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Forward Invariance of Sets for Hybrid Dynamical Systems (Part II)

Jun Chai and Ricardo G. Sanfelice

Abstract—This paper presents tools for the design of control
laws inducing robust controlled forward invariance of a set for
hybrid dynamical systems modeled as hybrid inclusions. A set
has the robust controlled forward invariance property via a
control law if every solution to the closed-loop system that starts
from the set stays within the set for all future time, regardless
of the value of the disturbances. Building on the first part of
this work, which focuses on analysis [1], in this paper, sufficient
conditions for generic sets to enjoy such a property are proposed.
To construct invariance inducing state-feedback laws, the notion
of robust control Lyapunov function for forward invariance is
defined. The proposed synthesis results rely on set-valued maps
that include all admissible control inputs that keep closed-
loop solutions within the set of interest. Results guaranteeing
the existence of such state-feedback laws are also presented.
Moreover, conditions for the design of continuous state-feedback
laws with minimum point-wise norm are provided. Major results
are illustrated throughout the paper in a constrained bouncing
ball system and a robotic manipulator application.

I. INTRODUCTION

A. Background and Motivation

A set K is forward invariant for a dynamical system if every

solution to the system from K stays in K . Forward invariance

properties have been key building blocks of stability theory

since the early work by LaSalle and Krasovskii in 1960s. In

particular, scholars have studied forward invariance and con-

trolled forward invariance together with stability in the sense

of Lyapunov for different classes of dynamical systems. In [2],

the author investigates the relationship between forward invari-

ance and stability for uncertain constrained purely discrete-

time and purely continuous-time systems. In [3], inspired by

stability analysis that uses a comparison principle, the authors

derive conditions for the existence of forward invariant sets

for constrained discrete-time nonlinear systems. For a class

of discrete-time systems, [4] establishes sufficient conditions

for stability using invariant set theory, conditions that are

applied to derive stability and feasibility of a model-predictive

control problem with “decaying perturbations.” In [5], stability

of controlled invariant sets is achieved for piecewise-affine

systems.

In recent years, several control applications have motivated

control designs that go beyond Lyapunov stability and attrac-

tivity, in particular, that guarantee set invariance and safety

properties under disturbances. In [6], as a case study for

manipulating genetic regulatory networks, robust invariance of

a set is required to keep the states of a boolean network within

a desired set. For continuous-time monotone systems, [7]
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achieves energy efficiency in temperature control of ventilation

in buildings via invariance analysis. For nonlinear continuous-

time systems, [8] studies invariance applications in adaptive

cruise control using control barrier functions. Applications

such as these have motivated our previous work in [1], where

we develop systematic tools to verify forward invariance

properties of sets without insisting on stability. In addition, the-

oretical and computational results on robust controlled forward

invariance are available in the literature for particular classes

of systems. Such a property guarantees that every solution to

the closed-loop system stay within the set they started from,

regardless of the values of the disturbances. An extensive

survey on control design for forward invariance is available in

[9]. In [10], the authors study invariance control for saturated

linear continuous-time systems (the singular case is treated

in [11]). Algorithms to estimate the maximal invariant set

for discrete-time systems are given in [12]–[14]. Methods for

the design of invariance-based control laws for systems with

inputs using control Lyapunov functions are less developed. By

solving convex optimization problems for linear discrete-time

systems, [15] and [16] generate tools to verify and compute

robust controlled invariant sets that are parametrized by a

family of local control Lyapunov functions.

For systems exhibit switching dynamics, robust forward

invariance analysis tools are applied to the design of feedback

controllers in [17] for linear continuous-time systems that

have a logic variable determining the mode of operation.

In [18], methods to design invariance-inducing controllers

exhibiting discrete events for continuous-time nonlinear sys-

tems are proposed. The particular case of invariance-based

control design for switched systems modeled as discrete-time

systems (without perturbations) is treated in [19]. The authors

in [20] and [21] propose algorithms to compute the controlled

invariant sets for systems.

Invariance-based control for hybrid systems, which are

systems that combine continuous and discrete dynamics, is

much less explored, with only a few articles on the subject.

For reachability of desired sets, game theory techniques are

applied in [22] and [23] to render sets controlled invariance

for a class of hybrid systems with disturbances. Similarly,

barrier functions (and control barrier functions), which lead to

controlled invariant sets, have been effectively employed in the

study of safety for classes of hybrid systems [24]. Moreover,

in [25] and [26], such functions are used for safety verification

in hybrid automata with disturbances.

B. Contributions

In [1], we formally define notions pertaining to robust

forward invariance of sets for hybrid dynamical systems

modeled as hybrid inclusions [27]. Sufficient conditions that

apply to generic sets are presented therein. In addition, we

establish conditions to render the sublevel sets of Lyapunov-

like functions forward invariant for hybrid systems without
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disturbances. In this paper, continuing from [1], we focus

on design of controllers that confer invariance properties

presented therein, for hybrid systems given as in [28]. In par-

ticular, differential and difference inclusions with state, input,

and disturbance constraints are used to model the continuous

and discrete dynamics of hybrid systems, respectively. More

precisely, we consider hybrid systems with control inputs u =
(uc, ud) ∈ Uc×Ud and disturbances w = (wc, wd) ∈ Wc×Wd

that are given by1

Hu,w

{
(x, uc, wc) ∈ Cu,w ẋ ∈ Fu,w(x, uc, wc)

(x, ud, wd) ∈ Du,w x+ ∈ Gu,w(x, ud, wd),
(1)

where x ∈ R
n is the state, Cu,w ⊂ R

n × Uc × Wc and

Du,w ⊂ R
n × Ud × Wd are called the flow and jump set,

respectively, while Fu,w and Gu,w are called the flow and jump

map, respectively. For this broad class of hybrid systems, the

contributions made by this paper include:

1) Robust controlled forward invariance for Hu,w via

(κc, κd): we introduce the concept of robust controlled for-

ward invariance. When a Hu,w-admissible2 state-feedback

pair (κc, κd) renders a set K ⊂ R
n robustly controlled

forward invariant for the closed-loop system, the existence

of a nontrivial solution pair from every possible initial

condition is guaranteed. Moreover, every maximal solution

pair (see Definition 2.1) that starts from the set is complete

and stays within the set for all future (hybrid) time.

2) Robust forward invariance of sublevel sets of Lyapunov-

like functions: conditions to guarantee robust forward in-

variance properties that take advantage of the nonincreas-

ing property of a Lyapunov-like function, V , are proposed.

As in [1], we intersect the sublevel sets of the given func-

tion V with the state component of the flow and jump sets

to define the set to be rendered robustly controlled forward

invariant. Technical conditions are needed to guarantee the

existence of nontrivial solution pairs from every point in

such a set as well as to guarantee completeness of solution

pairs. Note that these Lyapunov-like functions ought to

satisfy inequalities over carefully constructed regions that

allow for the potential increase in V in the interior of their

sublevel sets. Moreover, compared to [1, Theorem 5.1], we

further relax the regularity on the flow set via a constructive

proof that employs properties of vectors in the tangent cone

of the sets.

3) Existence of continuous state-feedback laws using robust

control Lyapunov functions for forward invariance (RCLF

for forward invariance): we present the concept of robust

control Lyapunov function for forward invariance for the

purpose of rendering a set robust controlled invariant. The

proposed notion extends and is derived from the conditions

in [28] for asymptotic stability. Such a novel concept is

exploited to determine sufficient conditions that lead to

the existence of continuous state-feedback laws for robust

controlled invariance. These conditions involve the data of

the system and properly constructed set-valued maps in

terms of V –called the regulation maps. In particular, by

1The space for control inputs and disturbances are Uc ⊂ R
mc ,Ud ⊂ R

md

and Wc ⊂ R
dc ,Wd ⊂ R

dd , respectively.
2A state-feedback pair (κc, κd), where κc : Rn → R

mc and κd : Rn →
Rmd , is said to be Hu,w-admissible if the pair satisfies the dynamics of
Hu,w .

assuring the existence of continuous selections from the

said set-valued maps, forward invariance of sublevel sets

of V is guaranteed.

4) Pointwise minimum norm selections as continuous state-

feedback laws: utilizing the regulation maps, we propose

a pointwise minimum norm selection scheme to construct

state-feedback laws that not only render the set robustly

controlled forward invariant, but also are continuous.

