, ya) (xb, ŷa, ya) ∈ D̃b
ŷ+a = ya

(12)

with
C̃b =

{

(xb, ŷa, ya) ∈ ℝdxb ×ℝdya ×ℝdya ∶ ŷa = ya
}

(13a)
D̃b = {(xb, ŷa, ya) ∈ ℝdxb ×ℝdya ×ℝdya ∶ |ŷa − ya| ≥ �} (13b)

Indeed, if ya(0, 0) = ŷa(0, 0), then ya = ŷa during flow since ŷa(t, 0) = ya(0, 0) + ∫ t
0 Fya(ya(s, 0))ds = ya(t, 0) by definition of

solutions to differential equations with continuous right-hand side. Therefore, ̃b flows as long asa does (unless it explodes in
finite time) and yra(t, 0) = ya(t, 0) during that time. Ifa jumps at t = t1, |ya(t1, 1)− ya(t1, 0)| ≥ �, and since (xb, ŷa, ya)(t1, 0) ∈
C̃b ⧵ D̃b, according to Condition 4a), (xb, ŷa)(t1, 1) = (xb, ŷa)(t1, 0). Besides, we still have yra(t1, 1) = ya(t1, 1). Therefore, after
this jump, |ŷa(t1, 1) − yra(t1, 1)| ≥ �, i.e. (xb, ŷa, ya)(t1, 1) ∈ D̃b ⧵ cl(C̃b) so:

• eithera has finished jumping, and from Condition 4b),b jumps with (xb, ŷa)(t1, 2) ∈ (Gb((xb, ya)(t1, 1)), ya(t1, 1)) and
yra(t1, 2) = ya(t1, 1). Therefore, we recover ŷa(t1, 2) = yra(t1, 2), i.e. (xb, ŷa, ya)(t1, 2) ∈ C̃b ⧵ D̃b and ̃b flows again with
a.

• or a jumps again with |ya(t1, 2) − ya(t1, 1)| ≥ �, and from Condition 4a), we also have (xb, ŷa)(t1, 2) ∈
(Gb((xb, ya)(t1, 1)), ya(t1, 1)). So this time, yra(t1, 2) = ya(t1, 2), and we still have |ŷa(t1, 2) − yra(t1, 2)| ≥ �, i.e.
(xb, ŷa, ya)(t1, 2) ∈ D̃b ⧵ cl(C̃b) and another jump follows.

In other words, xb jumps according to Gb as many times as a does, with one jump delay. If now |ŷa(0, 0) − ya(0, 0)| ≥ �, ̃b
necessarily jumps at t = 0. So ifa does not jump at t = 0, we recover the flow condition after the jump and apply the previous
case; ifa jumps at t = 0, then, as above, xb jumps according toGb as long asa does, untila stops jumping andb performs
one additional jump to recover the flow condition. In other words, when |ŷa(0, 0) − ya(0, 0)| ≥ �, xb jumps according to Gb one
more time than a. We finally deduce that with (12), the state xb of ̃b jumps according to Gb right after every jump of a,
with maybe one more jump at t = 0 if |ŷa(0, 0) − ya(0, 0)| ≥ �, and maybe one fewer if the solution xa stops while jumping.
This method requires that ya has independent dynamics and that the discontinuity in ya at jumps is lower-bounded away from

zero (uniformly in time). This is not always satisfied with the data of a. However, note that we can always modify the data of
a in order to have it verified by at least a part of ya, which is enough. The idea is to add a discrete state q toa that is toggled

10 Bernard ET AL

at each jump namely

̃a

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋa ∈ Fa(xa) (xa, q) ∈ Ca × {0, 1}
q̇ = 0

x+a ∈ Ga(xa) (xa, q) ∈ Da × {0, 1}
q+ = 1 − q

, ỹa = (ℎa(xa), q) =∶ (ya, yq) (14)

It is the same system, but a jump can now be detected by a toggle of the discrete state q. The flow dynamics of yq are independent
and the jumps create in yq a discontinuity of norm equal to 1. Therefore, repeating the same arguments, the jump detection can
simply be modeled by

̃b

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋb ∈ Fb(xb, ya) (xb, q̂, ya, yq) ∈ C̃b
̇̂q = 0

x+b ∈ Gb(xb, ya) (x, q̂, ya, yq) ∈ D̃b
q̂+ = yq

(15)

with
C̃b =

{

(x, q̂, ya, yq) ∈ ℝdxb × {0, 1} ×ℝdya × {0, 1} ∶ q̂ = yq
}

(16a)
D̃b = {(x, q̂, ya, yq) ∈ ℝdxb × {0, 1} ×ℝdya × {0, 1} ∶ q̂ = 1 − yq} . (16b)

Note that we could also easily model a more realistic delayed jump detection by adding a timer in b as in23,17. △

3 ALGORITHM TO GENERATE SOLUTIONS TO HYBRID SYSTEMSWITH HYBRID
INPUTS

3.1 Algorithm
The construction of a solution to a hybrid system with hybrid input can be made explicit through an algorithm. Before we
introduce this algorithm, it is useful to define/build solutions when the input is a continuous time function uCT ∶ ℝ≥0 → ℝdu .
Definition 7. Consider an interval Iu of ℝ≥0 such that 0 ∈ Iu, and a function uCT ∶ Iu → ℝdu . The hybrid arc (x, ur) is solution
to with continuous-time input uCT and output y, if (x, ur) is solution to as in Definition 4 with hybrid input u and output y,
where u is the hybrid arc defined on Iu × {0} by

u(t, 0) = uCT (t) ∀t ∈ Iu .

In other words, ur is trivially given on dom x by
ur(t, j) = uCT (t) ∀(t, j) ∈ dom x ,

and x is simply characterized by
- domt x ⊆ Iu and if domt x = Iu, cardT (u)(x) = 0.
- for all j ∈ ℕ such that j(x) has non-empty interior,

(x(t, j), uCT (t)) ∈ C ∀t ∈ int j(x)
ẋ(t, j) ∈ F (x(t, j), uCT (t)) for a.a. t ∈ j(x)

- for all (t, j) ∈ dom x such that (t, j − 1) ∈ dom x,
(x(t, j − 1), uCT (t)) ∈ D
x(t, j) ∈ G(x(t, j − 1), uCT (t))

- dom x = dom y and for all (t, j) in dom x,
y(t, j) = ℎ(x(t, j), uCT (t)) .

Bernard ET AL 11

The solution x is said to be maximal if (x, ur) is maximal. By abuse of notation, the set of maximal solutions to initialized in
0 with continuous-time input uCT is also denoted (0; uCT). △

Based on this definition, and on the observation that the solutions are easily built when the input is a continuous-time function,
we can introduce Algorithm 1 (see next page), which constructs maximal solutions (x, ur) to with a hybrid input u and output
y according to Definition 4 as follows:

1. The algorithm starts by defining Iu, the time interval to elapse before reaching the next jump of u. The interval is a
singleton if u has an immediate jump.

2. Over the time interval Iu, u evolves continuously and, if possible (line 9), the algorithm builds (line 12) a maximal hybrid
solution x to system (4) starting from x0 according to Definition 7. This gives Conditions 3) and 4b). x is appended to the
solution x.

3. If (line 20) x ends before reaching the end of the interval Iu, or ends outside of cl(C) ∪D (resp. C ∪D after flow, namely
if Tm ∶= T (x) > 0 for the first case of Condition 4a)), the algorithm stops.

