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Abstract: This paper presents an innovative hybrid systems approach to the sender-receiver
synchronization of timers. Via the hybrid systems framework, we unite the traditional sender-
receiver algorithm for clock synchronization with an online, adaptive strategy to achieve
synchronization of the clock rates to exponentially synchronize a pair of clocks connected over a
network. Following the conventions of the algorithm, clock measurements of the nodes are given
at periodic time instants, and each node uses these measurements to achieve synchronization.
For this purpose, we introduce a hybrid system model of a network with continuous and
impulsive dynamics that captures the sender-receiver algorithm as a state-feedback controller
to synchronize the network clocks. Moreover, we provide sufficient design conditions that ensure
attractivity of the synchronization set.
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1. INTRODUCTION

In distributed systems, the coordination of time among
discrete nodes is an inherent necessity to the implemen-
tation of many distributed systems that rely on event-
ordering. However, in the case of distributed systems and
algorithms acting on a dynamical process, the consensus
on time among the distributed agents must also accurately
capture when an event occurs to ensure the desired system
function. In fact, the lack of accurate time consensus
among the distributed agents can result in performance
issues that affect the overall system, see Graham and Ku-
mar (2004) and Wei Zhang et al. (2001). The coordination
of time (or clock synchronization) is achieved through the
consensus of the internal clocks at each distributed agent.
However, communication delays in the distributed net-
work, differing rates of change in the clocks of each node,
and the lack of an absolute time reference, pose a unique
set of challenges to the problem of clock synchronization
for which has yielded a number of proposed solutions (see
Wu et al. (2010) and Sundararaman et al. (2005)).

Among the number of existing algorithms for clock syn-
chronization, sender-receiver (or two-way) based synchro-
nization algorithm underpins several ubiquitous clock syn-
chronization protocols including NTP (see Mills (1991)
), PTP (see IEEE (2008) ), and TPSN (see Ganeriwal
et al. (2003) ). The sender-receiver algorithm relies on the
existence of a known reference that is either injected to the
system or provided by an elected agent in the distributed
system; synchronization is then achieved through a series
of chronologically ordered two-way message exchanges be-

? This research partially supported by NSF Grants no. ECS-
1710621 and CNS-1544396, by AFOSR Grants no. FA9550-16-1-
0015, FA9550-19-1-0053, and Grant no. FA9550-19-1-0169, and by
CITRIS and the Banatao Institute at the University of California.

tween each synchronizing node and the known reference.
With sufficient information from the exchanged messages,
the relative differences in the clock rates and offset can
be estimated and applied as a correction to the clock of
the synchronizing node, see Freris et al. (2010). However,
while the difference in the output can be determined and
implemented online, the relative clock rate is estimated
through offline filtering techniques (see Mills (1991)) or
least-squares estimation (see Wu et al. (2010)).

In this paper, we present a hybrid approach to sender-
receiver synchronization with an, online, adaptive method
to synchronize the clock rates. Using the hybrid systems
framework, we show that our algorithm exponentially
synchronizes a pair of clocks connected over a network
while preserving the messaging protocols and network
dynamics of traditional sender-receiver algorithms. Unlike
the existing algorithms of NTP, PTP, and TPSN, our
proposed solution provides a Lyapunov-based convergence
analysis to a set in which the clocks are synchronized
with sufficient conditions ensuring their synchronization.
We emphasize to the reader that previous analysis on
sender-receiver synchronization has only provided results
to its feasibility and that the literature lacks results to its
performance in a dynamical system setting.

This paper is organized as follows: Section 2 introduces
the sender-receiver algorithm as presented in the liter-
ature. Section 3 outlines the motivation for this paper.
Section 5.1 presents some preliminary material on hybrid
systems. Section 5 formally introduces the problem under
consideration and the hybrid model that solves it. Section
5.4 details the main results, while Section 5.5 provides
numerical examples. Due to space constraints, the proofs
of the results along with other details have been omitted
and will be published elsewhere.



Node i

Network

Node kNode 1 Node n. . . . . .

Fig. 1. General architecture of the system under consider-
ation.

