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A hybrid feedback control scheme is proposed for stabilization of rigid body

dynamics (position, orientation and velocities) using unit dual quaternions, in

which the dual quaternions and velocities are used for feedback. Specifically,

both set-point stabilization and tracking control are addressed in this work. It is

well-known that rigid body attitude control is subject to topological constraints

which often result in discontinuous control to avoid the unwinding phenomenon.

In contrast, the hybrid scheme allows the controlled system to be robust in

the presence of uncertainties, which would otherwise cause chattering about

the point of discontinuous control while also ensuring acceptable closed-loop

response characteristics. The stability of the closed-loop system is guaranteed

through a Lyapunov analysis and the use of invariance principles for hybrid

systems. Simulation results for a rigid body model are presented to illustrate the

performance of the proposed hybrid dual quaternion feedback control schemes.

I. Notation
The following notation and definitions are used throughout the paper:

• Rn denotes n-dimensional Euclidean space.

• R denotes the real numbers and R≥0 denotes the nonnegative real numbers; i.e., R≥0 = [0,∞)

• Z denotes the integers. N denotes the natural numbers including 0; i.e., N = {0, 1, . . .}.

• B denotes the closed unit ball, of appropriate dimension, in a Euclidean norm.

• Given a vector x ∈ Rn, |x| denotes the Euclidean vector norm.
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• Given a set S, S denotes its closure. Given a a point x ∈ Rn, |x|S := infy∈S |x− y|.

• The equivalent notation [x> y>]>, and (x, y) is used for vectors.

• Given a vector x ∈ Rn, ν (x) := [0 x>]>.

• An n× n identity matrix is defined as In. An n× p zero vector/matrix is represented by 0n×p.

• The unit quaternion with scalar part equal to one and the zero quaternion are given by 1 = (1, 03×1)

and 0 = (0, 03×1), respectively.

• A function α : R≥0 → R≥0 is said to belong to class-K if it is continuous, zero at zero, and strictly

increasing.

• A function α : R≥0 → R≥0 is said to belong to class-K∞ if it belongs to class-K and is unbounded.

• A function β : R≥0×R≥0 → R≥0 is said to belong to class-KL if it is nondecreasing in its first argument,

nonincreasing in its second argument, and lims↘0 β(s, t) = limt→∞ β(s, t) = 0.

II. Introduction
Rigid body control is often separated into two individual problems: attitude control (see [1–6]) and

translational (point mass) control (see [7] and the references therein). However, for many practical applications

that include robotics, computer graphics [8, 9], unmanned air vehicle control and spacecraft proximity

operations [10–12] to name a few, these translational and rotational dynamics are often coupled. Hence, some

recent research on controlling rigid body dynamics utilizes the Lie group SE(3) for the configuration space

(pose) of the rigid body and its tangent bundle TSE(3) for the state space which includes velocities [13–15].

Tracking control of fully actuated vehicles is discussed in detail in [16]. Nevertheless, most of this work does

not delve into the details of reconstructing the state of the system out of sensor measurements. In order to

bypass this problem, a feedback law that directly utilizes vector measurements with the landmark-based

control solution is presented in [17]. However, such strategies rely on continuous controllers while it has been

shown in [18] that global asymptotic stabilization of a given set-point is not possible by means of continuous

feedback. In order to solve this problem, continuous controllers based on the Morse-Lyapunov approach

have been suggested in [2, 19] which result in almost global asymptotic stability, while discontinuous control

laws have been proposed (see e.g.[20, 21]) to achieve global asymptotic stability. However, the latter are

not robust to small measurement noise, as shown by [22]. Recent advances in hybrid control theory have

shown that well-posed hybrid systems, namely, those satisfying the so-called hybrid basic conditions [23]

are inherently robust to small measurement noise, making hybrid control techniques suitable candidates for

the problem at hand. In fact, hybrid control strategies using both quaternion feedback and rotation matrix

feedback have been proposed in [22, 24] and [25–29], respectively. Specifically on the tangent bundle TSE(3)

associated with the special Euclidean group SE(3), [29] presents an application of hybrid control strategies to
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under-actuated vehicles, while [30] designs hybrid control strategies for fully actuated rigid bodies with only

landmark-based information.

It is a well known fact that global asymptotic stabilization of rigid body attitude is subject to topological

constraints [31, 32]. Hence, a rigid body pose representation using unit dual quaternions (UDQs) inherits the

same topological difficulties as the rigid body attitude parametrization using unit quaternions (see [33, 34]

and the references therein). Specifically, a UDQ provides a dual cover for the elements in SE(3), i.e., for

every element in SE(3), there are exactly two UDQs. Since such a representation of rigid body pose is

non-unique, the control objective results in stabilizing a disconnected set of UDQ’s representing the same

rigid body position and orientation. Similar to the problem of rigid body attitude stabilization in SO(3)

[32], a continuous linear feedback law (as in [10, 34, 35]) results in the ‘unwinding’ phenomenon, while a

discontinuous controller designed as in [36, 37] would not be robust to small measurement noise and nonlinear

controllers may suffer in terms of performance. Hybrid feedback control [23] can overcome such topological

obstructions and provide robust global solutions for the rigid body attitude stabilization problem [32]. In

the case of full state measurements (i.e., position, orientation, linear and angular velocity measurements),

[10] presents a continuous controller for rigid body pose stabilization. Results associated with the kinematic

sub-problem of rigid body motion using hybrid hysteresis-based UDQs are presented in [33], while an improved

version using a bimodal approach to reduce higher average settling time or energy consumption is presented

in [38]. In addition, MPC-based dual quaternion spacecraft pose control is presented in [39, 40]. In this paper

we adapt the hysteresis-based switching strategy of rigid body attitude presented in [31, 32] to the Unit

Dual Quaternion (UDQ) parameterization of rigid body pose. Specifically, a complete solution for rigid body

kinematic and kinetic control is presented using a hybrid hysteresis-based switching strategy. Considering that

the full state, i.e, position, orientation, linear and angular velocity measurements are available for feedback,

the following problems of interest are formalized in this paper:

• A general hybrid feedback control solution with dual quaternion and dual velocity feedback for a rigid

body constant set-point pose stabilization is presented and its details are discussed in Section V.A.