4. Otherwise, ju is incremented, Iu is updated to the next interval of flow of u, and x jumps according to G0
e if Tm > 0 (i.e.

after flow), and Ge otherwise, to satisfy Condition 4a).
By construction, we deduce the following result.
Proposition 1. Consider a hybrid arc u. The hybrid arc � = (x, ur) is a maximal solution to with input u and output y if and
only if x, ur, and y are possible outputs of Algorithm 1 with input u.
Note that there are two sources of non uniqueness of solutions in the algorithm: first, in the construction of solutions with

continuous input with Definition 7, and through the set-valued jump maps G0
e and Ge.

3.2 Numerical implementation of Algorithm 1
To illustrate the algorithm and observe the impact of numerical errors on the definition of solutions, we simulate the series
interconnection (5) of two autonomous hybrid systems modeling periodically reset timers, denoted a and b with period ta
and tb respectively. More precisely, we take ya = xa and define the data (Fa, Ca, Ga, Da) of a and (Fb, Cb, Gb, Db) of b as
Fa(xa) = Fb(xb, ya) = 1 , Ga(xa) = Gb(xb, ya) = 0 , Ca = [0, ta] , Da = {ta} , Cb = [0, tb]×ℝ , Db = {tb}×ℝ (17)
From its initial condition in [0, ta],a flows until it reaches ta, then jumps with xa reset to 0, starts again flowing etc. As forb,
if it were not for the input ya, it would behave in the same way, with period tb. But although the dynamics ofb are independent
from the value of ya, considering ya as input means we need to apply Definition 4 to build solutions. In other words,b is reset
to zero when xb reaches tb, but it also jumps (maybe trivially) when ya = xa jumps. To simulate such a behavior, we implement1
Algorithm 1 using the function HyEQsolver from the Matlab Hybrid Toolbox24.

3.2.1 Numerical implementation
Given an initial condition xa,0 of a, HyEQsolver gives a solution xa to a on an horizon of time Ta chosen here equal to 10.
Then, to build a solution to b, we browse the domain of ya = xa as described by Algorithm 1.
More precisely, on each interval of flow Iu of xa, HyEQsolver is called to produce a solution to b on the horizon of time

determined by Iu. This solution is appended to xb and a reparametrization xra of xa is jointly built on Iu by adding trivial jumps
to xa whenever xb jumps: xra and xb are defined on the same domain. If the end of the time interval Iu has not been reached by
xb, the algorithm stops. Otherwise, at the end of Iu, a jump is created in (xb, xra)with xb reset either trivially or to 0 = Gb(xb, ya),
according to Ge or G0

e defined in Definition 4 (using (Cb, Db, Gb) in place of of (C,D,G) therein).
Actually, since numerically xa is never exactly equal to ta and xb is never exactly equal to tb, we enlarge Da and Db as

Da = [ta,+∞) , Db = [tb,+∞) ×ℝ

which give the same solutions as long as they are initialized in [0, ta] and [0, tb]. In the simulations below, we use ta = 1 and
tb = 0.5.

1Code available at https://github.com/HybridSystemsLab/AlgorithmHSwithInputs

12 Bernard ET AL

Algorithm 1Maximal solution to initialized in 0 with hybrid input u
1: , x, y, ur, �u ← ∅
2: j ← 0
3: tj ← 0
4: ju ← 0
5: x0 ∈ 0
6: Iu ← {t ∈ ℝ≥0 (t, ju) ∈ dom u}
7: while Iu ≠ ∅ do
8: uCT (t − tj) ← u(t, ju) ∀t ∈ Iu
9: if (x0; uCT) = ∅ then
10: go to line 35
11: else
12: Pick x ∈ (x0; uCT) with output y
13: Tm ← T (x)
14: jm ← J (x)
15: ← ∪

(

{(tj , j)} + dom x
)

16: x(tj + t, j + j) ← x(t, j) ∀(t, j) ∈ dom x
17: y(tj + t, j + j) ← y(t, j) ∀(t, j) ∈ dom x
18: ur(tj + t, j + j) ← uCT (t) ∀(t, j) ∈ dom x
19: �u(j + j) ← ju ∀j ∈ {0, 1,… , jm} ∩ ℕ
20: if Tm ∉ domt x or jm = +∞ or Tm < T (uCT) or (x(Tm, jm), uCT (Tm)) ∉ cl(C) ∪ D or (Tm > 0 and

(x(Tm, jm), uCT (Tm)) ∉ C ∪D) then
21: go to line 35
22: else
23: tj ← tj + Tm
24: j ← j + jm + 1
25: ju ← ju + 1
26: Iu ← {t ∈ ℝ≥0 ∶ (t, ju) ∈ dom u}
27: if Tm > 0 then
28: x0 ∈ G0

e (x(Tm, jm), uCT (Tm))
29: else
30: x0 ∈ Ge(x(Tm, jm), uCT (Tm))
31: end if
32: end if
33: end if
34: end while
35: J ← supj ⊳ Convention : sup ∅ = −∞

36: if J ∈ [0,+∞) then
37: �u(j) ← �u(J) ∀j ∈ ℕ ∶ j ≥ J
38: end if
39: return x, y, ur, �u

3.2.2 Numerical solutions for non synchronized timers
We start by considering initial conditions xa,0 = 0 and xb,0 = 0.3 for which the two timers are never reset at the same time.
Solutions are plotted on Figure 1. We see thatb is always in Cb ⧵Db whena jumps so that every jump ofa triggers a trivial
jump ofb. This can be seen on Figure (1a). Then, on Figure (1b), we show the reparametrization xra of xa on the same domain
as xb. We see that trivial jumps have been added in xra at every jump time of xb where xa does not jump.

Bernard ET AL 13

t

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

(a) xb (red) and xa (blue)

t

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

(b) xb (red) and xra (blue)

FIGURE 1 Trajectories of xa solution to a and (xb, xra) solution to b with input xa with (xa,0, xb,0) = (0, 0.3).

3.2.3 Numerical solutions for synchronized timers
Now consider the case where xb,0 = 0. Let us first see what should happen in theory. Due to the definition of the dynamics, and
because ta = 2tb, at every jump of a, we have xb = tb, namely b is in Cb ∩Db. Therefore, according to the definition of G0

e ,we have the choice between a trivial reset of xb or a reset to 0. In the former case,b then performs another jump to be reset to
0. In other words, each jump of a triggers one or two jumps in b.
If we had chosen instead

Cb = [0, tb) ,
b would be in Db ⧵ Cb at the jumps of a, and by definition of G0

e , xb would be forced to be reset to 0, so that only one jump
would happen. In other words, a and b would be perfectly synchronized.
In simulations now, the solutions are plotted on Figure 2. Although they appear perfectly synchronized, it turns out that the

jumps of a actually trigger one or two jumps in b. In fact, due to numerical errors, xb usually gets past tb slightly before or
slightly after xa gets past ta, resulting in a jump ofb slightly before or after the one ofa. And regarding the openness of Cb,
the exact same results are obtained taking Cb open or closed because the jumps are rarely triggered at xb = tb exactly, but rather
for xb > tb so that xb is not in Cb whatever its definition. Since this cannot be seen on Figure 2, we plot on Figure 3 the jumps of
xa and xb: xa jumps 10 times from 1 to 0, whereas xb jumps synchronously with xa for the first 5 jumps and then has sometimes
trivial jumps around 0.5 when it is slightly delayed with respect to a.
We conclude that numerically speaking,
• the outer-semicontinuity of the map Ge, namely the choice between a jump along Id or Gb in Definition 4, accounts for

the solutions whereb is slightly delayed with respect to its input resulting in consecutive jumps instead of simultaneous
ones,

• when Cb is open, the distinction between G0
e and Ge in Condition 4)a) is not visible in simulations since the numerical

errors make it impossible to exploit the solution in)Cb, namely we obtain the solutions corresponding to the closure ofCb.
This is coherent with the results obtained in21 for standard hybrid systems, which say that robustness comes with outer-
semicontinuity of the maps and closure of the sets.
Actually, more generally, we could also obtain simulations where b jumps slightly ahead of a due to numerical errors.