Notation: In this paper the following notation and defini-
tions will be used. The set of natural numbers including
zero, i.e., {0, 1, 2, . . .} is denoted by N. The set of natural
numbers is denoted as N>0, i.e., N>0 = {1, 2, . . .}. The set
of real numbers is denoted as R. The set of non-negative
real numbers is denoted by R≥0, i.e., R≥0 = [0,∞).
The n-dimensional Euclidean space is denoted Rn. Given
topological spaces A and B, F : A ⇒ B denotes a set-
valued map from A to B. For a matrix A ∈ Rn×m, A>

denotes the transpose of A. Given a vector x ∈ Rn, |x|
denotes the Euclidean norm. Given two vectors x ∈ Rn and
y ∈ Rm, (x, y) = [x> y> ]>. For two symmetric matrices
A ∈ Rn×m and B ∈ Rn×m, A � B means that A − B
is positive definite, conversely A ≺ B means that A − B
is negative definite. Given a function f : Rn → Rm, the
range of f is given by rge f := {y | ∃ x with y = f(x)}.

2. PRELIMINARIES ON THE SENDER-RECEIVER
ALGORITHM

In a network of n nodes, consider nodes i and k in a sender-
receiver hierarchy where Node i is a designated reference
or parent agent of a synchronizing child agent Node k,
see Figure 1. Each node has an attached internal clock
τi, τk ∈ R whose dynamics are given by

τ̇i = ai
τ̇k = ak

(1)

where ai,ak ∈ R>0 denote the respective clock drift or
skew. At times tj for j ∈ N (with t0 = 0), nodes
i and k exchange timing measurements with embedded
timestamps

T ij := aitj + τi(0)

T kj := aktj + τk(0)
(2)

The goal is to then synchronize the internal clock of
Node k to that of Node i using the exchanged timing
measurements.

For a sequence of time instants {tj}∞j=1 that is assumed
to be strictly increasing and unbounded, at each tj the
standard sender-receiver synchronization algorithm as de-
scribed in the literature (see Wu et al. (2010), Freris et al.
(2009), and Eidson (2006)) is given as follows:

(P1) At time tj , Node i broadcasts a synchronization
message with its time T ij to Node k.

(P2) At time tj+1, Node k receives the synchronization
message and records its time of arrival T kj+1

(P3) At time tj+2, Node k sends a response message with
timestamp T kj+2

Fig. 2. Diagram illustrating the message exchange between
Nodes i and k for the synchronization algorithm.

(P4) At time tj+3, Node i receives the response message
from Node k and records its time of arrival T ij+3

(P5) At time tj+4, Node i sends a response receipt message
with timestamp T ij+4

(P6) At time tj+5, Node k receives the response message
from Node i and records its time of arrival T kj+5 and
then updates its clock to synchronize with the clock
of Node i using the collected timestamps T ij , T

k
j+1,

T kj+2, T ij+3, and T ij+4.

Moreover, as done in the literature, it is assumed that the
time elapsed between each time instant is given by

tj+1 − tj =

{
d ∀j ∈ {2i+ 1 : i ∈ N}, j > 0

c ∀j ∈ {2i : i ∈ N}, j > 0
(3)

where 0 < c ≤ d. The constant c defines the residence or
response time delay while d defines the propagation delay
of the message transmission.

Most pairwise synchronization protocols such as the Net-
work Time Protocol (NTP), Precision Time Protocol
(PTP, IEEE 1588), and the Timing-sync Protocol for Sen-
sor Networks (TPSN) assume that the propagation delay
in the message transmission from parent to child and child
to parent is symmetric. If the propagation delay between
the two nodes is asymmetric it introduces an error to the
calculated offset correction that cannot be accounted for,
see Freris et al. (2010). Thus, the propagation delay and
residence time are assumed to be symmetric.

With the available timestamps, at times tj+5, the relative
offset õ := τi(0)− τk(0) is calculated via

uõ =
1

2

(
(T ij+3−T kj+2)−(T kj+1−T ij )

)
(4)

by making the appropriate substitutions one has

uõ =
1

2

((
(aitj+3 + τi(0))−(aktj+2 + τk(0))

)
−
(
(aktj+1 + τk(0))−(aitj + τi(0))

))
=

1

2

((
aitj+3−aktj+2 + õ

)
−
(
aktj+1−aitj − õ

))
Rearranging terms gives,

uõ = õ+
1

2

((
aitj+3 − aktj+2

)
−
(
aktj+1 − aitj

))
(5)

If the clock drifts are synchronized, i.e., ak = ai, then

uõ = õ+
1

2

((
ai(tj+3−tj+2)

)
−
(
ai(tj+1−tj)

))
Then, by noting the bounds on the time elapsed between
time instants tj , as given in (3), one has

tj+1 − tj = tj+3 − tj+2 = d (6)

Making the appropriate substitutions in (5) gives
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Fig. 3. The evolution of the error in the clocks and clock
rates of Nodes i and k when the algorithm only applies
the offset correction uõ.

