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Abstract

This paper introduces operators, semantics, characterizations, and solution-independent conditions to guarantee tem-
poral logic specifications for hybrid dynamical systems. Hybrid dynamical systems are given in terms of differential
inclusions – capturing the continuous dynamics – and difference inclusions – capturing the discrete dynamics or events
– with constraints. State trajectories (or solutions) to such systems are parameterized by a hybrid notion of time. For
such broad class of solutions, the operators and semantics needed to reason about temporal logic are introduced.
Characterizations of temporal logic formulas in terms of dynamical properties of hybrid systems are presented – in
particular, forward invariance and finite time attractivity. These characterizations are exploited to formulate sufficient
conditions assuring the satisfaction of temporal logic formulas — when possible, these conditions do not involve so-
lution information. Combining the results for formulas with a single operator, ways to certify more complex formulas
are pointed out, in particular, via a decomposition using a finite state automaton. Academic examples illustrate the
results throughout the paper.
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1. Introduction

1.1. Background
High-level languages are useful in formulating specifications for dynamical systems that go beyond classical

asymptotic stability, where convergence to the desired point or set is typically certified to occur in the limit as time
approaches infinity, that is, over an infinitely long time horizon; see, e.g., [1, 2, 3]. Temporal logic employs operators
and logic to define formulas that the solutions or executions to the systems should satisfy after some finite time, or
during a particular amount of bounded time. In particular, temporal logic can be efficiently employed to determine
safety and liveness type properties, where the former type of property typically guarantees that the state remains in
a particular set, while the latter property that the state reaches a specific set in finite time. Such specifications are
given in terms of a language that employs logical and temporal connectives (or operators) applied to propositions and
their combinations. For certain classes of dynamical systems, verification of these properties can be performed using
model checking tools. For instance, the question of whether a safety-type specification is satisfied can be answered
by finding an execution that violates the specification in finite time.

Linear temporal logic (LTL), as introduced in [4], permits to formulate specifications that involve temporal prop-
erties of computer programs; see also [5]. Numerous contributions pertaining to modeling, analysis, design, and
verification of LTL specifications for dynamical systems have appeared in the literature in recent years. Without at-
tempting to present a thorough review of the very many articles in such topic, it should be noted that in [6], the authors
employ temporal logic for motion planning of mobile robots. In their setting, the robots are given by continuous-time
systems with second-order dynamics and the proposed temporal logic specifications model reachability, invariance,

IThis research has been partially supported by the National Science Foundation under Grant no. ECS-1710621 and Grant no. CNS-1544396, by
the Air Force Office of Scientific Research under Grant no. FA9550-16-1-0015, Grant no. FA9550-19-1-0053, and Grant no. FA9550-19-1-0169,
and by CITRIS and the Banatao Institute at the University of California.

Preprint submitted to Nonlinear Analysis: Hybrid Systems April 20, 2020



sequencing, and obstacle avoidance. Similar approaches but for dynamical systems given in discrete time, which
are more amenable to computational tools, such as model checking, have also been pursued in the literature. In [7],
the authors propose mixed integer linear programming and quadratic programming tools for the design of algorithms
required to satisfy LTL specifications for dynamical systems with both continuous-valued and discrete-valued states.
Such systems are called mixed logic dynamical systems and are expressive enough to model discontinuous and hy-
brid piecewise discrete-time linear systems. In [8], for discrete-time nonlinear systems with continuous-valued and
discrete-valued states, the authors formulate optimization problems related to trajectory generation with linear tempo-
ral logic specifications for which mixed integer linear programming tools are applied. In [9], the design of controllers
to satisfy alternating-time temporal logic (ATL*), which is an expressive branching-time logic that allows for quantifi-
cation over control strategies, is pursued using barrier and Lyapunov functions for a class of continuous-time systems.
More recently, using similar programming tools, in [10], tools to design reactive controllers for mixed logical dynami-
cal systems so as to satisfy high-level specifications given in the language of metric temporal logic are proposed, while
in [11] a hybrid system model and tools for the satisfaction of a linear temporal logic specification for the trajectories
of a physical plant modeled as a continuous-time system are presented. Promising extensions of these techniques to
the case of specifications that need to hold over pre-specified bounded horizons, called signal temporal logic, have
been recently pursued in several articles; see, e.g., [12], to just list a few.

1.2. Motivation

Tools for the systematic study of temporal logic properties in dynamical systems that have solutions (or executions)
changing continuously over intervals of ordinary continuous time and, at certain time instances, having jumps in their
continuous-value and discrete-valued states, such as the frameworks proposed in [13, 14, 15, 16, 17], are much less
developed. A hybrid systemH = (C, F,D,G) exhibiting such behavior can be described as follows [17]:

ẋ ∈ F(x) x ∈ C

x+ ∈ G(x) x ∈ D
(1)

where x ∈ X is the state and X ⊂ Rn is the state space. The map F : X⇒ X is a set-valued map and denotes the flow
map capturing the continuous dynamics on the flow set C, and G : X ⇒ X is a set-valued map and defines the jump
map capturing the discrete dynamics on the jump set D. Throughout the paper, we assume C ⊂ dom F, D ⊂ dom G,
and C ∪ D ∪G(D) ⊂ X, where C denotes its closure.

A canonical academic example of a hybrid system is the well-known bouncing ball system, which has infinitely
many events over a bounded ordinary time horizon (i.e., Zeno) at time instances that are not pre-specified and actually
depend on the initial condition of the system; see, e.g., [18]. Another canonical example is the dynamical system
resulting from controlling the temperature of a room with a logic controller, in which the jumps of the logic variables
in the controller occur when the temperature hits certain thresholds. In such hybrid dynamical systems, the study
of temporal logic using discretization-based approaches may not be fitting as, in principle, the time at which a jump
occurs is not known a priori and these times are likely to occur aperiodically. Though results enabling the reasoning of
continuously changing systems and signals using discrete-time methods are available in the literature (see, e.g., [19]),
the sampling effect may prevent one from being able to guarantee that the properties certified for the discretization
extend to the actual continuous time process.

1.3. Contributions

In this paper, we present tools that permit guaranteeing high-level specifications for solutions to hybrid dynamical
systems without requiring the computation of the solutions themselves or discretization of the dynamics, but rather,
guaranteeing properties of the data defining the system and the existence of Lyapunov-like functions.

We consider a broad class of hybrid dynamical systems, in which the state vector may include physical and
continuous-valued variables, logic and discrete-valued variables, timers, memory states, and others; solutions may
not be unique and may not necessarily exist for arbitrary long hybrid time (namely, solutions may not be complete);
and solutions may exhibit Zeno behavior. In particular, as in [17], a hybrid dynamical system is defined by a flow
map, which is given by a set-valued map governing the continuous change of the state variables, a flow set, which is
a subset of the state space on which solutions are allowed to evolve continuously, a jump map, which is also given by
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a set-valued map governing the discrete change of the variables, and a jump set, which defines the set of points where
jumps can occur. Along with the state space, these four objects define the data of a hybrid dynamical system.

For this broad class of hybrid dynamical systems, characterizations of formulas involving one temporal operator
and atomic propositions are presented in terms of dynamical properties of hybrid systems, in particular, forward pre-
invariance and finite time attractivity. These notions are used to formulate sufficient conditions for the satisfaction
of basic temporal logic formulas. More precisely, we show that the specifications using the always operator can be
guaranteed to hold under mild conditions on the data of the hybrid system when a forward invariance property of
an appropriately defined set holds. To arrive to such conditions, we present sufficient conditions for forward (pre-
)invariance of closed sets in hybrid dynamical systems that extend those in [20]. To derive conditions that certify
that formulas using the eventual operator hold, we generate results to certify finite time attractivity of sets in hybrid
dynamical systems, for which we exploit and extend the ideas used to certify finite time stability of hybrid dynamical
systems in [21]. Furthermore, our (mostly solution-independent) approach allows us to provide an estimate of the
(hybrid) time it takes for a temporal specification to be satisfied, with the estimate only depending on a Lyapunov
function and the initial condition of the solution being considered. Moreover, we introduce sufficient conditions for
certain formulas that combine more than one temporal operator, which combine our conditions for the individual
temporal operators.

While many of our results do not require computing solutions to the hybrid dynamical system, which is a key
advantage when compared to methods for continuous-time, discrete-time, and mixed logic dynamical systems cited
above and the method for hybrid traces in [22], the price to pay when using the results in this paper is finding
a certificate for finite time attractivity, which is in terms of a Lyapunov function. It should be noted that though
our conditions are weaker than those in [9], finding such functions might be challenging at times. However, the
same complexity is present in Lyapunov methods for certifying asymptotic stability of a point or a set [23], or for
employing continuously differentiable barrier certificates and Lyapunov functions to certify temporal logic constraints
for continuous-time systems. On the other hand, it should be noted that the framework for hybrid dynamical systems
considered here is such that, under mild conditions, in addition to enabling a converse theorem for asymptotic stability,
has robustness properties to small perturbations, which may permit extending the results in this paper to the case under
perturbations; see [17, Chapters 6 and 7].

This paper significantly extends our previous work in [24] which contains no proofs, fewer results, and much
less details. This paper provides characterizations of temporal operators for hybrid systems, some of which are
equivalent, and some others shed light on necessity. Moreover, sufficient conditions for temporal logic formulas that
have more than one operator are presented in more detail than in [24]. In particular, we show how to derive conditions
for formulas that have more than one operator by combining the conditions for formulas that have one operator.
Additionally, a discussion on the decomposition of temporal logic formulas using finite state automata is included.
Furthermore, detailed proofs are included and more examples are provided.