Those solutions do not appear with Definition 4 since Condition 4) requires the jumps of the input (here xa) to be processed first
and consecutively. In fact, those extra solutions would be covered by robustness of the definition if we chose Conditions 2’) and
4’) of Remark 1 instead of Condition 2) and 4). Indeed, in that case, the jump of xa would be allowed to be processed after the
reset of xb. We will see in Example 8 in Section 4.1 how those extra solutions also appear when writing the cascade of a and
b as a single extended hybrid system.

14 Bernard ET AL

t

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

(a) xb (red) and xa (blue)

t

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

(b) xb (red) and xra (blue)

FIGURE 2 Trajectories of xa solution to a and (xb, xra) solution to b with input xa with (xa,0, xb,0) = (0, 0).

j
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

(a) xa

j
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) xb

FIGURE 3 Jumps of xa solution toa and (xb, xra) solution tob with input xa and with initial condition (xa,0, xb,0) = (0, 0):the
graphs represent the value of the hybrid arcs before and after each jump. We see that the first jumps of xa trigger only one jump
in xb, while the following ones trigger two jumps in xb, namely xb is first trivially reset and then jumps to 0.

4 APPLICATION TO INTERCONNECTIONS OF HYBRID SYSTEMS AND LINK TO
CLOSED-LOOP SYSTEMS

The study of interconnected hybrid systems is crucial in multiple contexts, from reference tracking to observer design along with
output-feedback. To facilitate this analysis and, in particular, in order to use Lyapunov tools, it is handy to generate solutions
based on a single global hybrid system that captures the behavior of all the interconnected systems. Therefore, we investigate
the link between solutions in the sense of Definition 4 and such a closed-loop system.

4.1 Series Interconnections

a b
ua ya = ub yb

FIGURE 4 Series interconnection of two hybrid systems

Bernard ET AL 15

In control theory, the input of a system is often the output of another system. For instance, in observer design the input of the
observer is the output/measurement of the system we want to observe. The examples considered in the previous section also fall
into that category. For two cascaded hybrid systemsa = (Ca, Fa, Da, Ga, ℎa) andb = (Cb, Fb, Db, Gb, ℎb) with inputs ua and
ub and outputs ya and yb such that ya = ub as in Figure 4, it is natural to consider the cascaded closed-loop system cl (also
denoted a → b) with input ua and output yb defined by

cl

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

ẋa
ẋb

)

∈ Fcl(xa, xb, ua) (xa, xb, ua) ∈ Ccl

(

x+a
x+b

)

∈ Gcl(xa, xb, ua) (xa, xb, ua) ∈ Dcl

, yb = ℎb(xb, ℎa(xa, ua)) (18)

with
Ccl =

{

(xa, xb, ua) ∈ ℝdxa ×ℝdxb ×ℝdua ∶ (xa, ua) ∈ Ca , (xb, ℎa(xa, ua)) ∈ Cb
}

(19)

Dcl =
{

(xa, xb, ua) ∈ ℝdxa ×ℝdxb ×ℝdua ∶ (xa, ua) ∈ Da , (xb, ℎa(xa, ua)) ∈ cl(Cb) ∪Db

}

∪
{

(xa, xb, ua) ∈ ℝdxa ×ℝdxb ×ℝdua ∶ (xa, ua) ∈ cl(Ca) ∪Da , (xb, ℎa(xa, ua)) ∈ Db

}

(20)
and

Fcl(xa, xb, ua) =
(

Fa(xa, ua)
Fb(xb, ℎa(xa, ua))

)

(21)

Gcl(xa, xb, ua) =
(

Ga(xa, ua)
Idb(xb)

)

∪
(

Ida(xa)
Gb(xb, ℎa(xa, ua))

)

∪
(

Ga(xa, ua)
Gb(xb, ℎa(xa, ua))

)

(22)
where we have denoted for i in {a, b}

Gi(xi, ui) =
{

Gi(xi, ui) if (xi, ui) ∈ Di
∅ otherwise , Idi(xi) =

{

xi if xi ∈ cl(Ci)
∅ otherwise . (23)

Similar closed-loop or extended systems have been introduced in the literature whenever it was needed to compare hybrid arcs
with different domains, for instance in the context of reference tracking18 or incremental stability19. The main difference with
those references is that we allow here both xa and xb to jump simultaneously with Ga and Gb, whereas in18,19 this kind of jump
is decomposed into two successive jumps, one where xa jumps with Ga and xb is trivially reset, and vice versa for the second.
In other words, the third jump map in (22) is absent. The main reasons for allowing simultaneous jumps here are:

• We want to recover the framework of discrete-time systems with Ci = ∅;
• Due to the presence of ua, one simultaneous jump of xa and xb cannot always be decomposed in two successive jumps of
xb and then xa, because ua may also jump in-between.

Thanks to the “simultaneous jump” part of cl, it is sufficient to allow trivial jumps of xi only on cl(Ci), as can be seen on the
definition of Idi. In other words, unlike in19, xi is forced to jump with Gi on Di ⧵ cl(Ci). Note that it is however not possible to
replace cl(Ci) by Ci in the definition of Idi. Indeed, xa could flow from)Ca at a time where xb needs to jump, in which case a
trivial jump of xa should be allowed.
We would like to link the solutions of hybrid systems with hybrid inputs defined in the previous sections, to the solutions of

the closed-loop (18). We are going to show in Lemma 1 that (roughly speaking) if xa is a solution toa with input ua and output
ya, and xb is a solution tob with input ub = ya, then, “((xa, xb), ua)” (modulo some j-reparametrizations) is a solution to cl.
However, we will see in Lemma 1 that the set of solutions to cl is larger, in the sense that the converse statement relating the
solutions of cl to solutions of a and b holds under the following additional conditions.
Definition 8 (Converse Conditions). Take a solution �cl = ((xa,cl, xb,cl), ua,cl) to systemcl with input ua. Denote �ua the input
j-reparametrization map from ua to ua,cl. For i = a, b, at a time t in (�cl) and a jump j ∈ t(�cl), we will say that xi,cl verifies
its jump condition if

• (xi,cl(t, j − 1), ui,cl(t, j − 1)) ∈ Di

• xi,cl(t, j) ∈ Gi(xi,cl(t, j − 1), ui,cl(t, j − 1))

16 Bernard ET AL

where we denote ub,cl = ya,cl = ℎa(xa,cl, ua,cl). Then, �cl is said to verify the Converse Conditions (CCs) if for any t in (�cl),
denoting j0 = mint(�cl) and nua = card(t(ua)),
CC.1) there exists an integer nxa ≥ nua such that for all j ∈ t(�cl), denoting ya,cl = ℎa(xa,cl, ua,cl),

- if j < j0 + nua
- �ua(j) = �ua(j − 1) + 1

- if j0 + nua ≤ j < j0 + nxa
- �ua(j) = �ua(j − 1)
- xa,cl verifies its jump condition

- if j ≥ j0 + nxa
- �ua(j) = �ua(j − 1)
- xa,cl does not verify its jump condition
- xb,cl verifies its jump condition.