Unlike [33], where only the attitude and translational kinematics were treated, this paper treats hybrid

control of both kinematics and kinetics.

• The problem of tracking a time-varying reference is discussed in detail in Section V.B. A hybrid

control strategy to address a rigid body pose tracking a time-varying reference is formulated. As

an improvement to results presented in [10, 36, 37], this paper establishes robust global asymptotic

stability of rigid body set-point stabilization and time-varying reference tracking problems, respectively.

• Robustness of the proposed algorithms to uncertainties is discussed in Section V.C.

• Numerical examples for a rigid body set-point stabilization and time-varying reference tracking are
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given in Section VI.

III. Preliminaries

A. Well-posed hybrid systems

Hybrid systems are dynamical systems with both continuous and discrete dynamics, where a hybrid

system H = (C, f,D, g) is defined by the following objects:

• A mapping f : Rn → Rn called the flow map.

• A mapping g : Rn → Rn called the jump map.

• A set C ⊂ Rn called the flow set.

• A set D ⊂ Rn called the jump set.

The flow map f defines the continuous dynamics on the flow set C, while the jump map g defines the discrete

dynamics on the jump set D. These objects are referred to as the data of the hybrid system H. Given a

state χ of the hybrid system H, the notation χ+ indicates the values of the state after the jump∗. A solution

φ to H is given on extended time domain, called hybrid time domain, that is parametrized by the pairs (t, j),

where t is the ordinary time component and j is a discrete parameter that keeps track of the number of

jumps; see [23]. Given a solution φ to H, the notation domφ represents its domain, which is a hybrid time

domain. A solution to H is said to be nontrivial if domφ contains at least one point different from (0, 0),

complete if domφ is unbounded, and maximal if it cannot be extended, i.e., it is not a truncated version of

another solution. The set SH(ξ) denotes the set of all maximal solutions to H from ξ.

B. Rigid body pose

The position and orientation of a rigid body with respect to a generic reference frame is defined by

its relative position p ∈ R3 and its relative orientation R ∈ SO(3) which represents a rotation from the

body frame to the inertial frame. Namely, its position p and orientation R form an element (p,R) of

the three-dimensional special Euclidean group SE(3) := R3 × SO(3). Given (p,R) ∈ SE(3), a unit dual

quaternion associated with it is given by [41]

q̂ = qr + εqt, (1)

where

qr =

ηr

µr

 ∈ S3 : R = R(qr),

∗Precisely, given a trajectory (t, j) 7→ χ(t, j) to H, χ+ = χ(t, j + 1) or χ+ = g(χ(t, j))
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and

qt =

ηt

µt

 = 1
2ν (p) ⊗ qr ∈ H,

where ν (p) =
[
0 p>

]>
, p ∈ R3 is the position of the center of mass in inertial frame. Notice that the

position of the rigid body in body frame of reference is given by ν (pb) = q∗r ⊗ ν (p) ⊗ qr ∈ Hv, pb ∈ R3. A list

of basic UDQ operations are given in the Appendix.

IV. Problem description
Given an orthonormal inertial frame {I} and an orthonormal body frame {B}, fixed to the rigid body,

its dynamic equations of motion in dual-quaternion representation [10, 38] are given by (see Appendix for

details)

˙̂qb = 1
2 q̂b ⊗ ν (ω̂b)

M ? ν ( ˙̂ωs
b ) = û− ν (ω̂b) × (M ? ν (ω̂s

b ))
(2)

where ν (ω̂b) = (0 + ε0, ω̂b) ∈ Ĥv, ν (ω̂s
b ) = (0 + ε0, ω̂s

b ) ∈ Ĥv, ω̂s
b = vb + εωb, ω̂b = ωb + εvb, ωb, vb ∈ R3 are the

linear and angular velocities of the rigid body with respect to the inertial frame {I} represented in the body

frame {B}, respectively; and û = ν (F ) + εν (τ ) ∈ Ĥv, where F ∈ R3 represents control forces and τ ∈ R3

represents control torques applied to the rigid body in its frame of reference. The dual inertia matrix (2) is

given by

M =



1 01×3 0 01×3

03×1 mI3 03×1 03×3

0 01×3 1 01×3

03×1 03×3 03×1 J


, (3)

where m ∈ R is the mass of the rigid body, J = J> > 0, J ∈ R3×3 is the mass moment of inertia of the body

about its center of mass written in the body frame. Since the mass m is positive and the inertia matrix J is

a real symmetric positive definite matrix, the dual inertia matrix M in the above formulation is invertible.

With this dynamic model, the main goal in this paper is to design a controller that asymptotically

stabilizes the rigid body pose to a desired constant set-point given by (q̂d, 0̂) ∈ Ŝ3 × Ĥv or time-varying

reference position, orientation, and velocities, t 7→ (q̂d(t), ν (ω̂d(t))) ∈ Ŝ3× Ĥv, where ω̂d(t) is the dual velocity

of the desired frame {D} with respect to the inertial frame {I} represented in the body frame {B}.

To formally present the problem, let us define the dual quaternion and dual velocity error variables of the
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body frame {B} with respect to the desired frame {D} resolved into {B} as

q := q̂∗d ⊗ q̂b ∈ Ŝ3, ν (ω) := ν (ω̂b) − ν (ω̂d) ∈ Ĥv. (4)

Differentiating the above error variables and following [34, 42], yields the error dynamics

q̇ = 1
2q ⊗ ν (ω)

ν (ω̇s) = M−1 ? (û− ν (ω̂b) × (M ? ν (ω̂s
b ))) − ν ( ˙̂ωs

d)
(5)

Then, in these error coordinates, convergence to the desired constant set-point (q̂d, 0̂) or to the time-varying

reference t 7→ (q̂d(t), ν (ω̂d(t))) ∈ Ŝ3 × Ĥv reduces to q converging to the unit dual quaternion ±1̂ and ν (ω)

converging to the dual quaternion 0̂. With this reformulation, the problem we solve in this paper is stated as

follows.