The remainder of this paper is organized as follows. After preliminaries in Section 2, Section 3 introduces LTL for
hybrid systems. The characterizations of temporal operators using dynamical properties are presented in Section 4.
The sufficient conditions to guarantee the satisfaction of LTL formulas are presented in Section 5 (for a single operator)
and in Section 6 (for more than one operator).

2. Preliminaries

In this paper, properties of a hybrid system H as in (1) are specified with LTL formulas, and conditions to guar-
antee the satisfaction of LTL formulas for H are presented. A solution φ to H is parameterized by (t, j) ∈ R≥0 × N,
where t is the ordinary time variable, j is the discrete jump variable, R≥0 := [0,∞), and N := {0, 1, 2, . . .}. The domain
dom φ ⊂ R≥0×N of φ is a hybrid time domain if for every (T, J) ∈ dom φ, the set dom φ∩ ([0,T ]×{0, 1, . . . , J}) can be
written as the union of sets

⋃J
j=0(I j × { j}), where I j := [t j, t j+1] for a time sequence 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The

t j’s with j > 0 define the time instants when the state of the hybrid system jumps and j counts the number of jumps.
A solution is given by a hybrid arc. A function φ : E → Rn is a hybrid arc if E is a hybrid time domain and if for each
j ∈ N, the function t 7→ φ(t, j) is locally absolutely continuous on the interval I j = {t : (t, j) ∈ E}. A hybrid arc φ is a
solution toH = (C, F,D,G) if φ(0, 0) ∈ C∪D; for all j ∈ N such that I j := {t : (t, j) ∈ dom φ} has nonempty interior1,

1The interior of I j is denoted as intI j.
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φ(t, j) ∈ C for all t ∈ intI j and φ̇(t, j) ∈ F(φ(t, j)) for almost all t ∈ I j; for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ,
φ(t, j) ∈ D and φ(t, j + 1) ∈ G(φ(t, j)). A solution toH is called maximal if it cannot be further extended.

For convenience, we define the range of a solution φ to a hybrid systemH as rge φ = {φ(t, j) : (t, j) ∈ dom φ}. We
also define the set of maximal solutions to H from the set K as SH (K) := {φ : φ is a maximal solution to H with
φ(0, 0) ∈ K}. See [17] for more details about hybrid dynamical systems.

3. Linear Temporal Logic for Hybrid Dynamical Systems

Linear Temporal Logic (LTL) provides a framework to specify desired properties such as safety, i.e., “something
bad never happens”, and liveness, i.e., “something good eventually happens”. In this section, for a given hybrid system
H , we define operators and specify properties ofH with LTL formulas [25]. We first introduce atomic propositions.

Definition 3.1 (Atomic Proposition). An atomic proposition p is a statement on the system state x that, for each x, p
is either True (1 or >) or False (0 or ⊥).

A proposition p will be treated as a single-valued function of x, that is, it will be a function x 7→ p(x). The set of
all possible atomic propositions will be denoted by P.

Logical and temporal operators are defined as follows.

Definition 3.2 (Logic Operators).

• ¬ is the negation operator

• ∨ is the disjunction operator

• ∧ is the conjunction operator

• ⇒ is the implication operator

• ⇔ is the equivalence operator

Definition 3.3 (Temporal Operators).

• # is the next operator

• 3 is the eventually operator

• 2 is the always operator

• Us is the strong until operator

• Uw is the weak until operator

Given a hybrid systemH , the semantics of LTL are defined as follows. For simplicity, we consider the case of no
inputs and state-dependent atomic propositions. When a proposition p is True at (t, j) ∈ dom φ, i.e., p(φ(t, j)) = 1, it
is denoted by

φ(t, j) 
 p, (2)

whereas if p is False at (t, j) ∈ dom φ, it is written as

φ(t, j) 1 p. (3)

An LTL formula is a sentence that consists of atomic propositions and operators of LTL. An LTL formula f being
satisfied by a solution (t, j) 7→ φ (t, j) at some time (t, j) is denoted by

(φ, (t, j)) � f , (4)
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while f not satisfied by a solution (t, j) 7→ φ(t, j) at some time (t, j) is denoted by2

(φ, (t, j)) 2 f . (5)

Let p, q ∈ P be atomic propositions. The semantics of LTL are defined as follows: given a solution φ to H and
(t, j) ∈ dom φ

(φ, (t, j)) � p ⇔ φ(t, j) 
 p (6a)
(φ, (t, j)) � ¬p ⇔ (φ, (t, j)) 2 p (6b)
(φ, (t, j)) � p ∨ q ⇔ (φ, (t, j)) � p or (φ, (t, j)) � q (6c)
(φ, (t, j)) � #p ⇔ (t, j + 1) ∈ dom φ and (φ, (t, j + 1)) � p (6d)
(φ, (t, j)) � pUsq ⇔ ∃(t′, j′) ∈ dom φ, t′ + j′ ≥ t + j s.t. (φ, (t′, j′)) � q, (6e)

and ∀ (t′′, j′′) ∈ dom φ s.t. t + j ≤ t′′ + j′′ < t′ + j′, (φ, (t′′, j′′)) � p

(φ, (t, j)) � pUwq ⇔ (φ, (t′, j′)) � p ∀ (t′, j′) ∈ dom φ s.t. t′ + j′ ≥ t + j (6f)
or (φ, (t, j)) � pUsq

(φ, (t, j)) � p ∧ q ⇔ (φ, (t, j)) � p and (φ, (t, j)) � q (6g)
(φ, (t, j)) � 2p ⇔ (φ, (t′, j′)) � p ∀ t′ + j′ ≥ t + j, (t′, j′) ∈ dom φ (6h)
(φ, (t, j)) � 3p ⇔ ∃(t′, j′) ∈ dom φ, t′ + j′ ≥ t + j s.t. (φ, (t′, j′)) � p. (6i)

The same semantics of LTL are used for formulas. For example, with a given formula f , # f is satisfied by φ at
(t, j) ∈ dom φ when (t, j + 1) ∈ dom φ and (φ, (t, j + 1)) satisfies f .

4. Characterizations of Temporal Operators using Dynamical Properties

In this section, we present basic necessary and sufficient conditions for the satisfaction of LTL formulas involving
one temporal operator such as always (2), eventually (3), next (#), and until (U). We first build a set K on which the
atomic proposition is satisfied. Then, the satisfaction of the formula is assured by guaranteeing particular properties
of the solutions to the hybrid system relative to the set K.

4.1. Characterization of 2 via forward invariance

According to the definition of the 2 operator, given an atomic proposition p, a solution (t, j) 7→ φ(t, j) to a hybrid
systemH = (C, F,D,G) on X satisfies the formula

f = 2p (7)

at (t, j) when we have that φ(t′, j′) satisfies p for all t′ + j′ ≥ t + j such that (t′, j′) ∈ dom φ. The set of points in X
satisfying an atomic proposition p is given by

K := {x ∈ X : p(x) = 1}, (8)

which, throughout the paper, is assumed to be nonempty.
To characterize that every solution φ to H satisfies f in (7) at each (t, j) ∈ dom φ, each solution starting in K

needs to stay in K for all time. For this purpose, we recall the definition of forward pre-invariance and then present
necessary and sufficient conditions guaranteeing f in (7).

Definition 4.1 (Forward Pre-invariance). Consider a hybrid system H on X. A set K ⊂ X is said to be forward
pre-invariant forH if every solution φ ∈ SH (K) satisfies rge φ ⊂ K.

2Note that to be compatible with the literature, instead of 
, we use � for a formula.

5



Furthermore, we are also interested in f in (7) being satisfied at some (t, j) ∈ dom φ (not necessarily at (t, j) =

(0, 0)). For this purpose, we define the following notion.

Definition 4.2 (Eventually Forward Pre-invariance). Consider a hybrid system H on X. A set K ⊂ X is said to
be eventually forward pre-invariant for H if3 for every solution φ ∈ SH (K), there exists (t, j) ∈ dom φ such that
φ(t′, j′) ∈ K for all (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j.

Proposition 4.3. Given an atomic proposition p, the formula f = 2p is satisfied for every maximal solution φ to a
hybrid systemH at (t, j) = (0, 0) with φ(0, 0) 
 p if and only if the set K in (8) is forward pre-invariant forH .

Proof. (⇒) Since 2p is satisfied for all solutions φ at (t, j) = (0, 0) and φ(0, 0) satisfies p, we have that every solution
φ toH satisfies that φ(t, j) ∈ K = {x ∈ X : p(x) = 1} for all (t, j) ∈ dom φ. This implies that K is forward pre-invariant
via the definition of forward pre-invariance of the set K in Definition 4.1; namely, rge φ ⊂ K.

(⇐) Since the set K is forward pre-invariant, each solution φ that starts in K stays in K. That is, φ(0, 0) satisfies p
and each solution φ at (t, j) in the domain of each solution satisfies p. This implies that f = 2p is satisfied for every
solution φ toH at (t, j) = (0, 0) with φ(0, 0) 
 p.

Proposition 4.4. Given an atomic proposition p, the formula f = 2p is satisfied for every maximal solution φ to
a hybrid system H at some (t, j) ∈ dom φ with φ(0, 0) 
 p if and only if the set K in (8) is eventually forward
pre-invariant forH .