In summary, in this paper, we propose control synthesis

methods for the purpose of rendering a set robustly controlled

forward invariant for a general class of hybrid dynamical

systems with disturbances.3 Major results are illustrated in two

control design applications in which the dynamical systems

can be modeled as hybrid inclusions as in (1). More precisely,

the results are illustrated in

1) a constrained bouncing ball system, for which the control

goal is to maintain the ball to bounce back within a

desired height range under the effect of an uncertain

coefficient of restitution, and

2) a robotic manipulator interacting with an environment,

for which the control goal is to guarantee that the end-

effector only operates within a safe region.

For both applications, the designed state-feedback controllers

induce robust forward invariance of sets describing the corre-

sponding control objectives. These applications are revisited

multiple times to illustrate definitions, concepts and results.

Our results are also insightful for systems with purely

continuous-time or discrete-time dynamics. In fact, because of

the generality of the hybrid inclusions framework, the results

in this paper are applicable to broader classes of systems, such

as those studied in [9], [10], [30], [31].

C. Organization and Notation

The remainder of the paper is organized as follows. Pre-

liminaries about the considered class of hybrid systems is in

Section II. The robust controlled forward invariance notions

and sufficient conditions to guarantee each notion are pre-

sented in Section III. In Section III-B, sufficient conditions

to induce robust forward invariance of sets are proposed for

systems with a given Lyapunov-like function. In Section III-C,

the results on the existence of continuous state-feedback laws

for robust controlled forward invariance are presented. The

pointwise minimum control law is in Section III-D.

Notation: Given a set-valued map M : Rm ⇒ R
n, we denote

the range of M as rgeM = {y ∈ R
n : y ∈ M(x), x ∈ R

m},

the domain of M as domM = {x ∈ R
m : M(x) 6= ∅}, and

the graph of M as gphM = {(x, y) ∈ R
m×R

n : y ∈ M(x)}.

Given r ∈ R, the r-sublevel set of a function V : Rn → R

is LV (r) := {x ∈ R
n : V (x) ≤ r}, V −1(r) = {x ∈ R

n :
V (x) = r} denotes the r-level set of V , and, following the

same notation in [1, Section V], given a constant r ≤ r∗,

we define the set I(r, r∗) := {x ∈ R
n : r ≤ V (x) ≤ r∗}.

The closed unit ball around the origin in R
n is denoted as B.

Given a closed set K , we denote the tangent cone of the set

K at a point x ∈ K as TK(x). The closure of the set K is

denoted as K . The set collecting all boundary points of a set

3The nominal version of the results in this paper appeared without proof
in the conference article [29] with a slightly different definition of the CLF
for forward invariance.
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K is denoted by ∂K and the set of interior points of K is

denoted by intK . Given vectors x and y, (x, y) is equivalent

to [x⊤ y⊤]⊤. Given a vector x, |x| denotes the 2-norm of x.

II. PRELIMINARIES

In this paper, we are interested in forward invariance prop-

erties of a set that are uniform in the disturbances w for

the closed-loop system Hw in (3) resulting from controlling

Hu,w in (1) by a Hu,w-admissible state-feedback pair (κc, κd).
Note that some properties and notions in this paper are clearly

defined for the original (open-loop) hybrid system Hu,w with

control inputs, while others are developed for the (perturbed)

closed-loop system Hw. In (1), sets Cu,w and Du,w define

conditions that x, u, and w should satisfy for flows or jumps

to occur, respectively. The maps Fu,w and Gu,w capture the

system dynamics when in sets Cu,w and Du,w, respectively.

For ease of exposition, for every ⋆ ∈ {c, d}, we define the

projection of S ⊂ R
n ×W⋆ onto R

n as

Πw
⋆ (S) := {x ∈ R

n : (x,w⋆) ∈ S},
and the projection of S ⊂ R

n × U⋆ ×W⋆ onto R
n as

Π⋆(S) := {x ∈ R
n : (x, uc, wc) ∈ S}.

Given sets Cu,w and Du,w, the set-valued maps Φw
c : Rn ×

Uc ⇒ Wc and Φw
d : Rn × Ud ⇒ Wd are defined as

Φw
c (x, uc) := {wc ∈ R

dc : (x, uc, wc) ∈ Cu,w},
Φw

d (x, ud) := {wd ∈ R
dd : (x, ud, wd) ∈ Du,w},

(2)

for each (x, uc) ∈ R
n × Uc and each (x, ud) ∈ R

n × Ud,

respectively, and the set-valued maps Ψu
c : R

n ⇒ Uc and

Ψu
d : Rn ⇒ Ud are defined, for each x ∈ R

n, as

Ψu
c (x) := {uc ∈ R

mc : (x, uc, wc) ∈ Cu,w},
Ψu

d(x) := {ud ∈ R
md : (x, ud, wd) ∈ Du,w},

respectively.

Solutions to a hybrid system Hw as in (3) are parameterized

by hybrid time domains E , which are subsets of R≥0 × N

that, for each (T, J) ∈ E , E ∩ ([0, T ] × {0, 1, ..., J}) can be

written as
J−1⋃
j=0

([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2... ≤ tJ . Moreover, following [27, Definition

2.4], a hybrid arc φ is a function on a hybrid time domain

that, for each j ∈ N, t 7→ φ(t, j) is absolutely continuous on

the interval Ij := {t : (t, j) ∈ domφ}, where domφ denotes

the hybrid time domain of φ.

To make this paper self contained, we recall the solution

pair concept in [1, Definition 2.1].

Definition 2.1: (solution pairs to Hw) A pair (φ,w) consist-

ing of a hybrid arc φ and a hybrid disturbance w = (wc, wd),
with domφ = domw(= dom(φ,w)),4 is a solution pair to

the hybrid system Hw in (3) if (φ(0, 0), wc(0, 0)) ∈ Cw or

(φ(0, 0), wd(0, 0)) ∈ Dw, and

(S1w) for all j ∈ N such that Ij has nonempty interior

(φ(t, j), wc(t, j)) ∈ Cw for all t ∈ int Ij ,

dφ

dt
(t, j) ∈ Fw(φ(t, j), wc(t, j)) for almost all t ∈ Ij ,

4Recall from [1], a hybrid disturbance w is a function on a hybrid time
domain that, for each j ∈ N, t 7→ w(t, j) is Lebesgue measurable and locally
essentially bounded on the interval {t : (t, j) ∈ domw}.

(S2w) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

(φ(t, j), wd(t, j)) ∈ Dw

φ(t, j + 1) ∈ Gw(φ(t, j), wd(t, j)).

In addition, a solution pair (φ,w) to Hw is

• nontrivial if dom(φ,w) contains at least two points;

• complete if dom(φ,w) is unbounded;

• maximal if there does not exist another (φ,w)′ such that

(φ,w) is a truncation of (φ,w)′ to some proper subset of

dom(φ,w)′. �

Given K ⊂ R
n, SHw

(K) denotes the set that includes all

maximal solution pairs (φ,w) to the hybrid system Hw with

φ(0, 0) ∈ K .

The following regularity conditions on the system data

of a hybrid system Hw as in (3) are considered in some

forthcoming results. These conditions guarantee robustness

of asymptotic stability of compact sets with respect to small

perturbations; see [27, Chapter 6] for details.

Definition 2.2: (hybrid basic conditions) A hybrid system

Hw = (Cw, Fw, Dw, Gw) is said to satisfy the hybrid basic

conditions if its data satisfies

(A1w) Cw and Dw are closed subsets of Rn×Wc and R
n×Wd

respectively;

(A2w) Fw : Rn×R
dc ⇒ R

n is outer semicontinuous5 relative

to Cw and locally bounded, and for all (x,wc) ∈
Cw, Fw(x,wc) is nonempty and convex;

(A3w) Gw : Rn ×R
dd ⇒ R

n is outer semicontinuous relative

to Dw and locally bounded, and for all (x,wd) ∈
Dw, Gw(x,wd) is nonempty. �

To obtain properties (A1w)-(A3w) in Definition 2.2 for Hw,

we have the following immediate result.