For scenarios with full state feedback, i.e., the entire state (q̂b, ω̂b) is available for feedback,

Problem 1. Given a constant set-point reference pose (q̂d, 0̂) ∈ Ŝ3 × Ĥv; or

Problem 2. Given a reference pose trajectory t 7→ (q̂d(t), ν (ω̂d(t))) ∈ Ŝ3 × Ĥv;

design a control law assigning û in (2) such that the resulting closed-loop system satisfies the following

properties:

1) Stability: trajectories to the closed-loop system in error coordinates (q, ν (ω)) are such that q stays

close to either 1̂ or −1̂ and ν (ω) stays close to zero when they start close to each respective point;

2) Attractivity: In the error coordinates (q, ν (ω)), the q component converges to 1̂ or −1̂, with zero linear

and angular velocity ν (ω).

3) Robustness: For each compact set of initial conditions and level of closeness to reference set-point, there

exists nonzero perturbation to the closed-loop system such that for each initial position, orientation,

linear and angular velocities of the rigid body in the said compact set, the resulting trajectories

converge to nearby the set-point, with desired level of closeness.

V. Hybrid Feedback Control and Stability
Given the rigid body kinematics and dynamics in error coordinates in (5), due to a desired constant

or a time-varying structure of the reference given by (q̂d, 0̂) ∈ Ŝ3 × Ĥv, t 7→ (q̂d(t), ν (ω̂d(t))) ∈ Ŝ3 × Ĥv,

respectively, in this section, we present the hybrid feedback control design for each of these cases separately.

A. Problem 1: Rigid body constant set-point pose stabilization

With the rigid body kinematics and dynamics in error coordinates in (5), as in the scenario of Problem

1, consider that a constant set-point reference pose (q̂d, 0̂) ∈ Ŝ3 × Ĥv is given and the output of rigid body
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dynamics (defined in (2)) y = (q̂b, ω̂b) is available for feedback. Hence, the error vector (q, ω) defined in (4)

is available for feedback. In addition, for the set-point stabilization problem since the desired dual velocity

ν (ω̂d) = 0̂, the rigid body kinematics and dynamics in error coordinates in (5) can be rewritten as follows:

q̇ = 1
2q ⊗ ν (ω),

ν (ω̇s) = M−1 ? (û− ν (ω) × (M ? ν (ωs))).
(6)

A dual quaternion-based control law for such a system in (6) is presented in [34, Theorem 1, equation (13)]

which, suffers from topological obstructions. To overcome this limitation and solve Problem 1, inspired by

the formulation presented in [32], a dynamic feedback that depends on the logic variable h ∈ {−1, 1} =: Q, is

proposed. The proposed hybrid controller is given as follows:

ḣ = 0 (q, ν (ω), h) ∈ C,

h+ = −h (q, ν (ω), h) ∈ D,

û = Iuκ(q, ν (ω), h)

(7)

where Iu :=

 0 01×3

03×1 I3

,
κ(q, ν (ω), h) := −hkp(q∗ ⊗ (hqs − 1̂s)) − kdν (ωs), (8)

kp, kd > 0,

C = {(q, ν (ω), h) ∈ Ŝ3 × Ĥv ×Q : hηr ≥ −δ},

D = {(q, ν (ω), h) ∈ Ŝ3 × Ĥv ×Q : hηr ≤ −δ},
(9)

with δ ∈ (0, 1) and ηr is the scalar part of rotational error quaternion qr ∈ S3, where q = qr + εqt. Hence,

the hybrid closed-loop model of the rigid body error kinematics and dynamics includes system (6) and

the hybrid feedback controller (7)-(9). The closed-loop system denoted by H = (C, f,D, g) has state†

ξ = (q, ν (ω), h) ∈ Ŝ3 × Ĥv ×Q =: X and hybrid dynamics

ξ̇ = f (ξ) ξ ∈ C,

ξ+ = g(ξ) ξ ∈ D.
(10)

†As in previous work using models in terms of unit dual quaternions [10, 34, 35] and closed-loop systems with states using
unit quaternions and logic variables [24, 32], we treat the state space of the closed-loop system, namely, X , as a set embedded in
a large enough Euclidean space. As in those references, this embedding allow us to employ notions for closedness of sets and
continuity of maps that are standard in Euclidean spaces.
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Details on hybrid system modeling are presented in Section III.A. The flow and jump sets satisfy C ∪D = X

and the maps f : X → X and g : X → X are given by

f (ξ) :=


1
2q ⊗ ν (ω)

M−1 ? (Iuκ(ξ) − ν (ω) × (M ? ν (ωs)))

0

 , g(ξ) :=


q

ν (ωs)

−h

 . (11)

Due to the design of the hybrid feedback (7)-(9), this hybrid system renders the compact set

A = {ξ ∈ X : q = h1̂, ν (ωs) = 0̂}, (12)

globally asymptotically stable (details of this result are given in Theorem V.2 below). Note that for a constant

set-point stabilization problem, the linear and angular velocity of the fixed frame ν (vd) = 0, ν (ωd) = 0. Hence,

in other words, the set A represents the desired rigid body pose error q = qr + εqt = h1̂, and dual velocity

error ν (ωs) = ν (vb − vd) + εν (ωb − ωd) = 0̂, i.e., the desired pose qr = 1, qt = 0, angular velocity ν (ωb) = 0,

and linear velocity ν (vb) = 0.

Remark V.1 Given the desired position, orientation, and velocities (q̂d, ν (ω̂d)) ∈ Ŝ3 × Ĥv, the first term in

the equation (8) can be written as

−hkp(q∗ ⊗ (hqs − 1̂s)) = −kp(hq∗ ⊗ (hqt + ε(hqr − 1))). (13)

Using the quaternion multiplication rule, equation (13) can be rewritten as follows.

−kph(q∗ ⊗ (hqs − 1̂s)) = −kp

 ηrηt + µ
>
r µt

ηrµt − ηtµr − µr × µt

 + εkp

1− hηr + η
2
t + µ

>
t µt

−hµr

 . (14)

Therefore, the output of the dynamic feedback (7)-(9), using (4), can be re-written as following.

û =

 0

−kp(ηrµt − ηtµr) + kp(µr × µt) − kd(vb − vd)

 + ε
 0

−hkpµr − kd(ωb − ωd)

 . (15)

Therefore, equating the input û = ν (F ) + ν (τ ) ∈ Ĥv to (15) results in the following expression for the force

F ∈ R3 and torque τ ∈ R3:

F = −kp(ηrµt − ηtµr) + kp(µr × µt) − kd(vb − vd),

τ = −hkpµr − kd(ωb − ωd).
(16)

Note that for the set-point stabilization problem, namely, Problem 1, the linear and angular velocity vd and

ωd of the fixed desired frame satisfy vd = 03×1, ωd = 03×1 in (16).