uõ = õ+
1

2

(
aid− aid

)
= õ

which is then applied to the clock state of Node k at times
tj+5. To demonstrate how this solves the synchronization
problem, consider the error between the clocks of nodes i
and k at tj+5,

τi(tj+5)− τk(tj+5) = τi(tj+5)− (τk(tj+5)− uõ)
=
(
aitj+5+τi(0)

)
−
(
aktj+5+τk(0)−(τi(0)−τk(0))

)
= aitj+5 − aktj+5

= 0

Here τk(tj+5) is replaced by τk(tj+5) − uõ where uõ
is defined in (5). Thus, the clocks at nodes i and k
synchronize for the case where the clock drifts are already
assumed to be synchronized.

3. MOTIVATION FOR AN ADAPTIVE CLOCK
SYNCHRONIZATION ALGORITHM

Now, consider the following system data ai = 1, ak = 0.8
with c = d = 0.5 and the given sender-receiver algorithm
with only the offset correction uõ being applied. After,
simulating the algorithm, Figure 3 shows the plots of the
behavior in the error of clocks and the clock rates. As
depicted in the figure, the algorithm continually applies
the offset correction but due to the mismatch in the clock
rates, the error in the clocks fails to converge to zero.
This is further evidenced analytically when noting that
a mismatch in the clock rates in equation (5) yields an
error on the offset õ in (4).

Though various strategies exist to mitigate the effects of
the error from the mismatched clock rates, the choice of
strategy is often left to the system designer, see Eidson
(2006). Moreover, these methods are often complicated
to implement and too expensive for low-cost applications
such as sensor networks. In fact, protocols such as TPSN,
designed specifically for low-cost sensor networks, do not
provide provisions to correct for the clock rate error, see
Ganeriwal et al. (2003). Finally, the authors are not aware
of any proposed sender-receiver algorithm that provides
convergence guarantees for both offset and clock rate
correction.

4. PROPOSED ALGORITHM

Given the inability of the sender-receiver algorithm to
synchronize the clocks, we propose a modification to
the algorithm that incorporates an adaptive strategy to
synchronize the clock rates. Consider the control law for
the synchronization of the clock rate for Node k

ua = µ(T ij+4 − T ij − T kj+5 − T kj+1) (7)

with µ > 0 being a controllable parameter. Making the
necessary substitutions one has

ua = µ
((
aitj+4 + τi(0)

)
−
(
aitj + τi(0)

)
−
(
aktj+5 + τk(0))−(aktj+1 + τk(0)

))
= µ

(
ai(2c+ 2d)− ak(2c+ 2d)

)
= µ(2c+ 2d)

(
ai − ak

)
(8)

The correction ua can then be applied to the clock dynam-
ics of Node k at times tj+5 as follows:

a+k = ak + ua = ak + µ(2c+ 2d)
(
ai − ak

)
(9)

Observe that this strategy operates under the existing
assumptions of the sender-receiver algorithm (symmetric
propagation delays and residence times) and does not
rely on any additional information that is not already
available via the exchanged timing messages. Moreover,
since it exploits the integrator dynamics of the system, the
computation costs to calculate ua are minimal. In this next
example, we demonstrate the proposed strategy under the
same scenario of mismatched skews between Nodes i and
k.

To illustrate, the capabilities of the algorithm outlined
above, consider the same system data as in Section 3,
namely, ai = 1, ak = 0.8 with c = d = 0.5 and the
given sender-receiver algorithm now with both the offset
correction uõ and clock rate correction ua being applied.
In Figure 4, two sets of error plots are presented for two
different simulations. Figure 4(a) gives plots of the errors
for the case where the µ is chosen using information on
c and d following our forthcoming design conditions while
Figure 4(b) provide the error plots for the case where µ is
chosen arbitrarily. In the case of the ideal µ, the error in
the clocks and clock rate converge to zero whereas in the
case of the arbitrarily chosen µ, the error fails to converge.
This suggests that a sufficient condition to appropriately
design µ is necessary to ensure convergence of the error.

5. A HYBRID ALGORITHM FOR
SENDER-RECEIVER CLOCK SYNCHRONIZATION

In this section, we present our hybrid model that unites the
characterization of the network dynamics for the message
exchange with our proposed algorithm that ensures syn-
chronization of the clocks. In addition, we present results
and simulations to validate our model.