Proof. (⇒) By the definition of 2 and the definition of solutions to H , since every solution φ to H starting from
K satisfies 2p at some (t, j) ∈ dom φ, φ(t′, j′) satisfies p for all (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j; and thus,
φ(t′, j′) ∈ K for all (t′, j′) such that t′+ j′ ≥ t+ j. This implies that K is forward pre-invariant after (t, j) ∈ dom φ. Then,
we conclude that K is eventually forward pre-invariant for H via the definition of eventually forward pre-invariance
of the set K in Definition 4.2.

(⇐) Since the set K is eventually forward pre-invariant, for each solution φ that starts from K, there exists (t, j) ∈
dom φ such that φ(t′, j′) ∈ K for all (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j. This implies that φ(0, 0) satisfies p and
such solution φ satisfies p at each (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j. Therefore, we conclude that f = 2p is
satisfied for every solution φ toH at (t, j) ∈ dom φ with φ(0, 0) 
 p.

Note that when K in (8) is not forward pre-invariant for H , 2p is not satisfied for all solutions φ to H at every
(t, j) ∈ dom φ with φ(0, 0) 
 p. The following example shows the case when 2p is not satisfied for a solution φ toH
at every (t, j) ∈ dom φ with φ(0, 0) 
 p.

Example 4.5. Let an atomic proposition p given by

p(x) = 1 if x ∈ [0, 1]
p(x) = 0 otherwise. (9)

Consider a hybrid systemH = (C, F,D,G) on X := R given by

F(x) := 0 ∀x ∈ C :=
[
0, 1

2
]

G(x) :=
{

2 if x = 1
0 if x = 2 ∀x ∈ D := {1} ∪ {2}.

(10)

Now, pick φ(0, 0) = 1 so that φ(0, 0) satisfies p. A solution φ from φ(0, 0) does not satisfy p after the first jump;
i.e., φ(0, 1) 1 p; however, φ(0, 1) is still in the jump set D so that it jumps to 0, and it satisfies p after the second
jump; i.e., φ(0, 2) 
 p. Furthermore, the solution φ flows after the second jump so that φ(t, 2) satisfies p for every
t ≥ 0. On the other hand, there exists another solution that starts from 1 and stays flowing there for all furture time;
hence, it satisfies f . This example shows that 2p is not satisfied for all solutions φ toH at every (t, j) ∈ dom φ when
K = {x ∈ X : p(x) = 1} is not forward pre-invariant.

3A notion that does not insist on the solutions starting from K can also be formulated, but it would be a departure from a forward invariance
notion since such a notion would hold for solutions that do not start from K.

6



4.2. Characterization of 3 via finite time attractivity

A solution (t, j) 7→ φ(t, j) to a hybrid systemH satisfies the formula

f = 3p (11)

at (t, j) ∈ dom φ when there exists (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j, and φ(t′, j′) satisfies p. The same set K in
(8) is used in this section.

To guarantee that every solution φ toH satisfies f in (11) at each (t, j) ∈ dom φ, the distance of each solution to K
should become zero at some finite (t, j) ∈ dom φ so that φ reaches K. Related to this property, we recall the definition
of finite time attractivity (FTA) for hybrid systems and then present necessary and sufficient conditions guaranteeing
the formula f in (11). In this definition, the amount of hybrid time required for a solution φ to converge to the set
K is captured by a settling-time function T whose argument is the solution φ and its output is a positive number
determining the time to converge to K. More precisely, given φ, T (φ) := inf{t + j : φ(t, j) ∈ K} is the time to reach K.
Below, given x ∈ Rn and a nonempty set K ⊂ Rn, |x|K := infy∈K |x − y|. We use↗ to denote the limit from below.

Definition 4.6 (Finite Time Attractivity). A closed set K is said to be finite time attractive (FTA) for H with respect
to O ⊂ C ∪ D if for every solution φ ∈ SH (O), sup(t, j)∈dom φ t + j ≥ T (φ), and

lim
(t, j)∈dom φ : t+ j↗T (φ)

|φ(t, j)|K = 0. (12)

Furthermore, the set K is said to be finite time attractive (FTA) forH if so it is with respect to C ∪ D.

Proposition 4.7. Given an atomic proposition p, the formula f = 3p is satisfied for every solution φ to a hybrid
systemH at (t, j) = (0, 0) if and only if the closed set K in (8) is FTA forH .

Proof. (⇒) Since 3p is satisfied for every solution φ to a hybrid systemH at (t, j) = (0, 0), there exists (t′, j′) ∈ dom φ
such that t′ + j′ ≥ 0 and φ(t′, j′) ∈ K = {x ∈ X : p(x) = 1}. In fact, φ(t′, j′) ∈ K implies |φ(t′, j′)|K = 0 and
t′ + j′ = T (φ); that is,

lim
(t, j)∈dom φ : t+ j↗T (φ)

|φ(t, j)|K = 0

with T (φ) = t′ + j′. This implies that K is FTA via the definition of FTA of the set K in Definition 4.6.
(⇐) Since the closed set K is FTA forH , each solution φ toH satisfies

lim
(t, j)∈dom φ : t+ j↗T (φ)

|φ(t, j)|K = 0

and sup(t, j)∈dom φ t + j ≥ T (φ), where T (φ) = t′ + j′ for some (t′, j′) ∈ dom φ. Indeed, by the definition of the set K, its
closedness, and the (local) absolute continuity of φ (along with the continuity of the distance function to the set K),
there exists (t′, j′) ∈ dom φ such that φ(t′, j′) satisfies p. This implies that f = 3p is satisfied for every solution φ to a
hybrid systemH at (t, j) = (0, 0).

4.3. Characterization of # via properties of the data ofH

A solution (t, j) 7→ φ(t, j) to a hybrid systemH = (C, F,D,G) satisfies the formula

f = #p (13)

when we have that φ(t, j + 1) satisfies p for each (t, j) ∈ dom φ. Here, the same set K in (8) is used. To guarantee that
every solution φ to H satisfies f in (13) at each (t, j) ∈ dom φ, each solution needs to jump to the set K at the next
hybrid time; i.e., φ(t, j + 1) ∈ K.

Proposition 4.8. Given an atomic proposition p, let the set K be as in (8). The formula f = #p is satisfied for all
maximal solutions φ toH at each (t, j) ∈ dom φ if and only if all of the following properties hold simultaneously:

a) each nontrivial solution φ toH is such that φ(0, 0) ∈ D; and
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b) no flows ofH are possible from any x ∈ C; and

c) G(D) ⊂ K ∩ D; and

d) C ⊂ D.

Proof. (⇒) Suppose that #p is satisfied for all solutions to H . We need to show that a), b), c), and d) hold. By
definition of # and definition of solutions toH , since every solution φ toH satisfies #p, φ(0, 0) ∈ D and φ(0, 1) ∈ K
for every φ(0, 0) ∈ C ∪ D. In fact, if C \ D were not to be empty, then there would exist a (trivial) solution φ with
φ(0, 0) < D, so #p would not hold since (0, 1) < dom φ. Hence, C ⊂ D and φ(0, 0) ∈ D hold; and thus, items a) and
d) hold. Next, we show that item b) holds. Proceeding by contradiction, if flow is possible from a point x ∈ C, then
there exists a solution φ to H with φ(0, 0) = x and there exists ε > 0 such that [0, ε) × {0} ⊂ dom φ. Since x ∈ D
due to C ⊂ D, φ(0, 0) ∈ D. However, (0, 1) < dom φ since [0, ε) × {0} ⊂ dom φ. This is a contradiction, and thus,
item b) holds. Finally, we show that item c) holds. By definition of #, since every solution φ to H satisfies #p,
then (t, j + 1) ∈ dom φ and φ(t, j + 1) ∈ K for each (t, j) ∈ dom φ. By definition of solutions, it implies that for each
(t, j) ∈ dom φ, φ(t, j) = ξ ∈ D and G(ξ) ⊂ K. Hence, item c) holds.

(⇐) Note that φ(0, 0) ∈ D and (0, 1) ∈ dom φ by items a) and b). Then, by item c), G(φ(0, 0)) ⊂ K since
φ(0, 0) ∈ D. Furthermore, for each (t, j) ∈ dom φ such that φ(t, j) ∈ C ∪ D, no flows are possible from φ(t, j) by items
b) and d). Thus, (t, j + 1) ∈ dom φ and φ(t, j + 1) ∈ K by item c). Therefore, f = #p is satisfied for every solution φ
toH .

4.4. Characterization ofU via properties of the data ofH
According to the definition of the Us operator, a solution (t, j) 7→ φ(t, j) to a hybrid system H = (C, F,D,G)

satisfies the formula
f = pUs q (14)

at (t, j) ∈ dom φ when there exists (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j and φ(t′, j′) satisfies q; and φ(t′′, j′′) satisfies
p for all (t′′, j′′) ∈ dom φ such that t + j ≤ t′′ + j′′ < t′ + j′. The set of points in X satisfying an atomic proposition p
or an atomic proposition q are respectively given by

P = {x ∈ X : p(x) = 1} and Q = {x ∈ X : q(x) = 1}. (15)

To guarantee that a solution φ to H satisfies f in (14) at (t, j) = (0, 0), the solution needs to start and stay in the
set P at least until convergence to the set Q happens; or the solution needs to start from the set Q. For this purpose,
we present necessary and sufficient conditions, related to the 3 operator in Section 4.2, for convergence to the set Q.