8



Next, the hybrid closed-loop system H satisfies the hybrid basic conditions (see [23, Proposition 6.10]) and

our main result is as follows.

Theorem V.2 The set A in (12) is globally asymptotically stable for the closed-loop system H.

Proof : For the hybrid closed-loop system (10), we first show that every complete solution to it converges to

A. For this purpose, we use the invariance principle for hybrid systems in [23] for which H has to satisfy the

hybrid basic conditions, which is already the case from the hybrid system H formulation. After that, since H

satisfies the hybrid basic conditions, following [23, Proposition 6.10], we can conclude every maximal solution

to the hybrid system is complete, in this way showing the asymptotic stability of A.

Now to show convergence of complete solutions to A, consider the Lyapunov function candidate V : X → R

given by

V (ξ) = 1>V (ξ) ∀ξ ∈ X (17)

where V : X → Hs is defined as

V (ξ) := kp(hq − 1̂) ◦ (hq − 1̂) +
1
2ν (ωs) ◦ (M ? ν (ωs)) ∀ξ ∈ X ,

1̂ = 1 + ε0, 1 = (1, 03×1), and ‘◦’ operator for the UDQs is defined in item 8)d) in Appendix. With

qr = (ηr, µr) ∈ S3, qt = (0, µt) ∈ Hv as defined in (1), ν (ω) = (0, ωb) ∈ Hv, ν (v) = (0, vb) ∈ Hv, as defined in

(4), since qr ∈ S3, η2
r + µ

>
r µr = 1 and with h2 = 1, (17) can be simplified as

V (ξ) = 2kp(1− hηr) + kp(µ>t µt) + 1
2 (mv>b vb + ω

>
b Jωb). (18)

The Lyapunov function in (18) satisfies V (ξ) = 0 for all ξ ∈ A, V (ξ) > 0 for all ξ < A. In addition, for any

c > 0, there exists a r > 0 such that V (ξ) > c whenever |ξ| > r. Thus the set Ωc := {ξ ∈ X : V (ξ) ≤ c} is

compact for every c > 0.

Next, the time derivative of the Lyapunov function candidate V in (17) along the flows is given by ‡

d
dtV (ξ) = 1>( d

dtV (ξ))

= 1>(kph(hq − 1̂) ◦ d
dt (q) + kph

d
dt (q) ◦ (hq − 1̂)

+1
2ν (ωs) ◦ (M ? d

dt (ν (ωs))) + 1
2

d
dt (ν (ωs)) ◦ (M ? ν ((ωs)))).

(19)

Next, using the properties in items 10)c), 10)d) of Appendix, respectively,

d
dtV (ξ) = 1>(2kph(hq − 1̂) ◦ d

dt (q) + ν (ωs) ◦ (M ? d
dt (ν (ωs)))). (20)

‡ By d
dt
V (ξ) we mean the inner product between the gradient of V and the vector field f governing the continuous change

of ξ given in (10).
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With f in (10), and property 13) in Appendix,

d
dtV (ξ) = 1>(2kph(hq − 1̂) ◦ ( 1

2q ⊗ ν (ω))

+ν (ωs) ◦M ?M−1(Iuκ(ξ) − ν (ω̂b) × (M ? ν (ω̂s
b )))),

(21)

for each ξ ∈ C. Given q1, q2, q3 ∈ Ĥ, respectively, from Appendix, following the property in item 10)a), the

first term in (21) can be written as follows:

kph(hq − 1̂) ◦ (q ⊗ ν (ω)) = ν (ωs) ◦ (q∗ ⊗ kph(hqs − ε1)). (22)

Next, the second term in (21) with û = Iuκ(ξ) is given by

ν (ωs) ◦ (û− ν (ω) × (M ? ν (ωs))) = ν (ωs) ◦ û− ν (ωs) ◦ (ν (ω) × (M ? ν (ωs))). (23)

Using the operation in items 10)b) and 10)f) along with the cross product operation of the dual quaternion

in item 10)g) of Appendix, the second term in (23) results in the following:

ν (ωs) ◦ (ν (ω) × (M ? ν (ωs))) = 0̂.

Then, combining these steps, we have,

ν (ωs) ◦ (û− ν (ω) × (M ? ν (ωs))) = ν (ωs) ◦ Iuκ(ξ) − ν (ωs) ◦ (ν (ω) × (M ? ν (ωs))),

= ν (ωs) ◦ Iuκ(ξ).
(24)

Therefore, from (22) and (23), since kp > 0 is a constant and h ∈ Q,

d

dt
V (ξ) = 1>(ν (ωs) ◦ (q∗ ⊗ kph(hqs − ε1)) + ν (ωs) ◦ Iuκ(ξ)),

= 1>(ν (ωs) ◦ (kphq
∗ ⊗ (hqs − ε1) + Iuκ(ξ))).

From (8), since Iuκ(ξ) = Iu(−kphq
∗ ⊗ (hqs − 1̂s) − kdν (ωs)) ∈ Ĥ, we get

d
dtV (ξ) = 1>(ν (ωs) ◦ (kphq

∗ ⊗ (hqs − ε1) + Iu(−kphq
∗ ⊗ (hqs − ε1))))

−1>(kdν (ωs) ◦ ν (ωs)),
(25)

where Iu =

 0 01×3

03×1 I3

, kp, kd > 0.

With the ‘◦’ operator defined in item 8)d) in Appendix, the non-velocity term in (25), using the definitions

v = vb − vd, ω = ωb − ωd (for notational simplicity) reduces to

d
dtV (ξ) = −1>(kdν (ωs) ◦ ν (ωs)) = −kdω

>ω − kdv
>v. (26)
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Therefore, from (26), defining, for each ξ ∈ C,

uC (ξ) :=


−kdω

>ω − kdv
>v if ξ ∈ C

−∞ otherwise,
(27)

we can see that 〈∇V (ξ), f (ξ)〉 = uC (ξ) ≤ 0.