5.1 Preliminaries on Hybrid Systems

A hybrid system H in Rn is composed by the following
data: a set C ⊂ Rn, called the flow set; a set-valued
mapping F : Rn ⇒ Rn with C ⊂ dom F , called the flow
map; a set D ⊂ Rn, called the jump set; a set-valued
mapping G : Rn ⇒ Rn with D ⊂ dom G, called the jump
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Fig. 4. The evolution of the error in the clocks and clock
rates of Nodes i and k when the algorithm applies
both offset correction uõ and clock rate correction
ua. Plot (a) depicts the scenario where µ is optimally
chosen while plot (b) demonstrates the case when µ
is chosen arbitrarily.

map. Then, a hybrid system H := (C,F,D,G) is written
in the compact form

H
{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D (10)

where x is the system state. Solutions to hybrid systems
are parameterized by (t, j), where t ∈ R≥0 defines ordinary
time and j ∈ N is a counter that defines the number of
jumps. The evolution of a solution is described by a hybrid
arc φ on a hybrid time domain Goebel et al. (2012). A
hybrid time domain is given by dom φ ⊂ R≥0 × N if, for
each (T, J) ∈ dom φ, dom φ ∩ ([0, T ] × {0, 1, ..., J}) is of

the form
⋃J
j=0([tj , tj+1] × {j}), with 0 = t0 ≤ t1 ≤ t2 ≤

tJ+1. A solution φ is said to be maximal if it cannot be
extended by flow or a jump, and complete if its domain is
unbounded. The set of all maximal solutions to a hybrid
system H is denoted by SH and the set of all maximal
solutions to H with initial condition belonging to a set
A is denoted by SH(A). A hybrid system is well-posed if
it satisfies the hybrid basic conditions in (Goebel et al.,
2012, Assumption 6.5). Let A ⊂ Rn be a closed set and
|x|A := infy∈A|x − y|. A closed set A ⊂ Rn is said to
be: attractive for H if there exists µ > 0 such that every
solution φ to H with |φ(0, 0)|A ≤ µ is complete and
satisfies limt+j→∞ |φ(t, j)|A = 0.

5.2 Problem Statement

Our goal is to synchronize the internal clock of Node k to
that of Node i. In particular, our goal is to design a hy-
brid algorithm incorporating the sender-receiver algorithm
such that the clock τk and clock rate ak of Node k is driven
to synchronization with τi and ai of Node i, respectively.
Moreover, our objective is to provide tractable conditions
that ensures attractivity. This problem is formally stated
as follows:

Problem 5.1. Given two nodes in a sender-receiver hier-
archy with clocks having dynamics as in (1) with times-
tamps T ij , T

k
j and parameters c, d, design a hybrid algo-

rithm such that each trajectory t 7→ (τi(t), τk(t)) satisfies
limt→∞ |τi(t)− τk(t)| = 0 and limt→∞ |τ̇i(t)− τ̇k(t)| = 0

First, to model the hardware and communication dynam-
ics of the system, namely, the residence and transit times
elapsed between the timing messages, we consider a global
timer τ ∈ [0, d] with dynamics

τ̇ = −1 τ ∈ [0, d] (11)

when τ = 0, the state τ+ is reset to either c or d,
respectively, corresponding to a communication or a re-
sponse event while preserving the bounds given in (3).
Additionally, a discrete variable q ∈ {0, 1} =: Q is included
to indicate the “transmission” or “resident” state of the
protocol. Column vectors

mi = [mi
1,m

i
2,m

i
3,m

i
4,m

i
5,m

i
6]> ∈ R6

mk = [mk
1 ,m

k
2 ,m

k
3 ,m

k
4 ,m

k
5 ,m

k
6 ]> ∈ R6

represent memory buffers to store the received and
transmitted timestamps for the respective parent and
child nodes. In addition, a second discrete variable p ∈
{0, 1, 2, 3, 4, 5} =: P is used to track the state of the
protocol corresponding to the events defined in (P1)-(P6)
of the sender-receiver algorithm. Then, by incorporating
the clocks τi, τk and the clock rates ai, ak as state variables
to the model, the state x of the complete hybrid system is
defined as

x := (τi, τk, ai, ak, τ,mi,mk, p, q) ∈ X
where

X := R× R× R× R× [0, d]× R6 × R6 × P ×Q
Then by noting the dynamics of the clocks as given in (1)
and those of the timer τ above, the continuous dynamics
of x is given by the following flow map

f(x) = (ai, ak, 0, 0,−1, 0, 0, 0, 0) ∀x ∈ C := X
To model the discrete dynamics of the communication
and arrival events of the exchanged timing messages, in
addition to the subsequent corrections on the clock rate
and offset, we consider the jump map G : Rn → Rn given
by