Lemma 2.3: (hybrid basic conditions) Suppose κc :
Πc(Cu,w) → Uc and κd : Πd(Du,w) → Ud are continuous

and Hu,w = (Cu,w, Fu,w, Du,w, Gu,w) is such that

(A1’) Cu,w and Du,w are closed subsets of Rn × Uc × Wc

and R
n × Ud ×Wd, respectively;

(A2’) Fu,w : Rn×R
mc ×R

dc ⇒ R
n is outer semicontinuous

relative to Cu,w and locally bounded, and for every

(x, uc, wc) ∈ Cu,w, Fu,w(x, uc, wc) is nonempty and

convex;

(A3’) Gu,w : Rn×R
md×R

dd ⇒ R
n is outer semicontinuous

relative to Du,w and locally bounded, and for every

(x, ud, wd) ∈ Du,w, Gu,w(x, ud, wd) is nonempty.

Then, Hw satisfies conditions (A1w)-(A3w) in Definition 2.2.

III. ROBUST CONTROLLED FORWARD INVARIANCE FOR

HYBRID SYSTEMS

In this section, we first provide conditions guaranteeing that

a static state-feedback pair renders robustly forward invariant

(in the appropriate sense) a set for the closed-loop system.

These conditions involve the Hu,w-admissible state-feedback

pair (κc, κd), the data of the closed-loop system it leads

to, which is denoted Hw, and the set K to render robustly

forward invariant. We also provide conditions guaranteeing

the existence of such feedbacks as well as a method for their

systematic design.

5See Definition A.1 in Appendix.
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Provided with a Hu,w-admissible state-feedback pair

(κc, κd) the closed-loop hybrid system resulting from Hu,w

in (1) is given by

Hw

{
(x,wc) ∈ Cw ẋ ∈ Fw(x,wc)

(x,wd) ∈ Dw x+∈ Gw(x,wd),
(3)

where the set-valued maps Fw(x,wc) := Fu,w(x, κc(x), wc)
and Gw(x,wd) := Gu,w(x, κd(x), wd) govern the continuous

and discrete dynamics of the system on the sets Cw :=
{(x,wc) ∈ R

n × Wc : (x, κc(x), wc) ∈ Cu,w} and Dw :=
{(x,wd) ∈ R

n ×Wd : (x, κd(x), wd) ∈ Du,w}, respectively.

Note that Hw shares similar structure as the hybrid system Hw

in (1) of [1]. To this end, to make the paper self contained,

we recall the following notions from [1, Definition 3.2] which

are used in this section.

Definition 3.1: (robust forward (pre-)invariance of Hw) The

set K ⊂ R
n is said to be robustly forward pre-invariant for

Hw if every (φ,w) ∈ SHw
(K) is such that rgeφ ⊂ K . The

set K ⊂ R
n is said to be robustly forward invariant for Hw if

for every x ∈ K there exists a solution pair to Hw and every

(φ,w) ∈ SHw
(K) is complete and such that rgeφ ⊂ K . �

Building from this definition, we introduce the following

robust controlled forward invariance notions.

Definition 3.2: (robust controlled forward (pre-)invariance

of Hu,w) The set K ⊂ R
n is said to be robustly controlled

forward pre-invariant for Hu,w as in (1) via a state-feedback

pair (κc, κd) if the set K is robustly forward pre-invariant

for the resulting closed-loop system Hw. The set K ⊂ R
n is

said to be robustly controlled forward invariant for Hu,w via

a state-feedback pair (κc, κd) as in (1) if the set K is robustly

forward invariant for the resulting closed-loop system Hw. �

Remark 3.3: As mentioned in Section I, our notions apply to

a more general class of systems, in particular, continuous-time,

discrete-time, and hybrid systems with set-valued dynamics.

Very importantly, compared to [9, Definition 2.3], [7, Defini-

tion 8] (for continuous-time systems) or [32, Definition 1] (for

discrete-time systems), our notions do not require uniqueness

of solutions to the closed-loop system.

Throughout this paper, we demonstrate our main results in

two control design problems for mechanical systems, namely,

a constrained bouncing ball moving vertically that is controlled

by impacts at zero height; and a robotic manipulator interact-

ing with a surface.

Example 3.4: (Constrained bouncing ball system) Consider

the bouncing ball system shown in Figure 1. We attach one

end of a nonelastic string with length hmax to zero height and

the other end to a ball. The ball can only travel vertically and

is controlled by impacts at zero height.
x1 hmax

x2

String

hmin

Fig. 1: Bouncing ball system configuration.

Compared to a typical bouncing ball system [27, Example

1.1], the model considered here has an additional “pulling

phase” when the ball reaches the height hmax with possibly

nonzero velocity. The possible pulls from the string at height

hmax and the impacts between the ball and the controlled

surface both lead to jumps of the state. In addition to assuming

unitary mass of the ball and negligible weight of the string,

forces, and friction, we consider the following:

C1) At impacts with the ground, the uncertain coefficient of

restitution is within the range [e1, e2], where 0 < e1 <
e2 < 1;

C2) The string breaks when the ball pulls with velocity larger

than vmax;

C3) At pulls of the string, the restitution coefficient is ep ∈
(0, 1].

With x = (x1, x2) ∈ R
2, x1 and x2 model the height and

velocity of the ball, respectively. Then, with gravity constant

γ > 0, the flow map is defined on R≥0 ×R and is given by6

F (x) := (x2,−γ).

To formulate the flow and jump set, we define a function

E : R2 → R that describes the total energy of the system

as E(x) = 0.5x2
2 + γx1, ∀x ∈ R

2. According to C2), the

string remains attached to the ball when x1 ∈ [0, hmax] and

x2 ≤ vmax, i.e., E(x) ≤ Emax with Emax := E(hmax, vmax).
After impacts with the controlled surface, the height of the

ball x1 remains unchanged, while the velocity x2 is updated

based on a function of the uncertain coefficient of restitution,

which is treated as a disturbance wd ∈ Wd := [e1, e2], and

the control input ud ∈ Ud := [0, umax] with umax =
√
2Emax,

which represents the velocity change caused by the controlled

surface. Hence, we model impacts between the ball and the

controlled surface as

G1(x, ud, wd) := (x1, ud − wdx2)

when x1 = 0 and x2 ≤ 0. Before every impact, x2 is

nonpositive, and, after each impact, it is updated according

to G1. Then, with a small constant 0 < δp < vmax, the map

G2(x) := (x1,min{−epx2,−δp})
models the pulls between the ball and the string when x1 =
hmax and x2 ∈ [0, vmax]. Since before every pull, x2 is

nonnegative, after each pull the ball velocity reverses its sign

and is updated according to G2. Note that since closed jump

sets are preferred as suggested in (A1w) of Definition 2.2, we

only allow the x2 component to jump to a strictly negative

value that is lower bounded (and controllable) by −δp < 0.
Then, the hybrid system Hu,w = (C,F,Du,w , Gu,w) has

x = (x1, x2) as the state, ud as the control input and wd as

the disturbance with (x, ud, wd) ∈ X = R
2 × Ud × Wd and

dynamics given by

ẋ = F (x) x ∈ C, (4)

x+ = Gu,w(x, ud, wd) (x, ud, wd) ∈ Du,w,

where the flow set C is given by

C := {x ∈ R
2 : 0 ≤ x1 ≤ hmax, E(x) ≤ Emax},

the jump set Du,w is given by Du,w := D1
u,w ∪ D2

u,w with

D1
u,w := {(x, ud, wd) ∈ X : x1 = 0, x2 ∈ [−√

2Emax, 0]},
6Note that since there are no disturbances and inputs for flow, we omit the

subscripts for F and C in this model.
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D2
u,w := {(x, ud, wd) ∈ X : x1 = hmax, x2 ∈ [0, vmax]}, and

the jump map Gu,w is given by

Gu,w(x, ud, wd) :=

{
G1(x, ud, wd) if (x, ud, wd) ∈ D1

u,w

G2(x) if (x, ud, wd) ∈ D2
u,w.

We have the following control design goal: under the

presence of disturbances wd, design a feedback law as-

signing ud such that when the ball has initial condition

x(0, 0) = (x1(0, 0), x2(0, 0)) with x1(0, 0) ∈ [hmin, hmax]
and E(x(0, 0)) ∈ [0, Emax], the string remains attached to the

ball, and the peak height of the ball after each bounce is at

least hmin. △
The next example presents an control design application

with a control input that, unlike the system in Example 3.4,

is only active during flows.