Proposition 4.9. Given atomic propositions p and q, let the sets P and Q be given in (15). Suppose the set Q is
nonempty. The formula f = pUsq is satisfied for all solutions φ toH at (t, j) = (0, 0) with φ(0, 0) 
 p or φ(0, 0) 
 q
if and only if every solution φ ∈ SH (P ∪ Q) satisfies that there exists (t, j) ∈ dom φ for which all of the following
properties hold simultaneously:

a) φ(t, j) ∈ Q; and

b) φ(t′, j′) ∈ P for all (t′, j′) ∈ dom φ such that t′ + j′ < t + j.

Proof. (⇒) Suppose pUsq is satisfied for all solutions φ toH at (t, j) = (0, 0) with φ(0, 0) 
 p or φ(0, 0) 
 q. Then,
we need to show that every solution φ ∈ SH (x) with x ∈ P∪Q satisfies that there exists (t, j) ∈ dom φ satisfying items
a) and b). Since φ(0, 0) satisfies p or q, φ(0, 0) ∈ P ∪ Q. By the definition ofUs and the definition of solutions toH ,
since pUsq is satisfied for every solution φ toH at (t, j) = (0, 0), φ(0, 0) ∈ C ∪ D and there exists (t, j) ∈ dom φ such
that

1) φ(t, j) satisfies q; and

2) φ(t′, j′) satisfies p for all (t′, j′) ∈ dom φ such that t′ + j′ < t + j.

Since there exists (t, j) ∈ dom φ such that φ(t, j) ∈ Q by item 1), item a) holds. Additionally, by item 2), for all
(t′, j′) ∈ dom φ such that t′ + j′ < t + j, φ(t′, j′) ∈ P; and thus, item b) holds.

(⇐) The proof is straightforward using the definition of theUs operator.
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5. Sufficient Conditions for Temporal Formulas with One Operator using Hybrid Systems Tools

5.1. Sufficient Conditions for 2p

In this section, we present sufficient conditions guaranteeing f in (7). Due to the equivalence we provide in Sec-
tion 4.1, any sufficient condition that guarantees the needed invariance property of the set guarantees the satisfaction
of the formula 2p. For example, in [20, 26], such invariance property for hybrid systems is studied as follows:

• Forward pre-invariance of a set in [20, Theorem 4.3];

• Forward pre-invariance of a subset of the sublevel sets of a Lyapunov function in [20, Theorem 5.1];

• Forward pre-invariance of a set defined by a barrier function in [26, Theorem 1].

By exploiting the results and the ideas in [26], the conditions given below provide sufficient conditions to verify that
H is such that every solution φ to H with φ(0, 0) 
 p satisfies f = 2p. Below, the concept of tangent cone of a set
is used; see [17, Definition 5.12]. The tangent cone at a point x ∈ X of a set K ⊂ X, denoted TK(x), is the set of all
vectors w ∈ X for which there exists xi ∈ K, τi > 0 with xi → x and τi ↘ 0 such that w = xi−x

τi
. For a set K ⊂ X,

U(K) denotes any open neighborhood of K and ∂K denotes its boundary. Furthermore, the notion of barrier function
candidate with respect to K forH is given as follows [26]:

Definition 5.1 (Barrier Function Candidate). Consider a hybrid systemH = (C, F,D,G) on X. A function B : X → R
is said to be a barrier function candidate with respect to K forH if{

B(x) ≤ 0 ∀x ∈ K
B(x) > 0 ∀x ∈ (C ∪ D ∪G(D)) \ K. (16)

Assumption 5.2. The flow map F is outer semicontinuous, nonempty, and locally bounded with convex images on C.
Furthermore, the jump map G is nonempty on D.

Theorem 5.3. Consider a hybrid systemH = (C, F,D,G) on X satisfying Assumption 5.2. Given an atomic proposi-
tion p, suppose the state space X and the atomic proposition p are such that K in (8) is closed and K ⊂ C ∪ D. Then,
the formula f = 2p is satisfied for all solutions φ to H (and for all (t, j) ∈ dom φ) with φ(0, 0) 
 p if there exists a
barrier function candidate B with respect to K for H as in (16) that is continuously differentiable and the following
properties hold:

1) 〈∇B(x), η〉 ≤ 0 for all x ∈ C ∩ (U(∂K) \ K) and all η ∈ F(x) ∩ TC(x).

2) B(η) ≤ 0 for all x ∈ D ∩ K and all η ∈ G(x).

3) G(D ∩ K) ⊂ C ∪ D.

Proof. Under conditions 1)–3), we conclude that the set K in (8) is forward pre-invariant for H using [26, Theorem
1]. Then, by Proposition 4.3, the formula f = 2p is satisfied for each solution φ toH at (t, j) = (0, 0) with φ(0, 0) 
 p
since the set K is forward pre-invariant for H . Moreover, this property at (t, j) = (0, 0) implies φ(t, j) 
 p at each
(t, j) ∈ dom φ; and thus, the formula f = 2p is satisfied for each solution φ to H and at each (t, j) ∈ dom φ with
φ(0, 0) 
 p.

Remark 5.4. Note that 2p is satisfied for all solutions φ to H if φ(0, 0) 
 p and φ(t, j) 
 p for all future hybrid
time (t, j) ∈ dom φ. Under the conditions in Theorem 5.3, solutions with φ(0, 0) 2 p may satisfy p after some time if φ
reaches the set K in (8) in finite time. Convergence to such set in finite hybrid time is presented in the next section.

Next, the bouncing ball example in [17, Example 1.1] illustrates Theorem 5.3.
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Example 5.5. Consider a hybrid system H = (C, F,D,G) modeling a ball bouncing vertically on the ground, with
state x = (x1, x2) ∈ X := R2 and the data given by

F(x) :=
[

x2
−γ

]
∀x ∈ C := {x ∈ X : x1 ≥ 0},

G(x) :=
[

0
−λx2

]
∀x ∈ D := {x ∈ X : x1 = 0, x2 ≤ 0},

(17)

where x1 denotes the height above the surface and x2 is the vertical velocity. The parameter γ > 0 is the gravity
coefficient and λ ∈ [0, 1] is the restitution coefficient. Every maximal solution to this system is Zeno. Define an atomic
proposition p as follows: for every x ∈ X, p(x) = 1 when x ∈ C ∪ D and 2γx1 + (x2 − 1)(x2 + 1) ≤ 0; p(x) = 0
otherwise. Let K be given as in (8). Then, we observe that the closed set K is the sublevel set where the total energy
of the ball is less than or equal to 1/2. The function B(x) := 2γx1 + (x2 − 1)(x2 + 1) is a barrier function candidate
since B(x) ≤ 0 for all x ∈ K and B(x) > 0 otherwise. Then, we have 〈∇B(x), F(x)〉 = 0 for each x ∈ C; and thus,
condition 1) in Theorem 5.3 is satisfied. Moreover, we have B(G(x)) = 2γx1 + λ2x2

2 − 1 ≤ 0 for every x ∈ D ∩ K since
λ ∈ [0, 1]; and thus, condition 2) in Theorem 5.3 is satisfied. Finally, since G(D) = {0} × R≥0 ⊂ C ∪ D, condition 3)
in Theorem 5.3 is satisfied. Therefore, via Theroem 5.3, the formula f = 2p is satisfied for each solution φ toH from
K and at each (t, j) ∈ dom φ. 4

Example 5.6. Consider a hybrid systemH = (C, F,D,G) modeling a constantly evolving timer system with the state
x = (τ, h) ∈ X := [0,∞) × {0, 1} given by

F(x) :=
[
1
0

]
∀x ∈ C := {x ∈ X : 0 ≤ τ ≤ T },

G(x) :=
[

0
1 − h

]
∀x ∈ D := {x ∈ X : τ ≥ T },

(18)

where τ denotes a timer variable, h is a logic variable, and T is the period of the timer. Moreover, for each x ∈ X
such that 0 ≤ τ ≤ T, p(x) = 1; otherwise, p(x) = 0. Let K be given as in (8). Consider the barrier function
candidate B(x) := τ − T. We notice that C ∩ (U(∂K) \ K) = ∅; and thus, condition 1) in Theorem 5.3 is trivially
satisfied. Moreover, we have B(G(x)) = −T ≤ 0 for every x ∈ D; and thus, condition 2) in Theorem 5.3 is satisfied.
Furthermore, since G(D) = {0} × {0, 1} ⊂ C ∪D, condition 3) in Theorem 5.3 is satisfied. Therefore, via Theorem 5.3,
the formula f = 2p is satisfied for each solution φ toH and at each (t, j) ∈ dom φ. 4

5.2. Sufficient Conditions for 3p
We now present sufficient conditions guaranteeing the formula f in (11). Due to the equivalence we provide in

Section 4.2, any sufficient condition that guarantees the FTA property of the set K in (8) guarantees the satisfaction of
the formula 3p. In that sense, we observe that the results on finite-time stability (FTS) for a set for hybrid systems
in [21] and the results on recurrence for a set for hybrid systems in [27] can be applied to derive sufficient conditions
guaranteeing the desired FTA property. In the following, by exploiting the results and the ideas in [21], sufficient
conditions are proposed to verify that H is such that every solution φ to H satisfies f = 3p; see [28, Appendix B]
for more details about sufficient conditions for FTA.