Next, at jumps, for each ξ ∈ D, the Lyapunov function candidate V in (17) changes as follows:

V (g(ξ)) − V (ξ) = 1>(kp((−hq − 1̂) ◦ (−hq − 1̂)) − ((hq − 1̂) ◦ (hq − 1̂)))

Given q := qr + εqt, where qr = (ηr, µr) ∈ S3, qt = (0, µt) ∈ Hv are defined in (1),

V (g(ξ)) − V (ξ)

= 1>(kp((−h(qr + εqt) − 1̂) ◦ (−h(qr + εqt) − 1̂)) − ((h(qr + εqt) − 1̂) ◦ (h(qr + εqt) − 1̂)))

= kp(µr · µr + (hηr + 1)2 − µr · µr − (hηr − 1)2) = 4kphηr.

(28)

Since, for each point ξ in D, hηr ≤ −δ,

V (g(ξ)) − V (ξ) ≤ −4kpδ.

Defining, for each ξ ∈ D,

uD (ξ) :=


−4kpδ if ξ ∈ D

−∞ otherwise,
(29)

we have V (g(ξ)) − V (ξ) = uD (ξ) < 0 for all ξ ∈ D \ A.

Completeness of maximal solutions: We have that uC (ξ) and uD (ξ) are nonpositive for all ξ ∈ X .

And hence every solution φ ∈ SH(φ(0, 0)), where φ(0, 0) ∈ X to the hybrid system in (10) remains in X for

all (t, j) ∈ dom(φ). Also, A is compact, and the Lyapunov function V is positive definite relative to A, the

sublevel set Ωc := {ξ ∈ X : V (ξ) ≤ c} is compact for every c > 0 and V is non-increasing along the solutions

of H. These results show that any solution φ to the hybrid system H is bounded and do not blow up in finite

time. Also, g(D) ⊂ C ∪D which shows that the every solution φ to system H does not jump out of C ∪D.

Therefore, from [23, Proposition 2.10], since conditions (b) and (c) therein are not satisfied, we conclude that

every maximal solution to the closed-loop system H is complete.

Invariance principle for hybrid systems: The growth of V along the solutions to H is bounded by uC (ξ)

and uD (ξ) on X . Since H satisfies the hybrid basic conditions and V in (17) is continuous, the invariance

principle for hybrid systems in [23, Theorem 8.2] implies that every precompact (complete and bounded)
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solution to the hybrid system (10) converges to the largest weakly invariant set W contained in

V −1(a) ∩ X ∩ [u−1
C (0) ∪

(
u−1

D (0) ∩ g(u−1
D (0))

)
] (30)

for some a ∈ R≥0. Note that for every point in Ŝ3, µ = µr + εµt = 03×1 + ε03×1 implies η = ηr + εηt = ±1+ ε0.

By evaluating the dynamics (10) along solutions that remain in (30), we have that ν (ω) ≡ 0̂. Therefore, with

f in (10) and the expression of input û in (15), ν (ωs) ≡ 0̂ implies µ = µr + εµt = 03×1 + ε03×1 and since

hηr ≥ −δ with δ ∈ (1, 0), then for all ξ ∈ X ∩ u−1
C (0), q = h1̂. Hence

W ⊂ {ξ ∈ X : hηr ≥ −δ, ηr = ±1, µr = 03×1, ηt = 0, µt = 03×1, ν (ωs) = 0̂} ∩ V −1(a)

⊂ {ξ ∈ X : q = h1̂, ν (ωs) = 0̂} ∩ V −1(a)

Then, since the only invariant set is for a = 0, (30) with a = 0 is contained in A. , i.e.,

W ⊂ {ξ ∈ X : q = h1̂, ν (ωs) = 0̂} ∩ V −1(0) ⊂ A.

Since every maximal solution to H is precompact, then each maximal solution φ to H converges to A. We

conclude that A is globally attractive for the hybrid system H. Since the function V in (17) is positive-definite

relative to A and nonincreasing along the solutions of H, then A is stable for the closed-loop hybrid system.

Hence, we conclude that the set A is globally asymptotically stable for the hybrid system H. �

B. Problem 2: Rigid body time-varying reference pose tracking

Let us consider the rigid body dynamics between an orthonormal inertial frame {I} and an orthonormal

body frame {B} as outlined in Section IV. Let t 7→ xd(t) := (pd, qd, vd, ωd)(t) denote a smooth trajectory

evolving on S3 × R9 for all t ≥ 0 satisfying the following assumption.

Assumption V.3 Let π : S3×R9 → S3×R3 denote the canonical projection of S3×R9 on to S3×R3. The

reference trajectory t 7→ xd(t) := (pd, qd, vd, ωd)(t) is a complete and bounded solution to ẋd = ζ (xd) satisfying

d

dt
π(pd(t), qd(t), vd(t), ωd(t)) = (vd(t) − S(ωd(t))pd(t),

1
2qd(t) ⊗ ωd(t)) (31)

for each t ≥ 0 and for some continuously differentiable vector field ζ on S3 × R9.

To this trajectory t 7→ xd(t) satisfying Assumption V.3, for each t ≥ 0 one may associate a desired reference

frame {D}. The origin of such a desired reference frame is located at pd(0) ∈ R3 with orientation given by

qd(0) ∈ S3. In addition, a unit dual quaternion associated with this desired reference frame is given by [41]

t 7→ q̂d(t) := qd(t) + εqdt (t), (32)

where t 7→ qdt (t) = 1
2qd(t) ⊗ ν (pd(t)) ∈ Hv for all t ≥ 0. With this desired frame reference trajectory, the

12



main goal in this section is as follows:

Problem 2: Given a reference trajectory t 7→ (q̂d(t), ω̂d(t)) ∈ Ŝ3 × Ĥv, design a control law as a function of

the sensor outputs and the reference trajectory t 7→ (q̂d(t), ω̂d(t)) ∈ Ŝ3 × Ĥv such that

lim
t→∞

q(t) = ±1̂, lim
t→∞

ω(t) = 0̂

for all initial conditions, where

q = q̂∗d ⊗ q̂b ∈ Ŝ3, ν (ω) := ν (ω̂b) − ν (ω̂d) ∈ Ĥv, (33)

(q̂b, ω̂b) ∈ Ŝ3 × Ĥv is the state of the orthonormal body frame {B} outlined in Section IV. Differentiating the

error variables in (33), following [34, 42], the dynamics of the error variables are given as follows:

q̇ = 1
2q ⊗ ν (ω)