Example 3.5: (Robotic manipulator interacting with the

environment) Consider a robotic manipulator interacting with

a static working environment. As described in [33, Section

II.A], the interaction between the robotic manipulator and the

working environment is captured by

M̃(θ)ẍ1 + C̃(θ, θ̇)ẋ1 + Ñ(θ, θ̇) = fa − fc,

where M̃, C̃, and Ñ represent the inertia matrix, the Coriolis

matrix, and external forces (including the gravity) acting on

the robotic arm joints, respectively. The term fa represents the

actuator force and fc is the contact force. The state variable

x1 is the position of the end-effector of the manipulator and

θ is the angle displacement of the joint.

surface

simplified

working

environment

working

environment

robot arm

x1 x1 > 0 x1 > 0

x2

00

Fig. 2: Robotic manipulator system.

To stabilize some of the internal and external forces of the

manipulator, a commonly used inner feedback law of the form

fa = uc + C̃(θ, θ̇)ẋ1 + Ñ(θ, θ̇)

is applied, see e.g. [34], [35], which leads to

M̃(θ)ẍ1 = uc − fc. (5)

Hence, the system dynamics are simplified to the interaction

between the manipulator’s end-effector and the working en-

vironment. Without loss of generality, only the constrained

motion along a straight line is considered. More precisely, as

depicted in Figure 2, the simplified system consists of a point

mass with unitary mass that only moves horizontally, and a

elastic surface that represents the working environment.

To mimic the different effects of elastic and plastic de-

formations of the working environment, a velocity threshold

v > 0 is introduced. More precisely, when the reaction stress

of the material caused by the contact exceeds v, an impact

occurs [36]. Similar to Example 3.4, the impact is modeled

using an uncertain coefficient of restitution within the range

Wd := [e1, e2], where 0 < e1 < e2 < 1.

When the velocity is smaller than v, the manipulator pushes

against the surface, which results in a nonzero contact force

fc. With the (positive) elastic and viscous parameters of the

contact denoted by kc and bc, respectively, the discontinuous

contact force is given by

fc(x) =

{
kcx1 + bcx2 if x1 ≥ 0

0 if x1 < 0.

For the resulting hybrid model to satisfy the hybrid basic con-

ditions in Lemma 2.3, we consider the Filippov regularization

of the contact force fc (see [27, Chapter 4]), which is given

by

f r
c (x) =





kcx1 + bcx2 if x1 > 0

con{0, bcx2} if x1 = 0

0 if x1 < 0.

Combining the above constructions, we model the dynamics

of the manipulator as a hybrid system with input affecting

the flows only and disturbances affecting the the jump only,

i.e., Hu,w = (Cu, Fu, Dw, Gw). To this end, let the state

variable be x = (x1, x2) ∈ R
2, where x1 and x2 represent the

horizontal position and velocity of the point mass, respectively:

see Figure 2. The input force uc applied to the point mass

is bounded and constrained to the set Uc := [−fmax, fmax].
Using (5) and assuming that the inertia matrix is the identity,

the flow map is given by Fu(x, uc) := (x2, uc − f r
c (x)). The

flow set is given as7

Cu :={(x, uc) ∈ R
2 × Uc : x1 ≤ 0}

⋃

{(x, uc) ∈ R
2 × Uc : x1 ≥ 0, x2 ≤ v}.

The jump set describes the condition that leads to an impact

as discussed earlier, and it is given by

Dw := {(x,wd) ∈ R
2 ×Wd : x1 ≥ 0, x2 ≥ v}.

At such points, a jump happens according to the jump map

Gw(x,wd) := (x1,−wdx2). Our goal is to design uc such

that, regardless of whether the manipulator is in contact with

the work environment or not, the end-effector stays within a

safe region. △

A. CLF-based Approach for the Design of Robust Invariance-

based Feedback Laws

For systematic invariance-based feedback design, we pro-

pose control Lyapunov functions that are tailored to forward

invariance properties. We refer to these functions as robust

control Lyapunov functions for forward invariance. Under

appropriate conditions, these functions can be used to sys-

tematically design state-feedback laws that render a particular

sublevel set robustly forward invariant. In simple words,

a robust control Lyapunov function for forward invariance,

denoted as V , allows to select the inputs of Hu,w as a function

of the state x so that a set of the form

Mr = LV (r) ∩ (Πc(Cu,w) ∪ Πd(Du,w)), (6)

which is a subset of the r-sublevel set of V , has the robust

controlled forward invariance property introduced in Defini-

tion 3.2. As expected, and as formally stated next, the function

V needs to satisfy certain CLF-like properties involving the

constant r defining the level of the sublevel set LV (r) and the

7Note that noise in the applied input force at the point mass can be modeled
as a disturbance wc, however, we omit it for simplicity.
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data of Hu,w. In its definition, we employ the set-valued map

Θd(x) := {ud ∈ Ψu
d(x) :Gu,w(x, ud,Φ

w
d (x, ud)) ⊂

Πc(Cu,w) ∪ Πd(Du,w)}, (7)

for every x ∈ Πd(Du,w), which, at each such x, collects all

inputs ud such that, regardless of the value of the disturbance,

the state x after jumps is in the projection of the flow and

jump set to the state space, namely, in Πc(Cu,w)∪Πd(Du,w).

Definition 3.6: (RCLF for forward invariance for Hu,w)

Consider a hybrid system Hu,w = (Cu,w , Fu,w, Du,w, Gu,w)
as in (1), a constant r∗ ∈ R, and a continuous function

V : Rn → R that is also continuously differentiable on an

open set containing Πc(Cu,w). Suppose there exist continuous

functions ρc : Rn → R and ρd : Rn → R≥0 such that, for

some r < r∗,

ρc(x) > 0 ∀x ∈ I(r, r∗), (8)

ρd(x) > 0 ∀x ∈ LV (r). (9)

Then, the pair (V, r∗) defines a robust control Lyapunov

function (RCLF) for forward invariance of the sublevel sets

of V for Hu,w if

inf
uc∈Ψu

c (x)
sup

wc∈Φw
c (x,uc)

sup
ξ∈Fu,w(x,uc,wc)

〈∇V (x), ξ〉 + ρc(x) ≤ 0

∀x ∈ I(r, r∗) ∩ Πc(Cu,w),
(10)

inf
ud∈Θd(x)

sup
wd∈Φw

d
(x,ud)

sup
ξ∈Gu,w(x,ud,wd)

V (ξ) + ρd(x) ≤ r

∀x ∈ LV (r) ∩ Πd(Du,w).
(11)

�

Remark 3.7: Compared to a typical control Lyapunov func-

tion (see, e.g., [37, Definition 2.1]), the RCLF for forward

invariance in Definition 3.6 is not constrained to be lower and

upper bounded by class K∞ functions relative to a set. Note

that (10) does not impose conditions in the interior of LV (r),
but to avoid V (x) from being larger than r, (11) is enforced

on x ∈ LV (r) ∩ Πd(Du,w) The strict positivity requirements

in (8) and (9) are essential to make continuous selections in

the forthcoming result.

Remark 3.8: The definition of robust control Lyapunov

function (RCLF) for forward invariance of the sublevel sets of

V in Definition 3.6 is related to the notion of barrier function

and control barrier function. It should be noted that different

barrier notions are proposed in the literature, for continuous-

time [38], discrete-time [39], and hybrid systems, including

hybrid automata [40] and hybrid inclusions [41]. Some of

these references present necessary and sufficient conditions for

forward invariance; see, e.g., [42] and [43]. With such barrier

functions typically denoted as B, the problem of rendering an

r-sublevel of a function V studied in this paper naturally leads

to the barrier function B(x) = V (x)−r. With such definition,

the barrier function resulting from this construction is close to

the definition in [40]. In particular, for a hybrid system with

inputs and disturbances, our results allow for the design of

control laws that guarantee robust forward invariance of the

set {x : B(x) ≤ 0}, properly restricted to the union of the

flow and jump set.

Next, we illustrate the concept of RCLFs for forward

invariance in Definition 3.6 for the robotic manipulator system

introduced in Example 3.5.