G(x)=



G1(x) if x ∈ D1 \ (D2 ∪D3 ∪D4 ∪D5 ∪D6)

G2(x) if x ∈ D2 \ (D1 ∪D3 ∪D4 ∪D5 ∪D6)

G3(x) if x ∈ D3 \ (D1 ∪D2 ∪D4 ∪D5 ∪D6)

G4(x) if x ∈ D4 \ (D1 ∪D2 ∪D3 ∪D5 ∪D6)

G5(x) if x ∈ D5 \ (D1 ∪D2 ∪D3 ∪D4 ∪D6)

G6(x) if x ∈ D6 \ (D1 ∪D2 ∪D3 ∪D4 ∪D5)

where



G1(x)=


[τi τk]

>[
ai ak

]>
d[[

τi mi
1 ... mi

5

]
mk
]>

p+ 1
1

G2(x)=


[τi τk]

>[
ai ak

]>
c[

mi
[
τk mi

1 ... mi
5

]]>
p+ 1
0



G3(x)=


[τi τk]

>[
ai ak

]>
d[

mi
[
τk mk

1 ... mk
5

]]>
p+ 1
1

G4(x)=


[τi τk]

>[
ai ak

]>
c[[

τi mk
1 ... mk

5

]
mk
]>

p+ 1
0



G5(x)=


[τi τk]

>[
ai ak

]>
d[[

τi mi
1 ... mi

5

]
mk
]>

p+ 1
1

G6(x)=


[τi τk − uõ(x)]>[
ai ak + ua(x)

]>
c[

mi
[
τk mi

1 ... mi
5

]]>
0
0


with

uõ(x) =
1

2
(mi

4 −mi
5 −mi

2 + mi
3) (12)

and

ua(x) = µ
(
(mi

1 −mi
5)− (τi −mi

4)
)

(13)

with µ > 0. The offset correction uõ in (12) is an adapted
version of the offset correction algorithm given in (4)
suitable for the hybrid system model. Each map in G(x)
corresponds to the message exchange events (P1)-(P6),
i.e., G1 is equivalent to the event (P1), G2 is equivalent to
the event (P2), etc. To trigger the jump map corresponding
to the particular protocol event, we define the following set
D := D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6 where

D1 := {x ∈ X : τ=0, p=0}, D2 := {x ∈ X : τ=0, p=1}
D3 := {x ∈ X : τ=0, p=2}, D4 := {x ∈ X : τ=0, p=3}
D5 := {x ∈ X : τ=0, p=4}, D6 := {x ∈ X : τ=0, p=5}

With the data defined, we let H = (C,F,D,G) denote the
hybrid system for the pairwise broadcast synchronization
algorithm between nodes i and k.

5.3 Error Model

In order to show that our proposed algorithm solves
Problem 5.1, we recast the problem as a set stabilization
problem. Namely, we show that solutions φ to H converge
to a set of interest wherein the clock states τi, τk and clock
rates ai,ak, respectively, coincide. To this end, we consider
an augmented model of H in error coordinates to capture
such a property. Let ε := (ετ , εa) ∈ R2, where ετ = τi− τk
and εa = ai − ak. Then, define

xε := (ε, x) ∈ Xε := R2 ×X
For each xε ∈ Cε := Xε, the flow map is given by

fε(xε) = (Afε, f(x))

where Af =

[
0 1
0 0

]
. The discrete dynamics of the protocol

are modeled through the jump map Gε : Rn → Rn given
by

Gε(xε)=



Gε1(xε) if xε ∈ Dε1\(Dε2∪Dε3∪Dε4∪Dε5∪Dε6)

Gε2(xε) if xε ∈ Dε2\(Dε1∪Dε3∪Dε4∪Dε5∪Dε6)

Gε3(xε) if xε ∈ Dε3\(Dε1∪Dε2∪Dε4∪Dε5∪Dε6)

Gε4(xε) if xε ∈ Dε4\(Dε1∪Dε2∪Dε3∪Dε5∪Dε6)

Gε5(xε) if xε ∈ Dε5\(Dε1∪Dε2∪Dε3∪Dε4∪Dε6)

Gε6(xε) if xε ∈ Dε6\(Dε1∪Dε2∪Dε3∪Dε4∪Dε5)

where

Gε1(xε)=

[
ε

G1(x)