As stated above, the satisfaction of the formula f = 3p is assured by conditions that guarantee that the set K in
(8) is FTA forH , where

p(x) =

{
1 if x ∈ K
0 otherwise. (19)

In the following, we propose sufficient conditions to satisfy the formula f = 3p. Below, the function V : X → R
is continuous on X and locally Lipschitz on a neighborhood of C. Using Clarke generalized derivative, we define
the functions uC and uD as follows: uC(x) := maxv∈F(x) maxζ∈∂V(x)〈ζ, v〉 for each x ∈ C, and −∞ otherwise; uD(x) :=
maxζ∈G(x) V(ζ) − V(x) for each x ∈ D, and −∞ otherwise, where ∂V is the generalized gradient of V in the sense of
Clarke; see Apprendix A for more details. Moreover, a function α : R≥0 7→ R≥0 is a class-K function, denoted by
α ∈ K , if it is zero at zero, continuous, and strictly increasing and α is a class-K∞ function, denoted by α ∈ K∞, if
α ∈ K and is unbounded. Given a real number s ∈ R, ceil(s) denotes the smallest integer upper bound for s.
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Theorem 5.7. Consider a hybrid system H = (C, F,D,G) on X. Given an atomic proposition p, suppose the state
spaceX and the atomic proposition p are such that K in (8) is closed. Suppose there exists an open set4 N that defines
an open neighborhood of K such that G(N) ⊂ N ⊂ X. Then, if

1) there exists a continuous function V : N → R≥0, locally Lipschitz on an open neighborhood of C ∩ N , and
c1 > 0, c2 ∈ [0, 1) such that

1.1) for every x ∈ N ∩ (C ∪ D) such that p(x) = 0, each φ ∈ SH (x) satisfies

V1−c2 (x)
c1(1−c2) ≤ sup

(t, j)∈dom φ

t; (20)

1.2) the function V is positive definite with respect to K and

1.2a) for each x ∈ X such that x ∈ C ∩ N and p(x) = 0, uC(x) + c1Vc2 (x) ≤ 0;
1.2b) for each x ∈ X such that x ∈ D ∩ N and p(x) = 0, uD(x) ≤ 0.

or

2) there exists a continuous function V : N → R≥0, locally Lipschitz on an open neighborhood of C ∩ N , and
c > 0 such that

2.1) for every x ∈ N ∩ (C ∪ D) such that p(x) = 0, each φ ∈ SH (x) satisfies

ceil
(

V(x)
c

)
≤ sup

(t, j)∈dom φ

j; (21)

2.2) the function V is positive definite with respect to K and

2.2a) for each x ∈ X such that x ∈ C ∩ N and p(x) = 0, uC(x) ≤ 0;
2.2b) for each x ∈ X such that x ∈ D ∩ N and p(x) = 0, uD(x) ≤ −min{c,V(x)}.

hold, then, the formula f = 3p is satisfied for every solution φ to H from LV (r) ∩ (C ∪ D) at (t, j) = (0, 0) where
LV (r) = {x ∈ X : V(x) ≤ r}, r ∈ [0,∞], is a compact sublevel set of V contained in N . Moreover, for each
φ ∈ SH (LV (r) ∩ (C ∪ D)), defining ξ = φ(0, 0), the first time (t′, j′) ∈ dom φ such that φ(t′, j′) 
 p satisfies

t′ + j′ = T (φ), (22)

and an upper bound on that hybrid time is given as follows:

a) if 1) holds, then T is upper bounded by T ?(ξ) + J?(φ), where T ?(ξ) =
V1−c2 (ξ)
c1(1−c2) and J?(φ) is such that

(T ?(ξ),J?(φ)) ∈ dom φ.

b) if 2) holds, then T is upper bounded by T ?(φ) + J?(ξ), where J?(ξ) = ceil
(V(ξ)

c
)

and T ?(φ) is such that
(T ?(φ),J?(ξ)) ∈ dom φ and (T ?(φ),J?(ξ) − 1) ∈ dom φ.

Proof. Note that the set K is closed and collects the set of points such that p is satisfied. Now we show that the
conditions in [28, Proposition B.1] or [28, Proposition B.3] hold for K.

• Item 1) implies that for every x ∈ N ∩ (C ∪ D) \ K, each φ ∈ SH (x) satisfies (20); and the function V is
positive definite with respect to K; and uC(x) + c1Vc2 (x) ≤ 0 for every x ∈ (C ∩ N) \ K and uD(x) ≤ 0 for all
x ∈ (D ∩ N) \ K. Thus, Proposition [28, Proposition B.1] applies.

• Item 2) implies that for every x ∈ N ∩ (C ∪D) \ K, each φ ∈ SH (x) satisfies (21); and the function V is positive
definite with respect to K; and uC(x) ≤ 0 for every x ∈ (C ∩ N) \ K and uD(x) ≤ −min{c,V(x)} for every
x ∈ (D ∩ N) \ K. Thus, [28, Proposition B.3] applies.

4A set N can be chosen as N = X for the global version of FTA.
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Therefore, K is FTA for H if item 1) or 2) holds. Then, by Proposition 4.7, the formula f = 3p is satisfied for all
solutions toH at (t, j) = (0, 0).

Note that the conditions about the supremum over the hybrid time of a solution in (20) and (21) are due to not
insisting on completeness of maximal solutions. When every maximal solution is complete, these conditions hold
automatically. See Remark 5.9 for more details.

Remark 5.8. Under condition 1.2) or 2.2) in Theorem 5.7, given a solution φ to H , there exists some time (t′, j′) ∈
dom φ such that φ satisfies p. Furthermore, we have this satisfaction in finite time (t′, j′), obtained by the settling-time
function T , for which an upper bound depends on the Lyapunov function and the solution only. Note that a settling-
time function T does not need to be computed. However, we provide an estimate of when convergence happens using
an upper bound that depends on V and the constants involved in items 1) and 2) only.

Remark 5.9. Note that conditions (20) and (21) hold for free for complete solutions unbounded in t or/and j in their
domain. Moreover, maximal solutions are complete when the conditions in [17, Proposition 2.10 or Proposition 6.10]
hold. Specifically, if maximal solutions φ are complete with dom φ unbounded in its t component, then (20) holds auto-
matically; and, if the solutions are complete with dom φ unbounded in its j component, then (21) holds automatically.

Remark 5.10. Item 1) in Theorem 5.7 characterizes the situation when the formula f = 3p is being satisfied for
all solutions φ to H due to the strict decrease of a Lyapunov function during flows. Item 2) in Theorem 5.7 provides
conditions for f to be satisfied for all solutions φ to H due to a Lyapunov function strictly decreasing at jumps.
Finally, we can combine the properties in item 1) and item 2) to arrive to strict Lyapunov conditions for verifying that
H is such that every φ satisfies f at (t, j) = (0, 0); see [28, Proposition B.4].

Remark 5.11. Based on the definition of recurrence for sets in [27, Definition 1], the recurrence property could
be used for certifying the formula 3p. When the set K that collects the set of points such that p is satisfied is
globally recurrent for a given hybrid system H = (C, F,D,G), for each complete solution φ ∈ SH (C ∪ D), there
exists (t, j) ∈ dom φ such that φ(t, j) ∈ K; namely, it implies that φ satisfies p at (t, j) ∈ dom φ. In [27], robustness
of recurrence and equivalence between the uniform and non-uniform notions are established for open and bounded
sets. We observe that the recurrence property is studied with respect to open sets. Therefore, once we have an open,
bounded set that collects the set of points satisfying p, we can employ the recurrence property to verify that 3p is
satisfied. Furthermore, we can use the results on robustness of recurrence presented in [27] to derive the satisfaction
of the formula 3p with robustness.

In the following examples, the item 1) in Theorem 5.7 is exercised.

Example 5.12. Inspired from [21, Example 3.3], consider a hybrid system H = (C, F,D,G) with state x = (z, τ) ∈
R × [0, 1] given by5

F(x) :=
[
−k|z|αsgn(z)

1

]
∀x ∈ C := R × [0, 1],

G(x) :=
[
−z
0

]
∀x ∈ D := R × {1},

(23)

where α ∈ (0, 1) and k > 0. Consider the function V : R×[0, 1]→ R≥0 given by V(x) = 1
2 z2 for each x ∈ C. Moreover,

each x ∈ C satisfies p only when x ∈ {0} × [0, 1]. Now we consider the set K = {x ∈ C : p(x) = 1}. We have that, for
each x ∈ C \ K,

〈∇V(x), F(x)〉 = −k|z|1+α = −2
1+α

2 kV(x)
1+α

2 .

Furthermore, for all x ∈ D \ K, V(G(x)) − V(x) = 0. Therefore, condition 1.2) in Theorem 5.7 is satisfied with

N = R × [0, 1], c1 = 2
1+α

2 k > 0 and c2 = 1+α
2 ∈ (0, 1). By applying [17, Proposition 6.10], condition 1.1) in

Theorem 5.7 holds since every maximal solution to H is complete with its domain of definition unbounded in the t
direction. Thus, the formula f = 3p is satisfied for all solutions φ toH at (t, j) = (0, 0). 4

5The function sgn : R→ {−1, 1} is defined as sgn(x) = 1 if x ≥ 0, and sgn(x) = −1 otherwise.
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Next, the bouncing ball example in Example 5.5 illustrates Lyapunov conditions for verifying that 3p is satisfied
for all solutions toH at (t, j) = (0, 0).