ν (ω̇s) = M−1 ?
(
û− (ν (ω) + ν (ω̂d)) × (M ? (ν (ωs) + ν (ω̂s

d))) −M ? ν ( ˙̂ωs
d)
)
,

(34)

where û ∈ Ĥv is the total dual force resolved into the body frame. Therefore, to solve Problem 2, let

us consider a hybrid feedback, similar to the hybrid controller in (7), that depends on the logic variable

h ∈ {−1, 1} =: Q, along with a feedforward term that depends on a reference input § (ν (ω̂s
d), ν ( ˙̂ωs

d)) ∈ Ĥv×Ĥv,

given as follows:

ḣ = 0 (q, ν (ω), h) ∈ C,

h+ = −h (q, ν (ω), h) ∈ D,

û = Iuκ̃(q, ν (ω), h, ν (ω̂s
d), ν ( ˙̂ωs

d))

(35)

where Iu =

 0 01×3

03×1 I3

,
κ̃(q, ν (ω), h, ν (ω̂s

d), ν ( ˙̂ωs
d)) := κfb(q, ν (ω), h, ν (ω̂s

d)) + κff (ν (ω̂s
d), ν ( ˙̂ωs

d)), (36)

the terms

κfb(q, ν (ω), h, ν (ω̂s
d)) = κ(q, ν (ω), h) + ν (ω) × (M ? ν (ω̂s

d)) + ν (ω̂d) × (M ? ν (ωs)),

κff (ν (ω̂s
d), ν ( ˙̂ωs

d)) = ν (ω̂d) × (M ? ν (ω̂s
d)) +M ? ν ( ˙̂ωs

d),

kp, kd > 0, κ(q, ν (ω), h) is given in (8),

C = {(q, ν (ω), h) ∈ Ŝ3 × Ĥv ×Q : hηr ≥ −δ},

D = {(q, ν (ω), h) ∈ Ŝ3 × Ĥv ×Q : hηr ≤ −δ},
(37)

§we consider that the reference input is generated on the hybrid time domain (t, j) 7→ (ν (ω̂s
d (t, j)), ν ( ˙̂ωs

d (t, j)))

13



with δ ∈ (0, 1) and ηr is the scalar part of rotational error quaternion qr ∈ S3.

The hybrid closed-loop model for the rigid body tracking error kinematics and dynamics includes system

(34) and the hybrid controller given in (35)-(37). The closed-loop system denoted by HT = (C, f,D, g) has

state ξ = (q, ν (ω), h) ∈ Ŝ3 × Ĥv ×Q =: X and hybrid dynamics represented by (10). The flow and jump sets

satisfy C ∪D = X and due to the design of the controller (35)-(37), the maps f : X → X and g : X → X are

given by

f (ξ) :=


1
2q ⊗ ν (ω)

M−1 ? (Iuκ̃(ξ) − ν (ω) × (M ? ν (ωs)))

0

 , g(ξ) :=


q

ν (ωs)

−h

 . (38)

Therefore, the objective specified in Problem 2 is equivalent to the global asymptotic stabilization of the set

A in (12). Next, this hybrid closed-loop system HT satisfies the hybrid basic conditions (see [23, Proposition

6.10]). The next result states that the proposed hybrid controller solves the rigid body pose tracking problem

in Problem 2.

Theorem V.4 The set A in (12) is globally asymptotically stable for the closed-loop system HT .

Proof : Since dynamics of the hybrid closed-loop system HT in (38) match the dynamics of the hybrid system

H in (11), the proof of this theorem follows the proof of Theorem V.2. �

C. Robustness of the Closed-loop System

To be able to cope with perturbations arising in real-world settings, let us consider that the plant (10) or

(38) is affected by unmodeled dynamics given by ê = (e1, 0)+ε(e2, 0) ∈ X , ei ∈ R8, i ∈ {1, 2} and measurement

error m̂ = (m1, 0) + ε(m2, 0) ∈ X , mi ∈ R8, i ∈ {1, 2} respectively, resulting in a perturbed closed-loop system

with continuous dynamics and measurements:

ξ̇ = f (ξ) + ê,

y = (q, ω) + m̂,
(39)

where the error parameters in the original coordinates ξ = (q, ν (ω), h) ∈ Ŝ3 × Ĥv × Q =: X can also be

defined as ê = (êq, êω, 0) ∈ X , êq := (e1r + εe2t ) ∈ Ŝ3, êω := (e1ω + εe2v ) ∈ Ĥv, m̂ = (m̂q, m̂ω, 0) ∈ X ,

m̂q := (m1r + εm2t ) ∈ Ŝ3, m̂ω := (m1ω + εm2v ) ∈ Ĥv. In addition, let us define r := (e1, e2,m1,m2) ∈ R16.

For simplicity, the robustness results are presented only for the hybrid system (10). Note that the result in

this section also holds for the hybrid system with tracking model HT in (38).

Following the fact that H is well-posed and the global asymptotic stability property of the set A for the
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closed-loop system H established in Theorem V.2, [23, Lemma 7.20] automatically leads to the following

result about robustness of asymptotic stability.

Theorem V.5 The set A in (12) is semiglobally, practically robustly KL asymptotically stable for the

closed-loop system H; namely, there exists class-KL function β such that, for each ε > 0 and each compact

set M⊂ X , there exists ρ > 0 such that for each measurable r : R≥0 → ρB, every solution φ to the hybrid

system H with initial condition φ(0, 0) ∈M and perturbation r satisfies

|φ(t, j)|A ≤ β(|φ(0, 0)|A, t + j) + ε ∀(t, j) ∈ domφ. (40)

In Theorem V.5, ‘practical’ means that the solutions to the hybrid system H, in the presence of some small

disturbances, converge ε > 0 close to the desired set A in a semiglobal manner, namely, when the solutions

start from arbitrary compact sets of initial conditions. A proof of this result is available in [23, Chapter 7].