]
, Gε2(xε)=

[
ε

G2(x)

]
Gε3(xε)=

[
ε

G3(x)

]
, Gε4(xε)=

[
ε

G4(x)

]

Gε5(xε)=

[
ε

G5(x)

]
, Gε6(xε)=

ε+

[
−uõ(x)
ua(x)

]
G6(x)


These discrete dynamics apply for x in Dε := Dε1 ∪Dε2 ∪
Dε3 ∪Dε4 ∪Dε5 ∪Dε6 where

Dε1 :={xε ∈ Xε : τ=0, p=0}, Dε2 :={xε ∈ Xε : τ=0, p=1}
Dε3 :={xε ∈ Xε : τ=0, p=2}, Dε4 :={xε ∈ Xε : τ=0, p=3}
Dε5 :={xε ∈ Xε : τ=0, p=4}, Dε6 :={xε ∈ Xε : τ=0, p=5}
This hybrid system is denoted Hε = (Cε, Fε, Dε, Gε).

1

Lemma 5.1. The hybrid system Hε satisfies the hybrid ba-
sic conditions defined in (Goebel et al., 2012, Assumption
6.5).

Lemma 5.2. For every ξ ∈ Cε ∪Dε = Xε , there exists at
least one nontrivial solution φ to Hε such that φ(0, 0) = ξ.
Moreover, every maximal solution to Hε is complete.

The set to render attractive so as to solve Problem 5.1 is
given by

Aε := {xε ∈ Xε : ε = 0}
where ε = 0 implies synchronization of both the clock
offset and clock rate.

5.4 Main Results

In this section, we present our main result showing asymp-
totic attractivity of the synchronization set Aε for Hε.
Consider the following Lyapunov function candidate

V (xε) = ε>eA
>
f (τ+d(5−p))PeAf (τ+d(5−p))ε

Note that there exist two positive scalars α1 and α2 such
that for each xε ∈ Cε ∪Dε

α1|xε|2A ≤ V (x) ≤ α2|xε|2A
Theorem 1. Let the hybrid system Hε with constants d =
c > 0 be given. If there exist a constant µ > 0 and positive
definite symmetric matrix P such that

A>g e
6dA>

f Pe6dAfAg − P ≺ 0 (14)

is satisfied where Ag =

[
0 γ1
0 1−µγ2

]
with γ1 = 7

2c and

γ2 = 4c, then Aε is globally attractive for Hε.

To prove this result, we first show the existence of a for-
ward invariant and finite time attractive set that enforces
valid initialization values of the logic variables p, q and
memory state vectors mi and mk such that the update

1 The full state vector x to H is retained to facilitate the implemen-
tation of the synchronization algorithm for Hε.



laws uõ and ua give the input for the convergence of ε.
We then show that for xε ∈ Cε, V has the infinitesimal
property of being constant during flows, namely

〈∇V (xε), fε(xε)〉 = 0

By continuity of the condition in (14), there exists σ > 0
such that, within the initialization, set V is constant or
strictly decreasing during jumps. Namely for each xε ∈ Dε,

V
(
G`(xε)

)
− V

(
xε
)
≤ 0

for each ` ∈ {1, 2, 3, 4, 5}, and

V
(
G6(xε)

)
− V

(
xε
)
≤ −σε>ε

Then by picking a solution φ from the set of solutions to
Hε and evaluating V along the solution φ. We show that,
following attractivity to the invariant initialization set, the
infinitesimal properties of V gives that φ converges to Aε
thus, Problem 5.1 is solved. Due to space constraints, the
complete proof has been omitted and will be published
elsewhere.

5.5 Numerical Results

Consider Nodes i and k with dynamics as in (1) with data
ai = 1, ak = 0.8 and c = d = 0.5. Setting µ = 0.25,

condition (14) is satisfied with P =

[
5.429 −0.134
−0.134 35.010

]
.

Simulating the system, Figure 5 shows the trajectories of
the error in the clocks and error in the clock rates of Nodes
i and k along with a plot of V evaluated along the solution.
Notice, that V converges to zero asymptotically following
several periodic executions of the algorithm. 2

6. CONCLUSION

In this paper, we introduced a sender-receiver clock syn-
chronization algorithm with sufficient design conditions
ensuring synchronization. Results were given to show
asymptotic attractivity of a set of interest reflecting the
desired synchronized setting. Numerical results validating
the attractivity of the system to the set of interest were
also given. In future work we will relax the condition
c = d and extend the framework for the analysis of other
message-based clock synchronization schemes.
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