CC.2) if t > 0 and nua ≥ 1,
- (xa,cl(t, j0 − 1), ua,cl(t, j0 − 1)) ∈ Ca ∪Da

- xa,cl(t, j0) ∈ Ga(xa,cl(t, j0 − 1), ua,cl(t, j0 − 1)) if (xa,cl(t, j0 − 1), ua,cl(t, j0 − 1)) ∈ Da ⧵ Ca

CC.3) if t > 0 and nxa ≥ 1,
- (xb,cl(t, j0 − 1), ya,cl(t, j0 − 1)) ∈ Cb ∪Db

- xb,cl(t, j0) ∈ Gb(xb,cl(t, j0 − 1), ya,cl(t, j0 − 1)) if (xb,cl(t, j0 − 1), ya,cl(t, j0 − 1)) ∈ Db ⧵ Cb

CC.4) if t ∈ int domt(�cl) and nxa = 0, (xa,cl(t, j), ua,cl(t, j)) ∈ Ca for all j ∈ t(�cl).
CC.5) if t = T (�cl), then nxa = cardt(�cl).

△

Remark 4. The fact that ua performs all its jumps consecutively before j < j0 + nua is already contained in the fact that �cl is asolution to cl according to Condition 4) in Definition 4. The additional constraints contained in the CCs of Definition 8 are:
- After removing the jumps of ua, i.e., for j ≥ j0 + nua , xa does all its jumps consecutively and right away. This is because
it is going to play the role of input for b and must therefore satisfy the constraint of consecutiveness of input jumps
imposed by Condition 4) in Definition 4. This disappears if Condition 4) is replaced by Condition 4’) defined in Remark 1.

- For the first jump of ua, (xa, ua) must be in Ca ∪Da and xa must jump according to Ga if (xa, ua) is in Da ⧵ Ca; similarly,
at the first jump of xa, (xb, ub) must be in Cb ∪ Db and xb must jump according to Gb, if (xb, ub) is in Db ⧵ Cb. Those
constraints disappear if Ci are closed (because then the corresponding states are necessarily in Ci after flow) or if we
remove the constraint involving G0

e at j = j0 in Condition 4a) of Definition 4.
- At times t in the interior of the domain, (xa, ua) must be in Ca if neither xa nor ua jumps at all at time t (this enables to
ensure that when we remove the jumps due to xb in xa,cl, we obtain a hybrid arc xa that is in Ca in the interior of the flow
interval.). This constraint disappears if Ca is closed.

- Since xa is going to play the role of input forb, xb must stop whenever xa does according to Condition 2) in Definition
4. This disappears if we take Condition 2’) defined in Remark 1 instead.

In other words, the CCs would be automatically verified when Ca and Cb are closed if Conditions 2) and 4) of Definition 4
were replaced by Conditions 2’) and 4’) of Remark 1. Also, in the particular case where �cl jumps if and only if ua jumps, then
nua = cardt(�cl) at all jumps times, and CC.1,4,5) automatically hold, so that only CC.2,3) remain. This will be exploited for
feedback interconnections in Lemma 2. △

Bernard ET AL 17

Lemma 1 (Cascaded hybrid systems). Consider two hybrid systems a = (Ca, Fa, Da, Ga, ℎa) and b = (Cb, Fb, Db, Gb, ℎb)
with inputs ua and ub and outputs ya and yb respectively, and the corresponding closed-loop system cl defined in (18). Take
any solution �a = (xa, ura) toa with input ua and output ya, and any solution �b = (xb, urb) tob with input ub = ya and output
yb. Denote �b the j-reparametrization map from ub to urb. Then, considering the corresponding j-reparametrizations of xa and
ura defined by

xa,cl(t, j) = xa(t, �b(j)) ∀(t, j) ∈ dom xb ,
ua,cl(t, j) = ura(t, �b(j)) ∀(t, j) ∈ dom xb ,

�cl = ((xa,cl, xb), ua,cl) is solution tocl with input ua and output yb, and satisfies CC.1,2,3,4). It also satisfies CC.5) if T (�b) =
T (�a).
Conversely, if �cl = ((xa,cl, xb,cl), ua,cl) is a solution to the hybrid system cl with input ua satisfying the CCs, there exists a

solution (xa, ura) to a with input ua and output ya such that
- (xb, urb) with xb = xb,cl and urb = ya,cl = ℎa(xa,cl, ua,cl), is solution to b with input ub = ya

- xa,cl and ua,cl are full j-reparametrizations of xa and ura respectively.
Proof. See Appendix.
An important consequence of Lemma 1 is the following.

Corollary 1 (Observer design). Consider two cascaded hybrid systemsa = (Ca, Fa, Da, Ga, ℎa) andb = (Cb, Fb, Db, Gb, ℎb)
as in (5) and the corresponding closed-loop system cl defined in (18). b is an observer for a in the sense of Definition 5 if
and only if for any maximal solution �cl = (xa,cl, xb) to cl (without ua) satisfying the CCs (see Definition 8),
(a) either �cl is complete, or xa,cl explodes in finite time, or no flow nor jump is possible for xa,cl from its final value.
(b) lim |(ℎb(xb(t, j)), xa,cl(t, j))| = 0.

Proof. Direct consequence from Lemma 1 once having noticed that the first condition means that dom�cl is limited by xa,cl,
not by xb, thus giving item (a) of Definition 5; and that the second condition corresponds to (6) in item (b) of Definition 5.
This latter result is important because the analysis of cl is handier and allows the use of Lyapunov tools.

Example 6 (Jump triggering). Let’s go back to Example 4 and compare the solutions of the series interconnection a → b,
with a defined in (8) and b defined in (5)-(9), to those produced by the corresponding closed-loop (18). The flow condition
of cl is given by

(

ẋa
ẋb

)

∈
(

Fa(xa)
Fb(xb, ℎa(xa))

)

if xa ∈ Ca and ℎa(xa) ∉ Ya

and the possibilities at jumps are

(

x+a
x+b

)

∈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

Ga(xa)
Gb(xb, ℎa(xa))

)

if xa ∈ Da (⇐⇒ ℎa(xa) ∈ Ya)
(

Ga(xa)
xb

)

if ℎa(xa) ∈ Ya ⧵ int(Ya)
(

xa
Gb(xb, ℎa(xa))

)

if xa ∈)Ca and ℎa(xa) ∈ Ya

Indeed, xa ∈ Da ⇔ ℎa(xa) ∈ Ya and (xb, ya) ∈ cl(Cb) ⇔ ℎa(xa) ∈ cl(ℝdya ⧵ Ya), which gives the second jump condition.
Besides, the fact that no flow is possible from cl(Ca) ∩ Da implies that Da ∩ int(Ca) = ∅, which gives the third condition. It
is easy to see that as planned by the first part of Lemma 1, the solutions found in Example 4 are indeed solutions to the closed
loop system. However, notice that the closed-loop system also admits extra solutions: for instance if xa ∈)Ca and ℎa(xa) ∈ Ya,
xb can jump according to Gb any number of times without changing xa, or xa could jump with Ga and xb trivially reset if
ℎa(xa) ∈ Ya ⧵ int(Ya) even at the first jumps of xa. Let us show that those solutions are excluded by the CCs, thus confirming
the converse part of Lemma 1.