VI. Simulations

A. Simulation Parameters

To verify the ideas presented in this paper we apply the hybrid hysteresis-based switching strategy to a

rigid body model with mass m = 1 kg, and inertia

J =


1 0.1 0.15

0.1 0.63 0.05

0.15 0.05 0.85

 kg-m2

as in [34]. In the results presented below, each of the the plots show simulations of ‘hybrid’, ‘discontinuous’

and ‘continuous’, controllers. For the simulations labeled hybrid, the hysteresis half-width δ ∈ (0, 1) and

h(t, j) ∈ {−1, 1}. When the hysteresis width δ = 0, the controller reduces to discontinuous scheme where

h(t, j) := sgn(ηr) =


−1 ηr < 0

1 ηr ≥ 0.
(41)

When δ > 1, h(t, j) = 1 and a continuous controller exhibiting unwinding is implemented. To this end,

simulations associated with full state feedback using hybrid feedback (7)-(9), where the output of the system

(6) is measured as y = (q̂b, ω̂b) (and hence the error vector (q, ω) is available for feedback) are presented in

Section VI.B. And the simulation results associated with the hybrid tracking feedback controller (35)-(37)

with measurement of dual quaternion qb are presented in Section V.B. Following the results in Section V.C,

for all the simulation results below, the measured value of the pose qm := q+kmq/|q+kmq|, where mq = ~e/|~e|

is the normalized error. Each value of ~e is drawn from a zero-mean Gaussian distribution with unit variance,
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k was drawn from a uniform distribution on the interval (0, 0.2) for set-point stabilization in Section VI.B

and the interval (0, 0.02) for the tracking control presented in Section VI.C. This additional noise in the

states results in chattering behavior for the switching signal sgn(ηr) for the discontinuous controller, while

the hysteresis-based hybrid logic is impervious to such noise as shown in Figures 1-2 and Figure 6¶.

B. Set-point Pose Stabilization

The response of the closed-loop rigid body dynamics with hybrid feedback (7)-(9) when dual quaternion

error and velocity errors (q, ω) are available for feedback is presented in Figure 1. The simulations are

performed with the initial condition set to pb(0, 0) = (25 m, 25 m, 25 m) (position in body frame), velocity

vb(0, 0) = (0.1 m/sec, 0.2 m/sec, 0.3 m/sec), orientation qbr (0, 0) = (0, 0.4243, 0.5657, 0.7071), angular velocity

ωb(0, 0) = (0.2 rad/sec, 0.4rad/sec, 0.6 rad/sec) and h(0, 0) = 1. The energy-based controller has the gains

kd = 0.5, kp = 0.5 and a hysteresis gap of δ = 0.1. Figure 1 also shows a comparison between the
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Fig. 1 Closed-loop response of the continuous, discontinuous and hybrid controllers subjected
to noise with the switching logic h(0, 0) = 1 and δ = 0.1.

linear continuous controller with h(t, j) = 1, a discontinuous controller where the switching logic variable

h(t, j) := sgn(ηr) as in (41) and the hybrid controller with h(t, j) ∈ {−1, 1} as in Section V.A. Next, we

consider a larger hysteresis width of δ = 0.4 and repeat the the simulations with the same set of initial

conditions and uncertainties as above. The hybrid controller now exhibits the same unwinding solution as

the linear continuous controller due to the larger hysteresis gap. As discussed previously in [32], there is a

correlation between hysteresis width δ and the sensitivity of the controller (7) to noise and the control effort
¶Code at https://github.com/HybridSystemsLab/DualQuaternionBasedHybridController
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Fig. 2 Unwinding in rigid body rotational and translational dynamics with the switching
logic h(0, 0) = 1 and δ = 0.4.

as shown in Figures 1- 2.

C. Pose Tracking

To simulate the rigid body pose tracking algorithm presented in Section V.B, let us consider the desired

reference position and orientation satisfying Assumption V.3 are generated by the following dynamics.

q̇d = 1
2qd ⊗ ν (ωd

d/I )

q̇dt = 1
2qd ⊗ ν (vd

d/I ) + 1
2qdt ⊗ ν (ωd

d/I )

ω̇d
d/I = 03×1

v̇d
d/I = (0, 0,−0.0098) − ωd

d/I × v
d
d/I

(42)

where ωd
d/I , v

d
d/I are the angular, linear velocity of the desired frame with respect to the inertial frame

expressed in the desired frame, respectively. With these set of the equations in (42), the reference pose

to be tracked is generated using the following initial conditions: qd(0, 0) = (1, 0, 0, 0), qdt (0, 0) = (0, 0, 0, 0),

ωd
d/I = (−0.1, 0.65,−0.2) rad/sec, vd

d/I = (−0.5, 0.1, 0.1) m/sec. The corresponding reference trajectory is

presented in Figure 3. Next, the rigid body that tracks the reference pose in Figure 3 has the dynamics as
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Fig. 3 Reference trajectory generated with the dynamics in (42) and resolved into the desired,
body frames of reference, respectively.
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given in (2) and its initial conditions are given as follows. qbr (0, 0) = (0.1, 0.2659, 0.5318, 0.7978), qbt (0, 0) =

(−1.1966,−0.4318, 0.7648,−0.2159), pb = (2, 2, 1) m (position in body frame), ωb = (−0.6, 0.6, 1) rad/sec,

vb = (1, 0.5, 0.5) m/sec. The the hybrid feedback controller (35)-(37) is implemented with the gains kp = 4,

kd = 4. Noise is added to the simulations as discussed in Section VI.A. As shown in Figure 4, rigid body

tracks the reference orientation, position, angular and linear velocities, respectively. In addition, Figure 5

illustrates the position of the rigid body as seen in the rigid body frame of reference and desired frame of

reference.

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

Fig. 4 Rigid body pose tracking with hybrid feedback controller (35)-(37), h(0, 0) = 1 and δ = 0.4
resolved into the body frame of reference.

As discussed in the set-point stabilization problem in Section VI.B, a discontinuous controller where the

switching logic variable h(t, j) := sgn(ηr) as in (41) would result in chattering and not tracking the desired

reference while a hybrid controller with h(t, j) ∈ {−1, 1} tracks the reference pose efficiently in the presence

of measurement errors. These results are illustrated in Figure 6.

VII. Conclusion
In this paper, a hybrid UDQ feedback control scheme was proposed for rigid body robust pose stabilization

with full state of the system available for feedback. The stability of the closed-loop system was guaranteed

through an energy-based Lyapunov function analysis using invariance principles for hybrid systems presented

as set-point stabilization and tracking problems. We showed that the proposed control schemes can globally
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Fig. 5 Desired, rigid body trajectories expressed in desired frame of reference and rigid body
frame of reference, respectively.