Example 5.13. Consider H = (C, F,D,G) in Example 5.5. Define an atomic proposition p as follows: for each
x ∈ X, p(x) = 1 when x2 ≤ 0, and p(x) = 0 otherwise. With K in (8) and N = X, let V(x) = |x2| for all x ∈ X. This
function is continuously differentiable on the open set X \ (R × {0}) and it is Lipschitz on X. It follows that

〈∇V(x), F(x)〉 = −γ ∀x ∈ (C ∩ N) \ K,

and uC(x) + c1Vc2 (x) ≤ 0 holds with c1 = γ and c2 = 0. For each x ∈ (D ∩ N) \ K,

V(G(x)) = −λx2 = | − λx2| = λ|x2| = λV(x),

and uD(x) = V(G(x)) − V(x) = λV(x) − V(x) = −(1 − λ)V(x). Thus, condition 1.2) in Theorem 5.7 is satisfied since
(D ∩ N) \ K = ∅. Note that by applying [17, Proposition 6.10], every maximal solution is complete and condition
1.1) in Theorem 5.7 holds with the chosen constants c1 and c2 due to the properties of the hybrid time domain of
each maximal solution. Therefore, the formula f = 3p is satisfied for all maximal solutions to H at (t, j) = (0, 0).
Since every solution from K, after some time, jumps from K and then converges to K again in finite time, we have that
f = 3p holds for every (t, j) in the domain of each solution. 4

Note that Theorem 5.7 guarantees that 3p is satisfied for all solutions φ to H at (t, j) = (0, 0). These conditions
can be extended to guarantee that 3p is satisfied for all (t, j) in the domain of any solution if the set K is forward
pre-invariant or when only jumps are allowed from points in K and the jump map maps points in K into N .

Theorem 5.14. Consider a hybrid system H = (C, F,D,G) on X. Given an atomic proposition p, suppose the state
space X and the atomic proposition p are such that K in (8) is closed and that there exists an open set N that defines
an open neighborhood of K such that G(N) ⊂ N ⊂ X. Then, if there exists a continuous function V : N → R≥0,
locally Lipschitz on an open neighborhood of C∩N , and c, c1 > 0, c2 ∈ [0, 1), such that each φ ∈ SH (LV (r)∩ (C∪D))
is complete, G(D ∩ K) ⊂ LV (r) ∩ (C ∪ D), and at least one among items 1.2) and 2.2) in Theorem 5.7 holds, then, the
formula f = 3p is satisfied for every solution φ to H from LV (r) ∩ (C ∪ D) and for all (t, j) in the domain of each
solution, where LV (r) = {x ∈ X : V(x) ≤ r}, r ∈ [0,∞] is a compact sublevel set of V contained in N .

Proof. The set K is closed and collects the points such that p is satisfied. We first show the case when item 1.2)
in Theorem 5.7 holds. Since each solution φ ∈ SH (LV (r) ∩ (C ∪ D)) is complete, this implies that there exists
(t1, j1) ∈ dom φ such that

lim
t+ j↗t1+ j1

|φ(t, j)|K = 0.

If there exists (t2, j2) ∈ dom φ such that φ(t2, j2) < K, then φ left K by jumping since condition 1.2a) in Theorem 5.7
does not allow flowing out of K. However, if that is the case, then φ(t2, j2) ∈ LV (r) ∩ (C ∪ D) since G(D ∩ K) ⊂
LV (r) ∩ (C ∪ D); and then, due to completeness of φ, there exists (t3, j3) such that limt+ j↗t3+ j3 |φ(t, j)|K = 0. Thus,
proceeding in this way for all hybrid time instant that the solution leaves K, condition 1) in Theorem 5.7 holds and for
every (t, j) in the domain of each solution φ. Therefore, the formula f = 3p is satisfied for all solutions to H from
LV (r)∩ (C ∪D) for every (t, j) in the domain of each solution. The proof for the cases when item 2.2) in Theorem 5.7
holds follows similarly.

The following example about the firefly model in [29, Example 25] illustrates Theorem 5.14.

Example 5.15. Consider the hybrid system H = (C, F,D,G) modeling two impulsive oscillators capturing the dy-
namics of two fireflies. This system has the state x = (x1, x2) ∈ R2 and the data given by

F(x) :=
[
γ
γ

]
∀x ∈ C := [0, 1] × [0, 1],

G(x) :=
[
g((1 + ε̃)x1)
g((1 + ε̃)x2)

]
∀x ∈ D := {x ∈ C : max {x1, x2} = 1},

(24)
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where γ > 0 and the parameter ε̃ > 0 denotes the effect on the timer of a firefly when the timer of the other firefly
expires, and the set-valued map g is given by g(z) = z when z < 1; g(z) = 0 when z > 1; g(z) = {0, 1} when z = 1.
Define p as follows: for each x ∈ R2, p(x) = 1 when x ∈ C and x1 = x2, and p(x) = 0 otherwise. Then, the set K is
{x ∈ C : p(x) = 1}. Let k = ε̃

2+ε̃
and note that 1+ε̃

2+ε̃
= 1+k

2 . Define

V(x) := min {|x1 − x2|, 1 + k − |x1 − x2|}

for all x ∈ X := {x ∈ R2 : V(x) < 1+k
2 } = {x ∈ R2 : |x1 − x2| ,

1+k
2 }. This function is continuously differentiable on

the open set X \ K and it is Lipschitz on X. Let m? = 1+k
2 and m ∈ (0,m?). Consider Cm = C ∩ M and Dm = D ∩ M,

where M := {z ∈ C ∪ D : V(x) ≤ m}. By the definition of V, it follows that

〈∇V(x), F(x)〉 = 0 ∀x ∈ Cm \ K.

We now consider x ∈ Dm \ K. Since V is symmetric, without loss of generality, consider x = (1, x2) ∈ Dm \ K where
x2 ∈ [0, 1] \ { 1

2+ε̃
}.6 Then, we obtain

V(x) = min{1 − x2, k + x2},

V(G(x)) = min{g((1 + ε̃)x2), 1 + k − g((1 + ε̃)x2)}.

When g((1 + ε̃)x2) = 0, it follows that V(G(x)) = 0. When g((1 + ε̃)x2) = (1 + ε̃)x2, there are two cases:

a) x2 <
1

2+ε̃
, V(x) = k + x2 > (1 + ε̃)x2 ≥ V(G(x));

b) x2 >
1

2+ε̃
, V(x) = 1 − x2 ≥ V(G(x)).

Thus, V(G(x))−V(x) ≤ 0 for all x ∈ Dm \K. By applying [29, Proposition 6.10], every maximal solution to the hybrid
systemHm = (Cm, F,Dm,G) is complete. Moreover, given ε̃ > 0, for ε = ε̃

1+ε̃
and m such that (K + εB) ∩C ⊂ Cm, we

have that for all x ∈ Dm ∩ (K + εB), G(x) = 0 ∈ K. Therefore, it follows from Theorem 5.14 that the formula f = 3p
is satisfied for every solution φ toH fromN := {x ∈ C ∪ D : V(x) < m} for all (t, j) in the domain of each solution. 4

5.3. Sufficient Conditions for #p

Theorem 5.16. Given an atomic proposition p, let the set K be as in (8). The formula f = #p is satisfied for all
solutions φ toH at each (t, j) ∈ dom φ if the properties a), b), and c) in Proposition 4.8 hold simultaneously.

Remark 5.17. By the definition of next operator, one could consider that the flow set C is empty to specify #p for all
solutions φ toH . Under this assumption,H reduces to a discrete-time system.

The following example illustrates the sufficient conditions in Theorem 5.16 to guarantee the satisfaction of #p.

Example 5.18. Let a hybrid systemH = (C, F,D,G) with the state x ∈ R and data given by

D := R, G(x) := sgn(x), (25)

C is empty, and the flow map F is arbitrary. The function sgn(x) is defined in Example 5.12, and p(x) = 1 if |x| = 1.
Let K := {−1, 1}. By using the map G, for every x ∈ D ∩ K, G(x) ∈ K; for every x ∈ D \ K, G(x) ∈ K. Therefore, the
formula f = #p is satisfied for all solutions toH .

6Since
(
1, 1

2+ε̃

)
∈

{
x ∈ X : V(x) = 1+k

2

}
.
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5.4. Sufficient Conditions for pUq

We present sufficient conditions guaranteeing f in (14) by applying the results in Section 5.1 and Section 5.2.
As stated in Section 4.4, the until operator is characterized as strong until (Us) or weak until (Uw). First, we

present sufficient conditions for the formula having the weak until operator. The following result is immediate.

Theorem 5.19. Consider a hybrid systemH = (C, F,D,G) onX and two atomic propositions p and q. Suppose every
x ∈ X satisfies either p(x) = 1 or q(x) = 1. Then, the formula f = pUwq is satisfied for every solution φ to H at
every (t, j) ∈ dom φ.

Proof. Since every x ∈ X satisfies either p(x) = 1 or q(x) = 1, X = P∪Q where P and Q are the sets in (15). It implies
that for all x ∈ X, x ∈ P if x does not belong to Q; and thus, every solution that has not converged to Q remains in P
at least until it converges to Q (if that ever happens). Therefore, the formula f = pUwq is satisfied for all solutions to
H at (t, j) ∈ dom φ.

Remark 5.20. By the definition ofUw operator, pUwq is instantly satisfied by a solution φ to H at (t, j) ∈ dom φ if
φ(t, j) ∈ Q := {x ∈ X : q(x) = 1}. Moreover, pUwq is satisfied by φ at (t, j) ∈ dom φ if φ(t′, j′) ∈ P := {x ∈ X : p(x) =

1} for all (t′, j′) ∈ dom φ such that t′ + j′ ≥ t + j. Under the conditions in Theorem 5.19, each solution φ ∈ SH (x)
belongs to either P or Q for each (t, j) ∈ dom φ. Therefore, we observe that qUw p is satisfied for each solution φ to
H at each (t, j) ∈ dom φ.