Example 3.9: (RCLF for forward invariance for the robotic

manipulator) Consider the function

V (x) =
1

2
x⊤Px, with P =

[
a c
c b

]
> 0. (12)

We define the safe region described in Example 3.5 using

the r-sublevel set of V , i.e., LV (r) with r > 0. Since

Πc(Cu)∪Dw=R
2, the control objective is achieved by ren-

dering the set

Mr = LV (r) ∩ (Πc(Cu) ∪ Πd(Dw)) = LV (r) (13)

robustly controlled forward invariant for Hu,w. Considering

the state-feedback control law given by uc = −Kx with

K = [kp kd], for every x ∈ Πc(Cu) with kp, kd > 0. By

properly designing K , we aim to render the set Mr given

in (13) robustly controlled forward invariant for Hu,w in

Example 3.5. To this end, under the effect of this feedback,

the (set-valued) flow map can be written as

Fk(x) :=

[
0 1

−kp − kc A(x)

]
x,

where A(x) :=





−kd if x1 > 0

−kd − con{0, bc} if x1 = 0

−kd − bc if x1 < 0.
Using V defined in (12), for every x ∈ R

2 and every

η ∈ Fk(x), if a
c
≥ kc

bc
, we have 〈∇V (x), η〉 ≤ x⊤Qx, where

Q =

[
−2ckp a− bkp − ckd

a− bkp − ckd 2c− 2bkd

]
. If we chose feedback

parameters such that

4bckpkd − 4c2kp > (a− bkp − ckd)
2, (14)

kp > 1− b

c
kd (15)

then, the matrix Q is negative definite. Let r < r∗ = bv2 and

ρc(x) = −x⊤Qx, for every x ∈ R
2, (10) holds since when,

in particular, uc = kx we obtain 〈∇V (x), η〉 + ρc(x) ≤ 0.
Then, for every x ∈ R

2 and every η ∈ Fk(x). In addition,

given r ∈
(

bv2

2 , bv2
)

we consider ρd(x) :=
(1−e2

2
)bv2

2 . Hence,

for every x ∈ LV (r) ∩D, we have

max
wd∈[e1,e2]

V (Gw(x,wd)) + ρd(x) − r =

(
a

2
x2
1 + cx1x2 +

b

2
x2
2

)

− r +
(1 − e22)b(v

2 − x2
2)

2
− (1− e2)cx1x2,

which is nonpositive since e2 ∈ (0, 1), x1 > 0, x2 ≥ v and

every x ∈ LV (r) is such that V (x) ≤ r. Therefore, (11) holds

and the pair (V, r∗) defines a robust control Lyapunov function

for forward invariance for Hu,w. △

Given a pair (V, r∗) defined as in Definition 3.6 for Hu,w

and r < r∗ satisfying the conditions therein, our approach

consists of selecting a state-feedback law pair (κc, κd) from

these inequalities. In fact, we are interested in synthesizing a

pair (κc, κd) that, in particular, satisfies

sup
wc∈Φw

c (x,κc(x))

sup
ξ∈Fu,w(x,κc(x),wc)

〈∇V (x), ξ〉+ ρc(x) ≤ 0

∀x ∈ I(r, r∗) ∩Πc(Cu,w),

sup
wd∈Φw

d
(x,κd(x))

sup
ξ∈Gu,w(x,κd(x),wd)

V (ξ) + ρd(x) ≤ r

∀x ∈ LV (r) ∩ Πd(Du,w).
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Under certain mild conditions, such a pair renders the set

Mr in (6) robustly controlled forward invariant for Hu,w.

Interestingly, with a constant parameter σ ∈ (0, 1), the

selection of such a feedback pair can be performed by defining

sets that nicely depend on the functions

Γc(x, uc) :=



sup
wc∈Φw

c (x,uc)

sup
ξ∈Fu,w(x,uc,wc)

〈∇V (x), ξ〉 + σρc(x)

if (x, uc) ∈ ∆c,

−∞ otherwise

(16)

for each (x, uc, wc) ∈ R
n × Uc ×Wc, and

Γd(x, ud) :=



sup
wd∈Φw

d
(x,ud)

sup
ξ∈Gu,w(x,ud,wd)

V (ξ) + σρd(x)− r

if (x, ud) ∈ ∆d,

−∞ otherwise,

(17)

for each (x, ud, wd) ∈ R
n×Ud×Wd, where ∆c := {(x, uc) :

(x, uc, wc) ∈ (Mc × Uc × Wc) ∩ Cu,w}, ∆d := {(x, ud) :
(x, ud, wd) ∈ (Md×Ud×Wd)∩Du,w}. Moreover, we define

Mc:=I(r, r∗) ∩ Πc(Cu,w), Md:=LV (r) ∩ Πd(Du,w). (18)

In fact, with these functions defined, by introducing the set-

valued maps {uc ∈ Ψu
c (x) : Γc(x, uc) < 0}, and {ud ∈

Θd(x) : Γd(x, ud) < 0} which are the so-called regulation

maps [44], our approach is to determine a state-feedback pair

(κc, κd) that is selected from these maps; i.e., (κc, κd) is such

that κc(x) ∈ {uc ∈ Ψu
c (x) : Γc(x, uc) < 0}, and κd(x) ∈

{ud ∈ Θd(x) : Γd(x, ud) < 0} at the appropriate values of

the state x.

In Section III-B, we provide key results on robust forward

invariance of sublevel sets of CLF-like functions, which are

used in our CLF approach. It turns out that when an RCLF

for forward invariance for Hu,w is provided, regulation maps

as outlined above can be constructed for selecting a state-

feedback satisfying the conditions in the forthcoming Theo-

rem 3.10 and Theorem 3.14; hence, the results in Section III-B

enable us to show the desired invariance property under

feedback. Since according to Lemma 2.3, the closed-loop

system Hw satisfies conditions (A1w)-(A3w) in Definition 2.2

when the applied state-feedback pair is continuous, we seek

the design of a state-feedback pair (κc, κd) with κc and κd

being continuous functions of the state. For this purpose, in

Section III-C, we first reveal conditions assuring the existence

of continuous selections from the regulation maps. Our main

design results are in Section III-D, where we provide a explicit

construction of (κc, κd) with pointwise minimum norm.

B. Robust Forward Invariance of Sublevel sets of Lyapunov-

like Functions

Building from [1, Section V], we provide conditions for

robust forward (pre-)invariance of sublevel sets of V for Hw,

which in turn, provide insight for the invariance-based control

design methods in Section III-C and Section III-D. More

precisely, given a function V : Rn → R, we derive sufficient

conditions to render its r−sublevel set, with some abuse of

notation, given as

Mr = LV (r) ∩ (Πw
c (Cw) ∪Πw

d (Dw)) (19)

robust controlled forward (pre-)invariant for Hu,w.

We consider Lyapunov-like functions that are tailored to

forward invariance as introduced in Definition 3.6. Unlike the

case for asymptotic stability, the proposed Lyapunov candidate

does not necessarily strictly decreases along solutions outside

of Mr or is nonincreasing inside of Mr. Building from [1,

Theorem 5.1], the next result characterizes the robust forward

pre-invariance of Mr in terms of a Lyapunov-like functions.

Proof for Theorem 3.10 is presented in [45].

Theorem 3.10: (robust forward pre-invariance of Mr)

Given a hybrid system Hw = (Cw , Fw, Dw, Gw) as in (3),

suppose there exist a constant r∗ ∈ R and a continuous

function V : Rn → R that is continuously differentiable on an

open set containing Πw
c (Cw) such that

〈∇V (x), η〉 ≤ 0 ∀(x,wc) ∈ (I(r, r∗)×Wc) ∩ Cw,

∀η ∈ Fw(x,wc), (20)

V (η) ≤ r ∀(x,wd) ∈ (LV (r) ×Wd) ∩Dw,

∀η ∈ Gw(x,wd), (21)

for some r∈(−∞, r∗) such that Mr is nonempty and closed,

and

Gw((Mr ×Wd) ∩Dw) ⊂ Πw
c (Cw) ∪Πw

d (Dw) (22)

holds. Then, the set Mr is robustly forward pre-invariant for

Hw.

Conditions (20), (21) and (22) can be used to check whether

an already designed state-feedback pair (κc, κd) renders Mr

given as in (19) robustly controlled forward invariant for Hu,w.