18 Bernard ET AL

• if at some point xa ∈)Ca and ℎa(xa) ∈ Ya, then xa ∈ Da ∩ cl(Ca), then no flow is possible by assumption. Therefore,
the solution jumps. Assume it jumps via the third jump map, namely xa is trivially reset and xb jumps via Gb. As long as
this jump map is used, xa is still in Da ∩ Ca and no flow is possible. So either xa is reset infinitely many times trivially
or the solution ends up using one of the other two jump maps where xa is reset to Ga(xa). The first possibility is excluded
by CC.5) since at the final time nxa < +∞. The second possibility is excluded by CC.1) since xa does not perform all its
jumps with Ga consecutively. Therefore, solutions using the third jump map are excluded, meaning that xa necessarily
jumps according to Ga at every jump. Therefore, for any solution (xa, xb) of cl satisfying the CCs, xa is solution to a
and xb inherits the domain of xa as we saw above.

• Now let us study the jumps of xb. Take a jump time of (xa, xb) and consider the first jump at this time. If t = 0 and
ya(0, 0) ∈ Ya⧵ int(Ya), xb can be trivially reset. Otherwise, if t > 0, the solution has just flowed so that it is in cl(Ccl)∩Dcl,
meaning that ℎa(xa) ∈)Ya, and therefore (xb, ya) ∈ Db ⧵ Cb. According to CC.3), xb necessarily jumps according to Gb.
At the following jumps, xb could be trivially reset if ℎa(xa) ∈ Ya ⧵ int(Ya): we recover condition (10) to ensure that xb
always jumps according to Gb.

This illustrates the fact thatcl introduces new solutions, but keeping only the solutions ofcl that satisfy the CCs, enables to
recover the solutions found in Example 4. In fact, in the particular context of jumps triggering where we want the jumps of b
to be synchronized with those of a, we should rather consider the simple closed-loop system:

(

ẋa
ẋb

)

∈
(

Fa(xa)
Fb(xb, ℎa(xa))

)

xa ∈ Ca
(

x+a
x+b

)

∈
(

Ga(xa)
Gb(xb, ℎa(xa))

)

xa ∈ Da

△

Example 7 (Jump detection). Let us now go back to Example 5 and compare the solutions of the series interconnection ̃a →
̃b, with ̃a defined in (14) and ̃b defined in (15)-(16), to those produced by the corresponding closed-loop (18). The flow
condition of cl is given by

⎛

⎜

⎜

⎜

⎜

⎝

ẋa
q̇
ẋb
̇̂q

⎞

⎟

⎟

⎟

⎟

⎠

∈

⎛

⎜

⎜

⎜

⎜

⎝

Fa(xa)
0

Fb(xb, ℎa(xa))
0

⎞

⎟

⎟

⎟

⎟

⎠

if xa ∈ Ca and q = q̂

and the possibilities at jumps are

⎛

⎜

⎜

⎜

⎜

⎝

x+a
q+

x+b
q̂+

⎞

⎟

⎟

⎟

⎟

⎠

∈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎝

Ga(xa)
1 − q

Gb(xb, ℎa(xa))
q

⎞

⎟

⎟

⎟

⎟

⎠

if xa ∈ Da and q̂ = 1 − q

⎛

⎜

⎜

⎜

⎜

⎝

Ga(xa)
1 − q
xb
q̂

⎞

⎟

⎟

⎟

⎟

⎠

if xa ∈ Da and q̂ = q

⎛

⎜

⎜

⎜

⎜

⎝

xa
q

Gb(xb, ℎa(xa))
q

⎞

⎟

⎟

⎟

⎟

⎠

if xa ∈ cl(Ca) ∪Da and q̂ = 1 − q

It is easy to check that the solutions found in Example 5 are solutions to the closed-loop. Regarding the CCs,
• CC.1) requires that at each jump time of the solution, xa performs all its jumps according to Ga right away and consecu-

tively. Therefore, only the first two jump maps can be used, except maybe at the last jump (observing that the third jump
map can be used only once)

• CC.2) is void because ̃a does not have an input

Bernard ET AL 19

• CC.3) is automatically satisfied because Cb is closed (see Remark 4)
• at any jump time t > 0, the first jump necessarily follows the second jump map since q̂ = q after flow. Therefore, xa jumps

according to Ga and CC.4) is void.
• CC.5) only requires that if at some point the component xa can no longer flow with Fa nor jump with Ga, the solution

stops.
It is easy to see that any solution to cl satisfying those CCs corresponds to a solution found in Example 5. Actually, the extra
solutions to cl are those which use alternatively the third and second jump maps instead of the first: this corresponds in fact
to writing the first jump map as the composition of the third and second, namely first xb is updated via Gb and then xa via Ga
instead of simultaneously. Therefore, those extra solutions have extra jumps but still model a jump detection. In fact, we could
also model the jump detection simply with the jump map

⎛

⎜

⎜

⎜

⎜

⎝

x+a
q+

x+b
q̂+

⎞

⎟

⎟

⎟

⎟

⎠

∈

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎝

Ga(xa)
1 − q
xb
q̂

⎞

⎟

⎟

⎟

⎟

⎠

if xa ∈ Da and q̂ = q

⎛

⎜

⎜

⎜

⎜

⎝

xa
q

Gb(xb, ℎa(xa))
q

⎞

⎟

⎟

⎟

⎟

⎠

if xa ∈ cl(Ca) ∪Da and q̂ = 1 − q

△

Example 8 (Cascade of timers). We finally revisit the numerical example of Section 3.2 made of the series interconnection of
two timers. In this case, the equivalent closed-loop system (18) has flow dynamics given by

(

ẋa
ẋb

)

=
(

1
1

)

if xa ∈ Ca and xb ∈ Cb

and the possibilities at jumps are

(

x+a
x+b

)

∈

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

0
0

)

if xa = ta and xb = tb
(

0
xb

)

if xa = ta and xb ∈ [0, tb]
(

xa
0

)

if xa ∈ [0, ta] and xb = tb

We observe that when xa and xb reach ta and tb respectively at the same time, they can either both be reset to 0 in a single jump or
one after the other in two jumps. The solution where xa is first reset to 0 while xb jumps trivially, was predicted by Definition 4 in
the case where Cb is closed, and was observed numerically on Figure 3b. On the other hand, the solution where xb is first reset to
0 (before xa) did not appear. This is because Condition 4) of Definition 4 requires to process all the jumps of the input (here xa)
right away. In fact, CC.1) is not satisfied for those solutions. It turns out however that those solutions can appear on simulations,
when, due to numerical errors, xb jumps slightly ahead of xa. In this sense, the closed-loop extended system (18) models a larger
class of solutions (as predicted by Lemma 1) and can therefore offer more robustness to a control/observer design. △

4.2 Feedback Interconnections
In the previous section, we have studied the series interconnection of a = (Ca, Fa, Da, Ga, ℎa) and b = (Cb, Fb, Db, Gb, ℎb)
with ub = ya. We now consider the case of feedback where also ua = yb as in Figure 5, for instance ifb is an observer-controller
for a. We have seen that by connecting b with a, b jumps whenever a does. Now that a is also connected with b,
we have that a jumps whenever b does, so that the solutions are defined on a common time domain containing the jumps