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

Fig. 6 Rigid body trajectories with discontinuous and hybrid controller, respectively.

asymptotically stabilize the kinematics and kinetics and establish global asymptotic stability for a rigid body.

In addition, these proposed hybrid schemes allows for the controlled system to be stable in the presence of

uncertainty, which would otherwise cause chattering about the point of discontinuous control. Simulation

results for the rigid body motion are presented.
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VIII. Appendix
Dual Quaternions

1) A set of quaternions (not necessarily normalized) are denoted by H := {q : q = (η, µ), η ∈ R, µ ∈ R3},
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in which η ∈ R is the scalar part and µ ∈ R3 is the vector part.

2) S3 denotes the set of unit quaternions, which is often used to parameterize the Lie group SO(3) of

rigid body attitude, where each unit quaternion is such that |q|2 = η2 + µ>µ = 1. Trivially, S3 ⊂ H.

3) The set S3 has, under the quaternion product, an identity element 1 = (1, 03×1) and each q = (η, µ) ∈ S3

has an inverse given by the quaternion conjugate q∗ = (η,−µ).

• Note that, given q1, q2 ∈ H, where q1 = (η1, µ1) and q2 = (η2, µ2), under the quaternion

multiplication rule, we have:

q1 ⊗ q2 =

 η1η2 − µ>1 µ2

η1µ2 + η2µ1 + µ1 × µ2

 ;

4) The set of dual quaternions is given by

Ĥ := {q̂ : q̂ = (η̂, µ̂) = qr + εqt, qr, qt ∈ H}

where ε is the unit dual, defined as ε , 0, ε2 = 0, and given q̂ = (η̂, µ̂) ∈ Ĥ,

• η̂ = ηr + εηt is the dual scalar part of, where ηr, ηt ∈ R;

• µ̂ = µr + εµt is the dual vector part, where µr, µt ∈ R3;

• qr = (ηr, µr) ∈ H, where ηr ∈ R, µr ∈ R3;

• qt = (ηt, µt) ∈ H, where ηt ∈ R, µt ∈ R3.

5) The space Ĥv denotes the dual quaternions with zero scalar part; i.e., Ĥv := {q̂ = (η̂, µ̂) ∈ Ĥ : η̂ = 0}.

6) The set of dual quaternions with zero vector part is given by Ĥs := {q̂ = (η̂, µ̂) ∈ Ĥ : µ̂ = 03×1}.

7) Given a dual quaternion q̂ ∈ Ĥ, the following definitions hold:

• Conjugate: q̂∗ = q∗r + εq∗t = (η̂,−µ̂);

• Swap: q̂s = qt + εqr.

where q∗ = (η,−µ) is the conjugate of a given quaternion q = (η, µ).

8) Given any dual quaternions q̂1, q̂2, q̂3 ∈ Ĥ, we define the following:

a) Dual quaternion multiplication: q̂1 ⊗ q̂2 = qr1 ⊗ qr2 + ε(qr1 ⊗ qt2 + qt1 ⊗ qr2 ) ∈ Ĥ;

b) Dot product: q̂1 ·q̂2 =
1
2 (q̂∗1⊗q̂2+q̂

∗
2⊗q̂1) = 1

2 (q̂1⊗q̂∗2+q̂2⊗q̂∗1 ) = qr1 ·qr2+ε(qt1 ·qr2+qr1 ·qt2 ) ∈ Ĥs;

c) Cross product: q̂1 × q̂2 =
1
2 (q̂1 · q̂1 − q̂∗2 · q̂∗1 ) ∈ Ĥv;

d) Circle product: q̂1 ◦ q̂2 = qr1 · qr2 + qt1 · qt2 ;

e) Dual norm: ‖q̂‖2 = q̂ ⊗ q̂∗ = q̂∗ ⊗ q̂ = q̂ · q̂

f) M ? q̂ = (M11qr +M12qt) + ε(M21qr +M22qt), Mij ∈ R4×4, i, j ∈ {1, 2}.

20



• Note that, given a matrix M ∈ R4×4 and a quaternion q = (η, µ) ∈ H,

Mq = (m11η +m12µ,m21η +m22µ) ∈ H,

where m11 ∈ R, m12 ∈ R1×3, m21 ∈ R3×1, m22 ∈ R3×3 are entries of

M =

m11 m12

m21 m22

 .

9) The zero dual quaternion is given by 0̂ = 0 + ε0.

10) The dual quaternions q̂1, q̂2, q̂3 ∈ Ĥ satisfy the following properties.

a) q̂1 ◦ (q̂2 ⊗ q̂3) = q̂s
2 ◦ (q̂s

1 ⊗ q̂∗3 ) = q̂s
3 ◦ (q̂∗2 ⊗ q̂s

1);

b) q̂1 ◦ (q̂2 × q̂3) = q̂s
2 ◦ (q̂3 × q̂s

1) = q̂s
3 ◦ (q̂s

1 × q̂2);

c) (M ? q̂1) ◦ q̂2 = q̂1 ◦ (M> ? q̂2);

d) q̂1 ◦ q̂2 = q̂2 ◦ q̂1;

e) q̂s
1 ◦ q̂s

2 = q̂1 ◦ q̂2;

f) (q̂s
1)s = q̂1;

g) q̂1 × q̂1 = 0̂.

11) The set of unit dual quaternions is denoted by Ŝ3, where each unit dual quaternion q̂ = qr + εqt ∈ Ĥ,

qr, qt ∈ H, under the dual norm

‖q̂‖2 = q̂ ⊗ q̂∗ = q̂∗ ⊗ q̂ = qr ⊗ q∗r + ε(qr ⊗ q∗t + qt ⊗ q∗r ),

is such that qr ⊗ q∗r = 1 and qr ⊗ q∗t + qt ⊗ q∗r = 0

12) The set Ŝ3 has, under the dual quaternion multiplication, an identity element 1̂, where 1̂ = 1 + ε0,

1 = (1, 03×1), 0 = (0, 03×1) and the inverse given by the dual quaternion conjugate q̂∗.

13) Given an invertible matrix M ∈ Rn×n, we define the operation M ?M−1 := In.
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