Remark 3.11: A typical set of Lyapunov conditions for

asymptotic stability analysis can be found in [27, Theorem

3.18]. These conditions ensure the decrease of V along so-

lutions that are initialized outside of A. In comparison to

Theorem 3.10, forward invariance requires the properties of

the data of Hw and of V relative to the set of interest, in

our case, Mr. Compared to [27, Definition 3.16] and [27,

Theorem 3.18], a function V as in Theorem 3.10 is a Lyapunov

function candidate that satisfies less restrictive conditions, and

certainly, does not guarantee attractivity. Such function V is

neither bounded (from below and above) by two class-K∞

functions, namely, it does not need to be positive definite

and radially unbounded, nor has its change along solutions

bounded by a negative definite function of the distance to

the set of interest. In particular, for stability in the nominal

case, item (3.2b) in [27, Theorem 3.18] asks 〈∇V (x), η〉 ≤ 0
for all x ∈ LV (r

∗) ∩ C and all η ∈ F (x), while (20)

allows 〈∇V (x), η〉 to be positive at points x ∈ intLV (r)∩C.

Similarly, during jumps, item (3.2c) in [27, Theorem 3.18]

demands the change V (η)−V (x) to be nonpositive for every

x ∈ LV (r)∩D; while (21) allows such changes to be positive

at points x ∈ intLV (r)∩D as long as it is such that V (η) ≤ r.
Such properties ensure solutions stay within LV (r) for any

qualifying r < r∗.8 Note that (20) and (21) do not imply

that maximal solutions are complete, neither to Hw nor to the

restriction of Hw to LV (r
∗).

Remark 3.12: It is worth noting that due to being inequal-

ities, the conditions in Theorem 3.10 cover the special cases

where V remains constant on the flow set or on the jump set.

8Note that solution pairs may escape LV (r) when r = r∗. This is because
〈∇V (x), η〉 is allowed to be zero in (20).
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In such a case, (20) and (21) in Theorem 3.10 are given by

〈∇V (x), η〉 = 0 ∀(x,wc) ∈ (LV (r
∗)×Wc) ∩Cw,

∀η ∈ Fw(x,wc), (23)

V (η)− V (x) = 0 ∀(x,wd) ∈ (LV (r) ×Wd) ∩Dw,

∀η ∈ Gw(x,wd), (24)

respectively. Intuitively, when V does not change on LV (r
∗),

for any r < r∗, solution pairs to Hw stay within the

r−sublevel set during flows and jumps. Namely, we can

employ (23) and (21), or (20) and (24), to verify robust forward

pre-invariance of Mr.

The observations in Remark 3.12 also extend to the case

of hybrid systems where the control inputs affect only one

regime, namely, either the flows or the jumps and V does

not increase during the regime that is not affected by inputs.

Consequently, when verifying a RCLF candidate for such

systems, we can omit checking the condition in (10) if (23) or

(21) holds (or, respectively, omit checking (11) when (20) or

(24) holds). One such example is the controlled single-phase

DC/AC inverter system in [1, Section VI], for which (24) holds

(a special case of (21)). Another example is the bouncing ball

system introduced in Example 3.4, where the total energy of

the ball is used to construct the function V for invariance

analysis. During flows, no energy loss is considered. Hence,

the total energy level of the system remains constant during

flows, which implies that the special case of (20), namely (23),

holds. We illustrate such concept in the following example.

Example 3.13: (The RCLF for forward invariance for the

bouncing ball system) We define V (x) := −E(x) for every

x ∈ C∪Πd(Du,w). Following formula given in (6), the control

objective is achieved by rendering the set

Mr = LV (−γhmin) ∩ (C ∪Πd(Du,w)) (25)

robustly controlled forward invariant for Hu,w. Given system

parameters e1, e2, ep, vmax and hmax, the control goal can be

achieved for hmin such that

√
γ
(
hmin +

ε
2

)
< e1

√
Emax and

with ε > 0,

γ(hmin + ε) ≤ 0.5(1 + e1 − e2)
2Emax. (26)

Since the control input appears in the map G1 only, for every

x ∈ Πd(D1), according to (7), the set Θd in (7) is given by

Θd(x) = [0,
√
2Emax + e2x2].

In fact, given such x, Θd collects all control input values ud

such that G1(x, ud, wd) ∈ C∪Πd(Du,w) for all wd ∈ [e1, e2];
i.e., every such ud is such that E(0, G1(x, ud, e2)) ≤ Emax.

Now, consider the constant r∗ = −γ(hmin − ε) and the

function ρd defined as ρd(x) = γε for every x ∈ LV (r).
We show that the pair (V, r∗) defines a RCLF for forward

invariance as in Definition 3.6. First, (23) holds on C since,

for every x ∈ C, 〈∇V (x), F (x)〉 = −x2(−γ) − γx2 = 0.
Then, we show the pair (V, r∗) is such that (11) holds for

r = −γhmin < r∗. Moreover, for every x ∈ LV (r)∩Πd(D1),
we have

min
ud∈Θd(x)

max
wd∈[e1,e2]

V (G1(x, ud, wd))

= min
ud∈Θd(x)

max
wd∈[e1,e2]

{
−0.5(ud − wdx2)

2
}

= −0.5(
√
2Emax + e2x2 − e1x2)

2

Since x2 ∈ [−√
2Emax,−

√
2γhmin] and due to condition

(26), we have

min
ud∈Θd(x)

max
wd∈[e1,e2]

V (G1(x, ud, wd)) + ρd(x)

≤ −0.5(
√
2Emax + (e2 − e1)(−

√
2Emax))

2 + ρd(x)

= −0.5(1 + e1 − e2)
2Emax + γε ≤ −γhmin = r

For every x ∈ LV (r) ∩Πd(D2), we have x2 ∈ [0, vmax] and

min
ud∈Θd(x)

max
wd∈[e1,e2]

V (G2(x))

= −0.5(min{−epx2,−δp})2 − γhmax < r.

Hence, the pair (V, r∗) defines a robust control Lyapunov func-

tion for forward invariance for Hu,w according to Remark 3.12

and Definition 3.6. △
Next, we derive conditions rendering the set Mr ⊂ R

n

in (19) robustly forward invariant for Hw given as in (3).

According to Definition 3.2, these conditions also imply the

robustly controlled forward invariance of Mr for Hu,w via the

pair (κc, κd). The next result, whose proof is in Appendix B,

follows from [1, Theorem 5.1] and ensures that every solution

pair (φ,w) ∈ SHw
(Mr) has rgeφ ⊂ Mr. Moreover, the pro-

posed set of conditions guarantee existence and completeness

of maximal solution pairs to Hw from Mr.

Theorem 3.14: (robustly forward invariance of Mr) Given

a hybrid system Hw = (Cw, Fw, Dw, Gw) as in (3), suppose

the set Cw is closed, item (A2w) in Definition 2.2 holds, and

(x, 0) ∈ Cw for every x ∈ Πw
c (Cw). Suppose there exist a

constant r∗ ∈ R and a continuous function V : R
n → R

that is continuously differentiable on an open set containing

Πw
c (Cw) such that (20) and (21) in Theorem 3.10 hold for

some r ∈ (−∞, r∗) such that Mr is nonempty and closed,

and (22) in Theorem 3.10 holds. Moreover, suppose

3.14.1) for every x ∈ V −1(r) ∩Πw
c (Cw), ∇V (x) 6= 0;

3.14.2) for every x ∈ (LV (r) ∩ ∂Πw
c (Cw)) \ Πw

d (Dw),
Fw(x, 0) ∩ TΠw

c (Cw)(x) 6= ∅;

3.14.3) for every x ∈ (V −1(r)∩∂Πw
c (Cw))\Πw

d (Dw), the set

Ξx := {ξ ∈ Fw(x, 0) ∩ TΠw
c (Cw)(x) : 〈∇V (x), ξ〉 <

0} is nonempty;

3.14.4) (Mr×Wc)∩Cw is compact, or Fw has linear growth

on (Mr ×Wc) ∩ Cw.

Then, the set Mr is robustly forward invariant for Hw.

The proof of Theorem 3.14 is presented in Appendix B.

Compared to [1, Theorem 5.1], item 3.14.3) does not require

the set Πw
c (Cw) to be regular as in item 5.1.3) of [1, Theorem

5.1]; see also Lemma A.9 for details.

Remark 3.15: Forward invariance that is uniform in the

disturbances is key for certifying safety in real-world applica-

tions. As mentioned in Section I, barrier certificates have been

shown to be useful for the study of safety, i.e., the problem

of whether solutions initiated from a given set would reach

an unsafe set. In particular, [25] and [26] pertain to safety

for a class of hybrid systems modeled as hybrid automata.