20 Bernard ET AL

a

b

ua ya

ubyb

FIGURE 5 Feedback interconnection of hybrid systems

of both a and b. In fact, in that case, the construction of solutions is not sequential but simultaneous so it is natural to build
them at the same time through the closed-loop a ⇄ b defined by

cl

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

ẋa
ẋb

)

∈ Fcl(xa, xb) (xa, xb) ∈ Ccl

(

x+a
x+b

)

∈ Gcl(xa, xb) (xa, xb) ∈ Dcl

(24)

with
Ccl =

{

(xa, xb) ∈ ℝdxa ×ℝdxb ∶ (xa, ℎb(xb)) ∈ Ca , (xb, ℎa(xa)) ∈ Cb
}

(25)

Dcl =
{

(xa, xb) ∈ ℝdxa ×ℝdxb ∶ (xa, ℎb(xb)) ∈ Da , (xb, ℎa(xa)) ∈ cl(Cb) ∪Db

}

∪
{

(xa, xb) ∈ ℝdxa ×ℝdxb ∶ (xa, ℎb(xb)) ∈ cl(Ca) ∪Da , (xb, ℎa(xa)) ∈ Db

}

(26)
and

Fcl(xa, xb) =
(

Fa(xa, ℎb(xb))
Fb(xb, ℎa(xa))

)

(27)

Gcl(xa, xb) =
(

Ga(xa, ℎb(xb))
Idb(xb)

)

∪
(

Ida(xa)
Gb(xb, ℎa(xa))

)

∪
(

Ga(xa, ℎb(xb))
Gb(xb, ℎa(xa))

)

(28)
with Idi and Gi defined in (23). Here again, allowing for a simultaneous jump of xa and xb in Gcl is crucial because unlike
in18,19, Ga and Gb depend on both xa and xb, so that one simultaneous jump cannot be decomposed into sequential jumps of xa
first and then xb, or vice-versa.
Lemma 2. Consider two hybrid systems a = (Ca, Fa, Da, Ga, ℎa) and b = (Cb, Fb, Db, Gb, ℎb) with ℎa ∶ ℝdxa → ℝdya and
ℎb ∶ ℝdxb → ℝdyb . Take a solution �cl = (xa, xb) to (24). If for all t ∈ (�cl) ∩ℝ>0, denoting j0 = mint(�cl),

- (xa(t, j0 − 1), yb(t, j0 − 1)) ∈ Ca ∪Da

- xa(t, j0) ∈ Ga(xa(t, j0 − 1), yb(t, j0 − 1)) if (xa(t, j0 − 1), yb(t, j0 − 1)) ∈ Da ⧵ Ca

- (xb(t, j0 − 1), ya(t, j0 − 1)) ∈ Cb ∪Db

- xb(t, j0) ∈ Gb(xb(t, j0 − 1), ya(t, j0 − 1)) if (xb(t, j0 − 1), ya(t, j0 − 1)) ∈ Db ⧵ Cb

then, �a = (xa, ℎb(xb)) is solution to a with input ℎb(xb) and �b = (xb, ℎa(xa)) is solution to b with input ℎa(xa).
This extra condition is added to ensure thatG0

e is used instead ofGe at the first jumps of the input in Condition 4 of Definition
4. It corresponds to CC.2,3) in Definition 8 and is always satisfied if Ca and Cb are closed. As planned in Remark 4, the other
CCs have disappeared because they are automatically satisfied thanks to the fact that �a, �b and �cl share the same domain.
Corollary 2. Consider two hybrid systemsa = (Ca, Fa, Da, Ga, ℎa) andb = (Cb, Fb, Db, Gb, ℎb) with ℎa ∶ ℝdxa → ℝdya and
ℎb ∶ ℝdxb → ℝdyb . Assume Ca and Cb are closed. Then, for any solution �cl = (xa, xb) to (24), �a = (xa, ℎb(xb)) is solution to
a with input ℎb(xb) and �b = (xb, ℎa(xa)) is solution to b with input ℎa(xa).

Bernard ET AL 21

5 CONCLUSION

We have shown how solutions to hybrid systems with inputs can be defined when the input is an hybrid arc whose domain does
not match that of the solution. A novel definition was proposed and discussed that relies on a reparametrization of the input
jumps, along with an explicit algorithm for the construction of solutions. Those notions were applied to the important cases of
series or feedback interconnections of two hybrid systems, for which the link to a closed-loop system was investigated.
This work is instrumental in defining and studying observers for hybrid systems. Ongoing work involve defining notions

of detectability that should be intrinsically necessary for the existence of an observer. Similarly to the context of incremental
stability19, detectability requires to compare hybrid trajectories that do not share the same domain. Therefore, in the same spirit as
this paper, such trajectories first need to be reparametrized onto a common domain. Applications to tracking and output-feedback
can of course also be studied following the concepts of this paper.
Future work also involve the extension of the code for the numerical implementation of Algorithm 1 to general hybrid systems

with hybrid inputs. The case where the input does not impact the dynamics of the system, as in the example of Section 3.2, was
a first step2, and a complete toolbox for the simulation of interconnected hybrid systems should now be developed.

ACKNOWLEDGMENT

The authors would like to thank Marcello Guarro for his help in the numerical implementation of the algorithm.

References

1. Jiang ZP, Teel AR, Praly L. Small-gain theorem for ISS systems and applications. Math. Control Signals Syst. 1994; 7:
95–120.

2. Teel AR.A nonlinear small gain theorem for the analysis of control systemswith saturation. IEEE Transactions on Automatic
Control 1996; 41(9): 1256-1270.

3. Jiang ZP, Wang Y. Input-to-state stability for discrete-time nonlinear systems. Automatica 2001; 37: 857-869.
4. Mancilla-Aguilar JL, Garcia RA. On converse Lyapunov theorems for ISS and iISS switched nonlinear systems. Systems &

Control Letters 2001; 42(1): 47–53.
5. Cai C, Teel AR. Characterizationsofinput-to-statestabilityforhybrid systems. Syst. & Cont. Letters 2009; 58: 47–53.
6. Sontag ED, Wang Y. Output-to-state stability and detectability of nonlinear systems. Systems & Control Letters 1997; 29:

279–290.
7. Cai C, Teel AR. Output-to-state stability for hybrid systems. Systems & Control Letters 2011; 60: 62–68.
8. Dashkovskiy SN, Efimov DV, Sontag ED. Input to state stability and allied system properties. Automation and Remote

Control 2011; 72(8): 1579–1614.
9. Sanfelice RG. Input-Output-to-State Stability Tools for Hybrid Systems and Their Interconnections. IEEE Transactions on

Automatic Control 2014; 59(5): 1360-1366.
10. Lygeros J, Johansson K, Simić S, Zhang J, Sastry SS. Dynamical Properties of Hybrid Automata. IEEE Transactions on

Automatic Control 2003; 48(1): 2-17.
11. Goebel R, Sanfelice RG, Teel AR.Hybrid Dynamical Systems: Modeling, Stability, and Robustness. New Jersey: Princeton

University Press . 2012

2Code available at https://github.com/HybridSystemsLab/AlgorithmHSwithInputs

22 Bernard ET AL

12. Sanfelice RG. Interconnections of Hybrid Systems: Some Challenges and Recent Results. Journal of Nonlinear Systems
and Applications 2011; 2(1-2): 111–121. doi: http://jnsaonline.watsci.org/abstract_pdf/2011v2/v2n1-pdf/13.pdf

13. Nesic D, Teel A. Input-output stability properties of networked control systems. IEEE Transactions on Automatic Control
2004; 49: 1650-1667.