Furthermore, if the conditions for FTA in Theorem 5.7 with p therein replaced by q hold and there exists an
open set N defining an open neighborhood of Q in (15) such that G(N) ⊂ N ⊂ X, then, under the assumptions in
Theorem 5.7, solutions to H from LV (r) are guaranteed to satisfy q in finite time where LV (r) = {x ∈ X : V(x) ≤ r},
r ∈ [0,∞] is a sublevel set of V contained in N .

The following result relaxes the covering of X in Theorem 5.19 by requiring that P contains a subset of the basin
for finite-time attractivity of Q. It provides conditions for the formula f = pUsq to be satisfied for all solutions φ to
H , both at (t, j) = (0, 0) and any (t, j) ∈ dom φ.

Theorem 5.21. Consider a hybrid systemH = (C, F,D,G) on X. Given atomic propositions p and q, and sets P and
Q in (15), suppose there exists an open set N defining an open neighborhood of Q such that G(N) ⊂ N ⊂ X. Then,
the formula f = pUsq is satisfied for every solution φ toH at (t, j) = (0, 0) if

1) Q is closed;

2) at least one among condition 1) and 2) in Theorem 5.7 with p therein replaced by q is satisfied with some
function V as required therein;

3) φ(0, 0) ∈ (P ∩ LV (r)) ∪ Q;

4) (LV (r) ∩ (C ∪ D)) \ Q ⊂ P,

where LV (r) is a compact sublevel set of V coming from item 2) that is contained inN . Moreover, the upper bound of
the settling-time function T is given in item a) or b) in Theorem 5.7, respectively. Furthermore, if the following holds:

5) For each x ∈ Q ∩ D, G(x) ⊂ LV (r) ∩ (C ∪ D) where LV (r) as above,

then the formula f = pUsq is satisfied for every solution φ toH at every (t, j) ∈ dom φ.

Proof. When item 1) and 2) hold, Q is FTA for H . Note that LV (r) is a compact sublevel set of V contained in N .
If the initial state is away from Q, it is in P ∩ LV (r); and thus, it converges to Q in finite time. Moreover, condition
4) implies that the solutions from LV (r) ∩ (C ∪ D) flow/jump to P if the solutions have not converged to Q, which is
guaranteed to occur in finite hybrid time. At this point, the formula f = pUsq is satisfied for all solutions to H at
(t, j) = (0, 0). Furthermore, condition 5) implies that for each x ∈ Q∩ D, jumps map the state to LV (r)∩ (C ∪ D); and
thus, every solution from x converges to Q in finite time if it has not converged to Q, and the solutions that has not
converged to Q remains in P. That is, once a solution belongs to Q, it stays in Q or flows/jumps to P. Therefore, the
formula f = pUsq is satisfied for all solutions toH at every (t, j) ∈ dom φ.
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Though at times might be more restrictive, condition 4) in Theorem 5.21 can be replaced by forward invariance of
P when C and F satisfy condition 1) in Theorem 5.3.

The bouncing ball example in Example 5.5 is used to illustrate Theorem 5.21.

Example 5.22. ConsiderH = (C, F,D,G) in Example 5.5. Define p as 1 when x2 ≥ 0, and 0 otherwise. Define q as
1 when x2 ≤ 0, and 0 otherwise. With the sets P and Q in (15), as shown in Example 5.5, item 2) in Theorem 5.21 is
satisfied with N = R2. By applying item 1) in Theorem 5.7, every solution from Q, after some time, jumps from Q to
P and then converges to Q again in finite time. Moreover, from the definition of Q and P in (15), if a solution does not
belong to Q, then it belongs to P. Furthermore, P satisfies item 4) in Theorem 5.21 since (C ∪ D) \ Q ⊂ P. For each
x ∈ Q ∩ D, ξ ∈ G(x) satisfies ξ ∈ C ∪ D so that item 5) in Theorem 5.21 is satisfied. Thus, every solution that has not
converged to Q remains in P at least until it converges to Q, which is guaranteed to occur in finite hybrid time. We
conclude that the formula f = pUsq is satisfied for all solutions toH at every (t, j) ∈ dom φ. 4

6. Sufficient Conditions for LTL Formulas Combining Operators

Sufficient Conditions
2p a) Barrier function for forward pre-invariance
3p b) Lyapunov function for FTA
pUq c) Combination of a) and b)
#p d) G(D) ⊂ D ∩ {x ∈ X : p(x) = 1}

Table 1: Sufficient conditions for 2, 3,U, #

Section 5 provides sufficient conditions for formulas that involve a single temporal operator. Table 1 summarizes
the conditions for each temporal operator. As indicated therein, all that is needed is either a certificate for finite-
time convergence in terms of a Lyapunov function, or the data of the hybrid system and the set of points where
the proposition is true to satisfy conditions for invariance. The latter can be actually certified using Lyapunov-like
functions or barrier functions as in [20], which for space reasons is not pursued here.

Moreover, the case of logic operators can be treated similarly by using intersections, unions, and complements
of the sets where the propositions hold. For instance, sufficient conditions for 2(p ∧ q) can immediately be derived
from the sufficient conditions already given in Section 5.1 with {x ∈ X : p(x) = 1} ∩ {x ∈ X : q(x) = 1} in place of
{x ∈ X : p(x) = 1}.

The following sections present sufficient conditions for formulas that combine more than one operator. The con-
ditions therein are given by compositions of the conditions in Table 1.

6.1. Conditions for 32
Corollary 6.1. Consider a hybrid system H = (C, F,D,G) on X and an atomic proposition p. Suppose C is closed
relative to X, and

• The state space X and the atomic proposition p are such that {x ∈ X : p(x) = 1} is closed;

• The map F : X⇒ X is outer semicontinuous, locally bounded relative to {x ∈ C : p(x) = 1}, and F(x) is convex
for every x ∈ {x ∈ C : p(x) = 1}. The map F is locally Lipschitz on {x ∈ C : p(x) = 1}; and

• There exists an open set N that defines an open neighborhood of {x ∈ X : p(x) = 1} such that G(N) ⊂ N ⊂ X.

Then, the formula f = 32p is satisfied for all solutions φ toH for all (t, j) ∈ dom φ if the following properties hold:

1) Conditions 1), 2), and 3) in Theorem 5.3 hold; and

2) Condition 1) or condition 2) in Theorem 5.7 holds.

Alternatively, sufficient conditions to guarantee the formula 32p can be obtained by strengthening the Lyapunov
conditions in Theorem 5.7.
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Corollary 6.2. Consider a hybrid systemH = (C, F,D,G) on X and an atomic proposition p. Suppose

• The state space X and the atomic proposition p are such that {x ∈ X : p(x) = 1} is closed; and

• There exists an open set N that defines an open neighborhood of {x ∈ X : p(x) = 1} such that G(N) ⊂ N ⊂ X.

Then, the formula f = 32p is satisfied for all solutions φ to H that remain in a compact subset of N for all
(t, j) ∈ dom φ if the following properties hold:

1) there exists a continuous function V : N → R≥0, locally Lipschitz on an open neighborhood of C ∩ N , and
c, c1 > 0, c2 ∈ [0, 1) such that

1.1) for every x ∈ N ∩ (C ∪ D) such that p(x) = 0, each φ ∈ SH (x) satisfies V1−c2 (x)
c1(1−c2) ≤ sup(t, j)∈dom φ t and

ceil
(

V(x)
c

)
≤ sup(t, j)∈dom φ j;

1.2) the function V is positive definite with respect to K and

1.2a) for each x ∈ X such that x ∈ C ∩ N , uC(x) + c1Vc2 (x) ≤ 0;
1.2b) for each x ∈ X such that x ∈ D ∩ N , uD(x) ≤ −min{c,V(x)}.

Corollary 6.2 imposes bounds on 1.2a) and 1.2b) for each point where flow and jump is possible, respectively,
rather than only when p is not true. Such conditions further guarantee invariance of {x ∈ X : p(x) = 1}.

A similar estimate for the time to converge as in Theorem 5.7 holds. Condition 1) in Corollary 6.1 can be alterna-
tively guaranteed with a Lyapunov-like/barrier function as in [20].

Corollary 6.2 requires strict Lyapunov functions, but nonstrict versions as in Theorem 5.7 can be similarly stated.

6.2. Conditions for 23

Sufficient conditions to guarantee the formula f = 23p are given by those in Theorem 5.14.

6.3. Conditions for 2(pUsq)
Sufficient conditions to guarantee the formula f = 2(pUsq) are already given by those in Theorem 5.21.

6.4. Conditions for pUs2q

The formula f = pUs2q can be certified by applying Theorem 5.21 and Corollary 6.2 with p therein replaced by
q.

Corollary 6.3. Consider a hybrid systemH = (C, F,D,G) on X. Suppose C is closed in X and

• There exists an open set N defining an open neighborhood of {x ∈ X : q(x) = 1} such that G(N) ⊂ N ⊂ X;

• The map F : X⇒ X is outer semicontinuous, locally bounded relative to {x ∈ C : p(x) = 1}, and F(x) is convex
for every {x ∈ C : p(x) = 1}. Additionally, the map F is locally Lipschitz on {x ∈ C : p(x) = 1}.