In these articles, barrier functions are used to characterize

safe sets A barrier function has strictly positive values in the

unsafe sets and nonpositive values otherwise. The conditions

proposed guarantee that along every solution from an initial

set, the values of these functions are nonincreasing. When

compared to the conditions in [25] and [26], the control

Lyapunov function for forward invariance in Theorem 3.14
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does not need to be strictly positive outside of the set to

be rendered forward invariant, c.f. in [25, Theorem 2]; nor

does need to satisfy the exponential condition required in

[26, Theorem 1]. For nonlinear continuous-time system, [46]

provides two types of control barrier functions and compares

them to exponentially stabilizing control Lyapunov functions.

Aside from the differences in signs within the set of interests

and the type of systems we study, our results do not require

the control input to be locally Lipschitz as in [46, Corollary

1]; see, e.g., Theorem 3.14.

C. Existence of Pair (κc, κd) for Robust Controlled Forward

Invariance

Next, building from Theorem 3.10, we establish conditions

to guarantee existence of a continuous state-feedback pair

(κc, κd) to render the set Mr robustly controlled forward pre-

invariant for Hu,w.

Theorem 3.16: (existence of state-feedback pair for ro-

bust controlled forward pre-invariance using RCLF for

forward invariance) Consider a hybrid system Hu,w =
(Cu,w, Fu,w, Du,w, Gu,w) as in (1) satisfying conditions (A1’)-

(A3’) in Lemma 2.3 and such that Φw
c and Φw

d are locally

bounded. Suppose there exists a pair (V, r∗) that defines a

robust control Lyapunov function for forward invariance for

Hu,w as in Definition 3.6. Let r < r∗ satisfy (8)-(11), Θd be

given as in (7), and σ ∈ (0, 1). If the following conditions

hold:

3.16.1) The set-valued maps Ψu
c and Θd are lower semicon-

tinuous, and Ψu
c and Θd have nonempty, closed, and

convex values on the sets Πc(Cu,w) and Md as in (18),

respectively;

3.16.2) For each x ∈ Mc, the function uc 7→ Γc(x, uc) in

(16) is convex on Ψu
c (x) and, for each x ∈ Md, the

function ud 7→ Γd(x, ud) in (17) with is convex on

Θd(x);

then, the set Mr in (19) is robustly controlled forward pre-

invariant for Hu,w via a state-feedback pair (κc, κd) with κc

being continuous on Mc and κd being continuous on Md.

Proof To establish the result, we first show the existence of

continuous control laws for a restricted version of the original

hybrid system Hu,w that is given by

H̃u,w

{
ẋ ∈ Fu,w(x, uc, wc) (x, uc, wc) ∈ C̃u,w

x+ ∈ Gu,w(x, ud, wd) (x, ud, wd) ∈ D̃u,w,

where C̃u,w := (Mc ×Uc ×Wc)∩Cu,w and D̃u,w := (Md ×
Ud ×Wd) ∩ Du,w. To this end, using Γc and Γd given as in

(16) and (17), for each x ∈ R
n, we define the set-valued maps

S̃c(x) := {uc ∈ Ψu
c (x) : Γc(x, uc) < 0},

S̃d(x) := {ud ∈ Θd(x) : Γd(x, ud) < 0}.
By definition of Θd(x) in (7) and condition 3.16.1), the

maps Ψu
c and Θd are lower semicontinuous and for every

x ∈ Md,Θd(x) is a nonempty, convex subset of Ψu
d(x). Then,

we show the maps S̃c and S̃d are lower semicontinuous by ap-

plying Corollary A.5. First, we establish that the functions Γc

and Γd are upper semicontinuous by observing the properties

of the maps Φw
c ,Φ

w
d , Fu,w and Gu,w.

i) The set-valued maps Φw
c and Φw

d are upper semicontin-

uous by a direct application of [27, Lemma 5.15]: the

maps Φw
c and Φw

d defined in (2) have closed graphs

because sets Cu,w and Du,w are closed, (to see this,

note that gphΦw
c = gphΦw

d = S)– this leads to their

outer semicontinuity by [27, Lemma 5.10]– and by the

assumption that Φw
c and Φw

d are locally bounded;

ii) The maps Φw
c and Φw

d have compact images: this property

directly follows from outer semicontinuity and locally

boundedness of Φw
c and Φw

d ;

iii) The set-valued maps Fu,w and Gu,w are upper semicon-

tinuous by applying [27, Lemma 5.15] while noting that

item (A2’) and (A3’) of Lemma 2.3 hold;

iv) The maps Fu,w and Gu,w have compact images, which

follows from the fact that Fu,w and Gu,w are locally

bounded, and are outer semicontinuous.

Moreover, continuously differentiability of V and the con-

tinuity of ρc and ρd imply the continuity of the functions

been taken supremum in (16) and (17). With the properties of

Φw
c ,Φ

w
d , Fu,w and Gu,w., the single-valued maps Γc and Γd

are upper semicontinuous by applying [44, Proposition 2.9]

twice while noting that for every (x, uc, wc) ∈ (Rn × Uc ×
Wc) \ C̃u,w,Γc(x, uc) = −∞ and for every (x, ud, wd) ∈
(Rn × Ud × Wd) \ D̃u,w,Γd(x, ud) = −∞. Then, applying

Corollary A.5, with z = x, z′ = uc (or z′ = ud), W = Ψu
c

(or W = Θd), and w = Γc (or w = Γd, respectively) S̃c

(or S̃d, respectively) is lower semicontinuous. The maps S̃c

and S̃d have nonempty values on Mc and Md, respectively.

This is because, first, Ψu
c and Θd have nonempty values on

Mc and Md, respectively. In addition, since the inequalities

in (10) and (11) hold, for each (x, uc) ∈ ∆c, we have

Γc(x, uc) + (1 − σ)ρc(x) ≤ 0, and for each (x, ud) ∈ ∆d,

we have Γd(x, ud) + (1 − σ)ρd(x) ≤ 0. Then, since the

functions ρc and ρd have positive values on I(r, r∗) and

LV (r), respectively, and σ ∈ (0, 1), for every x ∈ Mc (every

x ∈ Md), there exists uc ∈ Ψu
c (x) (exists ud ∈ Θd(x)) such

that Γc(x, uc) < 0 (respectively, Γd(x, ud) < 0). Then, by the

convexity of functions Γc and Γd in condition 3.16.2) and of

values of the set-valued maps Ψu
c and Θd in 3.16.1), we have

that the maps S̃c and S̃d have convex values on Mc and Md,

respectively.
Then, to use [37, Lemma 4.2] for deriving regulation maps

that are also lower semicontinuous, for each x ∈ R
n, we define

the set-valued maps

S⋆(x) :=

{
S̃⋆(x) if x ∈ M⋆,

R
m⋆ otherwise,

(27)

with ⋆ ∈ {c, d}. In addition, Sc and Sd also have nonempty

and convex values due to the nonemptiness and convex-valued

properties of S̃c and S̃d.
Now, according to Michael’s Selection Theorem, namely,

Theorem A.6, there exist continuous functions κ̃c : R
n → R

mc

and κ̃d : Rn → R
md such that, for all x ∈ R

n,

κ̃c(x) ∈ Sc(x), κ̃d(x) ∈ Sd(x).

Now, with ⋆ ∈ {c, d}, we define functions κ⋆ : Rn → R
m⋆

such that
κ⋆(x) = κ̃⋆(x) ∈ U⋆ ∀x ∈ M⋆, (28)

where the functions κ⋆ inherit the continuity of κ̃⋆ on M⋆.