14. Tanwani A, Shim H, Liberzon D. Observability for switched linear systems : characterization and observer design. IEEE
Transactions on Automatic Control 2013; 58(4): 891-904.

15. Medina EA, Lawrence DA. State Estimation for Linear Impulsive Systems. Annual American Control Conference 2009:
1183-1188.

16. Sanfelice RG, Biemond JJB, Wouw v. dN, Heemels WPMH. An Embedding Approach for the Design of State-Feedback
Tracking Controllers for References with Jumps. International Journal of Robust and Nonlinear Control 2013; 24(11):
1585–1608. doi: http://dx.doi.org/10.1002/rnc.2944

17. Bernard P, Sanfelice RG.Observers for hybrid dynamical systemswith linearmaps and known jump times. IEEEConference
on Decision and Control 2018: 3140-3145.

18. Biemond B, Wouw v. dN, Heemels M, Nijmeijer H. Tracking Control for Hybrid Systems With State-Triggered Jumps.
IEEE Transactions on Automatic Control 2013; 58(4): 876-890.

19. Biemond JB, Postoyan R, Heemels W, Wouw dNV. Incremental stability of hybrid dynamical systems. IEEE Transactions
on Automatic Control 2018; 111(108662).

20. Forni F, Teel AR, Zaccarian L. Follow the bouncing ball : global results on tracking and state estimation with impacts. IEEE
Transactions on Automatic Control 2013; 58(6): 1470-1485.

21. Goebel R, Sanfelice RG, Teel A. Hybrid Dynamical Systems : Modeling, Stability and Robustness. Princeton University
Press . 2012.

22. Bernard P, Sanfelice RG. An Algorithm to Generate Solutions to Hybrid Dynamical Systems with Inputs. 2019 American
Control Conference 2019: 2996-3001.

23. Altin B, Sanfelice RG. On robustness of pre-asymptotic stability to delayed jumps in hybrid systems. Annual American
Control Conference 2018.

24. Sanfelice RG, Copp DA, Nanez P. A Toolbox for Simulation of Hybrid Systems in Matlab/Simulink: Hybrid Equations
(HyEQ) Toolbox. In: ; 2013: 101–106

APPENDIX

We prove here Lemma 1.
Proof. To show that ((xa,cl, xb), ua,cl) is solution to cl with input ua, we are going to check every condition of Definition 4.

1. dom�cl = dom(xa,cl, xb) = dom xb = dom ua,cl

2. ua,cl is a j-reparametrization of ura (with reparametrization map �b) which is a j-reparametrization of ua according to the
Condition 2) of Definition 4 with reparametrization map �a. So ua,cl is a j-reparametrization of ua with reparametrization
map �u = �a◦�b. Besides, if ua,cl is a full-reparametrization of ua, ura necessarily is too. Denoting T ∶= T (ua) = T (�a) =
T (�cl), according to Condition 2) applied to �a, cardT (ua) = cardT (�a). Now, applying Condition 2) to �b, we
get cardT (�b) = cardT (ya) = T (�a). Since cardT (�b) = cardT (�cl) by definition, we deduce cardT (ua) =
cardT (�cl).

http://dx.doi.org/ http://jnsaonline.watsci.org/abstract_pdf/2011v2/v2n1-pdf/13.pdf
http://dx.doi.org/http://dx.doi.org/10.1002/rnc.2944

Bernard ET AL 23

3. From the Condition 1) of Definition 4, urb is a j-reparametrization of ub = ya and
urb(t, j) = ub(t, �b(j)) = ℎa(xa,cl(t, j), ua,cl(t, j)) ∀(t, j) ∈ dom�cl

so that
(xb(t, j), ℎa(xa,cl(t, j), ua,cl(t, j))) = (xb(t, j), urb(t, j)) = �b(t, j) ∀(t, j) ∈ dom�cl .

We have also
(xa,cl(t, j), ua,cl(t, j)) = (xa(t, �b(j)), ura(t, �b(j))) = �a(t, �b(j)) ∀(t, j) ∈ dom�cl .

So for all j, int j(�cl) ⊆ int �b(j)(�a), int j(�cl) = int j(�b), and, applying Condition 3) of Definition 4 to �a and �b,
we get that Condition 3) is verified for �cl.

4. Let t in (�cl) = (�b) and j0 = mint(�cl) = mint(�b). According to Condition 4) of Definition 4 applied to �b,
there exists nub such that for all j ∈ t(�b), �b(j) = �b(j − 1) + 1 if j < j0 + nub , and �b(j) = �b(j − 1) if j ≥ j0 + nub . Bydefinition of the j-reparametrization,

t(�a) = {�b(j) ∶ j ∈ t(�b)}
According to Condition 4) of Definition 4 applied to �a, there exists nua such that for all j ∈ t(�a), �a(j) = �a(j −1)+ 1
if j < �b(j0) + nua , and �a(j) = �a(j − 1) if j ≥ �b(j0) + nua . Therefore, the reparametrization map �u = �a◦�b from ua to
ua,cl verifies : for all j ∈ t(�cl), �u(j) = �u(j − 1) + 1 if j < j0 + nua , and �u(j) = �u(j − 1) if j ≥ j0 + nua . The rest ofCondition 4) follows in a tedious yet straightforward way from Condition 4) of Definition 4 applied to �a and �b.

5. The Condition 5) is clear from the definition of yb.
The prioritized input jumps conditions follows from the following remarks:

- CC.1) the fact that ua performs all its jumps consecutively before j < j0 + nua is contained in the fact that �cl is a solutionto cl according to item 4) in Definition 4. After removing the jumps of ua, i.e., for j ≥ j0 + nua , xa does all its jumps
consecutively (up to j0 + nub = j0 + nxa) according to item 4) in Definition 4, because it is an input for b.

- CC.2) at j = j0, if t > 0, and ua jumps (nua ≥ 1), (xa, ua) is necessarily in Ca ∪ Da, and xa jumps according to Ga if
(xa, ua) is in Da ⧵ Ca from the definition of G0

e in item 4) of Definition 4 applied to �a.
- CC.3) similarly, if t > 0, and xa jumps (nxa ≥ 1), the input to b jumps, thus giving a similar condition on xb at the first
jump.

- CC.4) if t is in the interior of domt �cl and if xa does not jump (nxa = 0), t is necessarily in the interior of a flow interval
of xa, and therefore, by item 3) of the definition 4, (xa, ua) ∈ Ca.

- CC.5) if T (�cl) = T (�a) and T ∶= T (�cl) ∈ (�cl), either the full domain of �a is browsed in �b (and thus in �cl) and
from Condition 2) applied to �b, cardT (�b) = cardT (ya) and with CC.1), nxa = cardT (�a) = cardT (ya), so that
cardT (�cl) = cardT (�b) = nxa ; or the full domain of �a is not browsed in �b, meaning that �b stops jumping before
�a at time T , and therefore also cardT (�cl) = nxa . In other words, the third item of CC.1) is empty.