Then, the formula f = pUs2q is satisfied for every solution φ toH if

1) all of the conditions in Theorem 5.21 hold; and

2) condition 1.2) in Corollary 6.2 with p therein replaced by q holds.
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s0 s2

s1

p1 p1 |p2 |¬p1 |¬p2 |¬p3

p2

p1 |p2 |p3 |¬p1 |¬p2 |¬p3

p3

Figure 1: An example of an FSA representing the formula f = 3p3 ∧ (p1Us p2). The state s0 is the initial state and s1 is the final state. When
several transitions are present between two states, one transition labeled by the set of all observations using the symbol | as shown.

6.5. Decomposition of general formulas using finite state automata
In certain cases, formulas that combine more than one operator can be decomposed into simpler formulas for

which our results for formulas with a single operator can be applied. To decompose a general formula combining
into several formulas with a single operator, one can employ the finite state automaton (FSA) representation of an
LTL formula [30, 31, 32]. Following [32, Chapter 2], a particular fragment of LTL, called syntactically co-safe LTL
(scLTL), is considered so that each formula f over a set of observations can always be translated into an FSA. An LTL
formula belongs to the scLTL fragment if it contains only temporal operators 3, #, U, and it is written in positive
normal form: the negation operator ¬ occurs only in front of atomic propositions. Next, given an LTL formula f in
the scLTL fragment, we outline the process of constructing an FSA, which we denote A f , and specify properties of
a hybrid system H with A f . We first introduce the FSA representation of LTL formulas that belongs to the scLTL
fragment.

Definition 6.4 (Finite State Automaton). Given an scLTL formula f , a finite state automaton (FSA) is given by the
tuple A f = (S , s0,O, δ, S F), where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• O is a finite set of observations,

• δ : S × O→ S is a transition function,7

• S F ⊆ S is the set of accepting (final) states.

The semantics of an FSA are defined over finite words of observations (or inputs). A run of A f over a word of
observations wO = wO(1)wO(2) . . .wO(n) with wO(k) ∈ O for all k = 1, . . . , n is a sequence wS = wS (1)wS (2) . . .wS (n+

1) ∈ S where wS (1) = s0 and wS (k + 1) = δ(wS (k),wO(k)) for all k = 1, . . . , n. The word wO is accepted by A f if the
corresponding run ends in an accepting automaton state; i.e., wS (n + 1) ∈ S F .

With an FSA associated to a general formula f in the scLTL fragment, the tools presented in this paper for
the satisfaction of basic formulas having one operator can be applied to certify f . For instance, the formula f =

3p3 ∧ (p1Us p2) has the following associated FSA: A f = (S , s0,O, δ, S F), where

S = {s0, s1, s2}, S F = {s1}, O = {p1, p2, p3,¬p1,¬p2,¬p3},

δ(s, o) =


s0 if s = s0, o = p1,
s2 if s = s0, o = p2,
s2 if s = s2, o , p3,
s1 if s = s2, o = p3,
s1 if s = s1.

∀(s, o) ∈ S × O
(26)

7When δ is set valued, namely, δ : S × O ⇒ S maps points in S × O to subsets of S , then A f is said to be non-deterministic.
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This FSA is shown in Figure 1. As shown therein, the FSA state s is initially at s0 and when s reaches the final state
s1, it implies that the given formula f is satisfied. As s starts at s0, we must have that the initial observation o is either
o = p1 or o = p2. If it is o = p1, s remains at s0, but if o = p2, we have a transition from s = s0 to s = s2. Then, once
s is at s2, we have a transition of s from s2 to s1 if o = p3. If o , p3, s remains at s2. In other words, the FSA captures
the given formula as follows:

1) When s is at s0, p2 has to be eventually satisfied and p1 has to be satisfied until p2 is satisfied; i.e., p1Us p2 is
satisfied. Once p2 is satisfied, s jumps to s2.

2) When s is at s2, p3 needs to be eventually satisfied for f to be satisfied; i.e., 3p3 is satisfied. Additionally, once
p3 is satisfied, s jumps to s1.

To apply our tools, by extending the ideas in [11], we build an augmented version ofH , denoted byHA, with state
(x, s) ∈ X × S and input o ∈ O in which s transitions according to the FSA associated with the formula. Its input o,
namely, the observation o, is determined by the propositions that are satisfied (or not). For example, when x is such
that p1(x) = 1 then o = p1, while when p1(x) = 0 then o = ¬p1. Then, according to our tools, the satisfaction of the
formula f is assured by the following conditions:

• Conditions in Theorem 5.21, with q therein replaced by p2 and with P = {(x, s) ∈ X × S : p1(x) = 1, s = s0}

and Q = {(x, s) ∈ X × S : p2(x) = 1, s = s2}, are satisfied; and

• K = {(x, s) ∈ X × S : p3(x) = 1, s = s1} is FTA for HA; namely, conditions in Theorem 5.7, with p therein
replaced by p3 and with set K just defined, are satisfied.

The methodology outlined above can be automated, and is part of current research.

7. Conclusion

When the hybrid system is well-posed as defined in [17], which requires mild conditions on the system data, the
satisfaction of the formulas guaranteed by our results are robust to small general perturbations over finite hybrid time
horizons. Such intrinsic robustness, though small, is useful in real-world applications as it allows for small errors on
the initial conditions, small perturbations during flows (both on F and C) and at jumps (both on G and D).

Future work includes certifying formulas for hybrid systems with robustness to large perturbations and over the
infinite horizon. The authors in [19] propose robust semantics for Metric Temporal Logic (MTL) formulas to prove
that a continuous-time signal satisfies an MTL specification robustly. By extending the ideas therein to our setting, it
might be possible to assure the satisfaction of temporal logic specifications with robustness to large perturbations.

Appendix

A. Nonsmooth Lyapunov Functions

For a hybrid systemH = (C, F,D,G), let V : X → R be continuous on X and locally Lipschitz on a neighborhood
of C. The Clarke generalized gradient of V at x ∈ C, denoted by ∂V(x), is a closed, convex and nonempty set equal
to the convex hull of all limits of the sequence ∇V(xi), where xi is any sequence converging to x while x avoids an
arbitrary set of measure zero containing all the points at which V is not differentiable. As V is locally Lipschitz, ∇V
exists almost everywhere. The generalized directional derivative of V at x in the direction of v can be presented as
follows [33]:

V◦(x, v) = max
ζ∈∂V(x)

〈ζ, v〉. (A.1)

In addition, for any solution t 7→ φ(t, 0) to φ̇(t, 0) ∈ F(x),

d
dt V(φ(t, 0)) ≤ V◦(φ(t, 0), φ̇(t, 0)) (A.2)
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for almost all t in the domain of definition of φ, where d
dt V(φ(t, 0)) is understood in the standard sense since V is

locally Lipschitz. To bound the increase of the function V along solutions to a hybrid system H , we define the
function uC : X → [−∞,+∞) as follows [34]:

uC(x) :=

 sup
v∈F(x)

max
ζ∈∂V(x)

〈ζ, v〉 if x ∈ C

−∞ otherwise.
(A.3)

In particular, for any solution φ toH and any t where d
dt V(φ(t, j)) exists, we have

d
dt V(φ(t, j)) ≤ uC(φ(t, j)). (A.4)

Furthermore, in order to bound the change in V after jumps, we define the following quantity:

uD(x) :=

 sup
ζ∈G(x)

V(ζ) − V(x) if x ∈ D

−∞ otherwise.
(A.5)

Then, for any solution φ toH and for any (t j+1, j), (t j+1, j + 1) ∈ dom φ, it follows that

V(φ(t j+1, j + 1)) − V(φ(t j+1, j)) ≤ uD(φ(t j+1, j)). (A.6)

Note that when F is a single-valued map, uC(x) = V◦(x, F(x)) for each x ∈ C. When G is a single-valued map,
uD(x) = V(G(x)) − V(x) for each x ∈ D.
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[31] T. Babiak, M. Křetı́nskỳ, V. Řehák, J. Strejček, Ltl to büchi automata translation: Fast and more deterministic, in: International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2012, pp. 95–109.
[32] C. Belta, B. Yordanov, E. A. Gol, Formal methods for discrete-time dynamical systems, Vol. 89, Springer, 2017.
[33] F. H. Clarke, Optimization and nonsmooth analysis, SIAM, 1990.
[34] R. G. Sanfelice, R. Goebel, A. R. Teel, Invariance principles for hybrid systems with connections to detectability and asymptotic stability,

IEEE Transactions on Automatic Control 52 (12) (2007) 2282–2297.

21

https://doi.org/10.1201/b19290-3
https://doi.org/10.1201/b19290-3

	Introduction
	Background
	Motivation
	Contributions

	Preliminaries
	Linear Temporal Logic for Hybrid Dynamical Systems
	Characterizations of Temporal Operators using Dynamical Properties
	Characterization of  via forward invariance
	Characterization of  via finite time attractivity
	Characterization of  via properties of the data of H
	Characterization of U via properties of the data of H

	Sufficient Conditions for Temporal Formulas with One Operator using Hybrid Systems Tools
	Sufficient Conditions for p
	Sufficient Conditions for p
	Sufficient Conditions for p
	Sufficient Conditions for p U q

	Sufficient Conditions for LTL Formulas Combining Operators
	Conditions for 
	Conditions for 
	Conditions for (p Us q)
	Conditions for p Us q
	Decomposition of general formulas using finite state automata

	Conclusion
	Nonsmooth Lyapunov Functions