Conversely, take a solution �cl = ((xa,cl, xb,cl), ua,cl) to system cl with input ua verifying CC.1,2,3,4). Denote �u the j-
reparametrization map between ua and ua,cl. We build hybrid arcs xa and ura in the following way :

- start with a = 0(�cl) × {0}, xa ≡ xa,cl|a
, ura ≡ ua,cl|a

, ja = 0, ju = 0, �a(0) = 0, �b(0) = 0.
- for j from 1 to J (�cl) do (we denote tj = tj(�r) to simplify the notations) :

• if �u(j) = �u(j − 1) + 1, then ju ← ju + 1.
• if either �u(j) = �u(j − 1) + 1, or xa,cl verifies its jump condition, then ja ← ja + 1.
• a ← a ∪ (j(�cl) × {ja})

• xa(t, ja) ← xa,cl(t, j) for all t in j(�cl)
• ura(t, ja) ← ua,cl(t, j) for all t in j(�cl)
• �a(ja) ← ju

24 Bernard ET AL

• �b(j) ← ja

Then, we take ya = ℎa(xa, ura). Let us prove that �a = (xa, ura) is solution to a with input ua and output ya.
1. dom xa = dom ura = a which is a hybrid time domain by construction (since �cl is an hybrid arc)
2. ura is a j-reparametrization of ua with reparametrization map �a. Indeed, if at a given iteration ja does not change, ju

does not change either, so that taking �a(ja) ← ju does not change anything ; a change of ju corresponding to an actual
jump of ua according to the definition of �u, �a stays constant as long as ua does not jump and is increased by one
when ua jumps. Besides, since ura is built from ua,cl, if ura is a full j-reparametrization of ua, ua,cl is too. By Condition 2)
applied to �a,cl, we deduce that cardT (�cl) = cardT (ua), and since the jumps in �a are extracted from those of �cl,
cardT (�a) ≤ cardT (�cl), so that necessarily to have a full reparametrization, cardT (�a) = cardT (ua).

3. for all ja in domj �a, there exist positive integers j1, j2,… , jk such that
ja(�a) = j1(�cl) ∪ … ∪ jk(�cl)

and j2,… , jk−1 correspond to jumps of �cl where (xa,cl, ua,cl) is constant, and in Ca if the corresponding jumps times are
in the interior of the interval according to CC.4). Therefore, xa and ura are absolutely continuous on ja(�a), for almost all
t in ja(�a), ẋa ∈ Fa(xa(t, ja), ura(t, ja)), and for all t in int ja(�a), (xa(t, ja), ura(t, ja)) ∈ Ca.

4. Take t ∈ (�a), denote j0 = mint(�a) and nu = card t(ua), we have for all j ∈ t(�a) :
(a) for j < j0+nu, �u(j) = �u(j−1)+1, and from the definition ofGcl, (xa(t, j−1), ura(t, j−1)) ∈ cl(Ca)∪Da and xa(t, j) ∈

Ge(xa(t, j−1), ura(t, j−1)). More precisely, from CC.2), if t > 0, (xa(t, j0−1), ura(t, j0−1)) ∈ Ca∪Da and xa(t, j0−1)
jumps according toGa if (xa(t, j0−1), ura(t, j0−1)) ∈ Da ⧵Ca. Necessarily, xa(t, j0) ∈ G0

e (xa(t, j0−1), ura(t, j0−1)).
(b) for j ≥ j0+nu, �u(j) = �u(j−1) and necessarily (xa,cl(tj , j−1), ua,cl(tj , j−1)) ∈ Da and xa,cl(t, j) ∈ Ga(xa,cl(tj , j−

1), ua,cl(tj , j − 1)) from the construction of �a.
5. ya = ℎa(xa, ura) by definition.

Now let us prove that (xb, urb) with xb = xb,cl and urb = ya,cl = ℎa(xa,cl, ua,cl) is solution to b with input ub = ya.
1. dom xb = dom urb by definition.
2. xa,cl and ua,cl are j-reparametrizations of xa and ura with reparametrization map �b by construction. Besides, since xa and
ura are built from xa,cl and ua,cl only, the corresponding j-reparametrizations are full. Therefore, domt �cl = domt xa =
domt ya and in particular, T (�cl) = T (ya). From CC.5), we get cardT (�cl)(�cl) = cardT (ya)(ya) by observing that by
construction cardT (ya)(ya) = nxa .

3. The flow condition holds by definition of Ccl and Fcl.
4. As for the jump condition, item 4) is given by the definition of Dcl and Gcl, by CC.1) which imposes that the jumps of
ub = ya happen successively for j < j0 + nxa , and by CC.3) at j = j0 when t > 0.

5. yb = ℎb(xb, urb) by definition.

Bernard ET AL 25

AUTHOR BIOGRAPHY

Pauline Bernard graduated in Applied Mathematics from MINES ParisTech in 2014. She joined the Sys-
tems and Control Center of MINES ParisTech and obtained her Ph.D. in Mathematics and Control from PSL
Research University in 2017. For her work on Observer design for nonlinear systems, she obtained the Euro-
pean PhD award on Control for Complex and Heterogenous Systems 2018. As a post-dotoral scholar, she then
visited the Hybrid Systems Lab at the University California Santa Cruz, USA, and the Center for Research
on Complex Automated Systems at the University of Bologna, Italy. In 2019, she became an assistant profes-
sor at the Systems and Control Center of MINES ParisTech, PSL Research University, France. Her research

interests include the observation and output regulation of nonlinear and hybrid systems.
Ricardo G. Sanfelice received the B.S. degree in Electronics Engineering from the Universidad de Mar del
Plata, Buenos Aires, Argentina, in 2001, and the M.S. and Ph.D. degrees in Electrical and Computer Engi-
neering from the University of California, Santa Barbara, CA, USA, in 2004 and 2007, respectively. In 2007
and 2008, he held postdoctoral positions at the Laboratory for Information and Decision Systems at the Mas-
sachusetts Institute of Technology and at the Centre Automatique et Systèmes at the École de Mines de Paris.
In 2009, he joined the faculty of the Department of Aerospace and Mechanical Engineering at the Univer-
sity of Arizona, Tucson, AZ, USA, where he was an Assistant Professor. In 2014, he joined the University of

California, Santa Cruz, CA, USA, where he is currently Professor in the Department of Electrical and Computer Engineering.
Prof. Sanfelice is the recipient of the 2013 SIAMControl and Systems Theory Prize, the National Science Foundation CAREER
award, the Air Force Young Investigator Research Award, and the 2010 IEEE Control Systems Magazine Outstanding Paper
Award. His research interests are in modeling, stability, robust control, observer design, and simulation of nonlinear and hybrid
systems with applications to power systems, aerospace, and biology.

	 Hybrid Dynamical Systems with Hybrid Inputs: Definition of Solutions and Applications to Interconnections
	Abstract
	Introduction
	Background
	Motivation
	Contributions

	Solutions to Hybrid Dynamical Systems with Inputs
	j-reparametrization of hybrid arcs
	Solutions to hybrid systems with hybrid inputs
	Examples

	Algorithm to Generate Solutions to Hybrid Systems with Hybrid Inputs
	Algorithm
	Numerical implementation of Algorithm 1
	Numerical implementation
	Numerical solutions for non synchronized timers
	Numerical solutions for synchronized timers

	Application to Interconnections of Hybrid Systems and Link to Closed-loop Systems
	Series Interconnections
	Feedback Interconnections

	Conclusion
	Acknowledgment
	References
	Appendix
	Author Biography