Applying Lemma 2.3, the closed-loop system resulting from

controlling H̃u,w by κc and κd in (28) satisfies the hybrid basic

conditions in Definition 2.2. More precisely, this is because
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H̃u,w satisfies conditions (A1’)-(A3’) in Lemma 2.3, and the

state-feedback pair (κc, κd) is continuous on Πc(C̃u,w) ∪
Πd(D̃u,w). With these properties and ∇V being continuous,

it follows that

κc(x) ∈ Ψu
c (x), Γc(x, κc(x)) ≤ 0 ∀x ∈ Mc,

κd(x) ∈ Θd(x), Γd(x, κd(x)) ≤ 0 ∀x ∈ Md,

which lead to
sup

ξ∈Fu,w(x,κc(x),wc)

〈∇V (x), ξ〉+ σρc(x) ≤ 0

∀(x, κc(x), wc) ∈ C̃u,w,
(29)

sup
ξ∈Gu,w(x,κd(x),wd)

V (ξ) + σρd(x)−r ≤ 0

∀(x, κd(x), wd) ∈ D̃u,w.
(30)

The state feedback laws κc and κd can be extended –

not necessarily continuously – to every point in Πc(Cu,w)
and Πd(Du,w), respectively, by selecting values from the

nonempty sets Ψu
c (x) for every x ∈ Πc(Cu,w) and Θd(x)

for every x ∈ Πd(Du,w).
To complete the proof, we establish the robust controlled

forward pre-invariance of Mr. For this purpose, we apply

Theorem 3.10 to the closed-loop system of Hu,w controlled

via the extended state-feedback pair (κc, κd) that is defined

on Πc(Cu,w) ∪ Πd(Du,w). Relationships (29) and (30) imply

〈∇V (x), ξ〉 ≤ 0 for every (x,wc) ∈ (I(r, r∗)×Wc)∩Cw, ξ ∈
Fw(x,wc), and V (ξ) ≤ r for every (x,wd) ∈ (LV (r)×Wd)∩
Dw, ξ ∈ Gw(x,wd), respectively. Thus, it is the case that (20)

and (21) hold for the resulting closed-loop system. Moreover,

since κd(x) ∈ Θd(x) for every x ∈ Md, (7) implies (22) for

Hw. Hence, according to Definition 3.2, the extended state-

feedback pair (κc, κd) renders the set Mr as in (19) robustly

controlled forward pre-invariant for Hu,w. �

Remark 3.17: Item 3.16.1) in Theorem 3.16 imposes lower

semicontinuity of the mappings from state space to the input

spaces at points where flows and jumps are allowed. For

systems that does not have convex-valued Ψu
c and Θd on Mc

and Md, respectively, Theorem 3.16 can still be applied if

there exist nonempty, closed and convex subsets of Ψu
c (x)

and Θd(x) for every x ∈ Mc and x ∈ Md, respectively, such

that item 3.16.2) holds for these subsets. Similar comments

apply to the forthcoming results.

To show existence of a state feedback pair (κc, κd) that

renders Mr as in (19) robustly forward invariant, we need

further conditions on the regulation maps to ensure existence

of a solution pair from every Πc(Cu,w). Hence, we dedicate

the remainder of this section to address, with a variation of

RCLF for forward invariance in Definition 3.6, the existence

of a feedback pair for a class of Hu,w that induces robust con-

trolled forward invariance of Mr by applying Theorem 3.14.

In particular, the next result resembles Theorem 3.16, but

employs different regulation maps to guarantee existence of

nontrivial solution pairs and their completeness. To this end,

for every x ∈ Πc(Cu,w), we define the map

Θc(x) :=



{uc ∈ Ψu
c (x) : Fu,w(x, ud, 0) ∩ TΠc(Cu,w)(x) 6= ∅}

∀x ∈ ∂Πc(Cu,w) \Πd(Du,w)

Ψu
c (x) otherwise.

(31)

Theorem 3.18: (existence of state-feedback pair for ro-

bust controlled forward invariance using RCLF for for-

ward invariance) Consider a hybrid system Hu,w =
(Cu,w, Fu,w, Du,w, Gu,w) as in (1) satisfying conditions (A1’)-

(A3’) in Lemma 2.3 and such that Φw
c and Φw

d are locally

bounded. Suppose there exists a pair (V, r∗) that defines a

robust control Lyapunov function for forward invariance of

the sublevel sets of V for Hu,w as in Definition 3.6 with Ψu
c

in (10) replaced by Θc as in (31). Let r < r∗ satisfy (8)-

(11), Θd be given as in (7), and σ ∈ (0, 1). If the following

conditions hold:

3.18.1) The set-valued maps Θc and Θd are lower semicon-

tinuous, and Θc and Θd have nonempty, closed, and

convex values on the set Πc(Cu,w) and the set Md,

respectively;

3.18.2) For each x ∈ Mc, the function uc 7→ Γc(x, uc) in

(16) is convex on Θc(x) and, for each x ∈ Md, the

function ud 7→ Γd(x, ud) in (17) is convex on Θd(x);

then, the set Mr in (19) is robustly controlled forward pre-

invariant for Hu,w via a state-feedback pair (κc, κd) with κc

being continuous on Mc and κd being continuous on Md.

Furthermore, if item 3.14.4) in Theorem 3.14 holds for the

closed-loop system Hw as in (3), the pair (κc, κd) renders the

set Mr robustly controlled forward invariant for Hu,w.

Proof The robust forward pre-invariance of Mr for Hu,w

follows from a direct application of Theorem 3.16. More pre-

cisely, when conditions in Theorem 3.18 hold, every condition

in Theorem 3.16 holds for a hybrid system H̃u,w that has flow

map, jump map, and jump set given as Fu,w, Gu,w, and Du,w,

respectively, and flow set given by

C̃u,w = {(x, uc, wc) ∈ Cu,w : u ∈ Θc(x)}.
The set C̃u,w is closed. We show this by considering the

sequence (xi, ui, wi) ∈ C̃u,w , for every i, converges to

(x, u, w), which is in Cu,w since Cu,w is closed. By definition

of C̃u,w, ui ∈ Θc(xi) for every i. Because Θc has closed

values, u ∈ Θc(x). Hence, (x, u, w) ∈ C̃u,w. Applying

Theorem 3.16, there exists a state-feedback pair (κc, κd) that

renders Mr robustly controlled forward pre-invariant for H̃u,w

with κc and κd being continuous on Mc and Md, respectively.

Since for every x ∈ Πc(Cu,w), such κc(x) ∈ Θc(x) ⊂ Ψu
c (x),

this implies such pair (κc, κd) is also Hu,w− admissible.

Moreover, every solution pair to the closed-loop system re-

sulting from Hu,w controlled by (κc, κd), i.e., Hw, is also a

solution pair to the closed-loop system of H̃u,w controlled by

the same pair (κc, κd), i.e, H̃w. We show this via contradiction.

Suppose there exist a solution pair (φ∗, w∗) ∈ SHw
such that

(φ∗, w∗) /∈ SH̃w
. Since H̃u,w and Hu,w share the same jump

map and jump set, if φ∗ is pure discrete, then (φ∗, w∗) is also

a solution pair to Hu,w. In the case that φ∗ is not pure discrete,

by item (S1w) of Definition 2.1 and the fact that H̃u,w and

Hu,w share the same flow map, there exists j⋆ with Ij
⋆

with

nonempty interior, such that

(φ∗(t, j⋆), w∗(t, j⋆)) ∈ Cw (32)

(φ∗(t, j⋆), w∗(t, j⋆)) /∈ C̃w. (33)

Utilizing the projection maps introduced in Section II near (2),

(32) implies φ∗(t, j⋆) ∈ Πw
c (Cw) and

w∗(t, j⋆) ∈ Φw
c (φ

∗(t, j⋆), κc(φ
∗(t, j⋆))).
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By definition of C̃u,w , Πw
c (C̃w) = Πw

c (Cw), hence, together

with (33), it must be that

w∗(t, j⋆) /∈ {wc : (φ
∗(t, j⋆), κc(φ

∗(t, j⋆), wc) ∈ C̃u,w},
which leads to the contradiction to the fact that C̃u,w ⊂ Cu,w.

Hence, such (κc, κd) renders Mr robustly controlled forward

pre-invariant for Hu,w.

According to Theorem A.7, since the set Mc is closed, there

exists a continuous extension of κc from I(r, r∗)∩Πc(Cu,w)
to R

n with κc(x) ∈ R
m for every x ∈ intLV (r)∩Πc(Cu,w).

9

Then, applying such pair (κc, κd), with κc and κd be-

ing continuous on LV (r) ∩ Πc(Cu,w) and Md, respectively,

Lemma 2.3 implies the closed-loop system is such that Fw is

outer semicontinuous, locally bounded and has nonempty and

convex values on (Mr × Wc) ∩ Cw. Hence, item (A2w) in

Definition 2.2 holds for closed-loop system H̃. Then, applying

Theorem 3.14, we show that the pair (κc, κd) renders set

Mr robustly controlled forward invariant for H̃. For every

x ∈ Πw
c (Cw), (x, 0) ∈ Cw by assumption. Inequalities (20)

and (21) follow from (29) and (30) for the given pair (V, r∗).
Next, (29) implies condition 3.14.1). Condition 3.14.2) follows

from the definition of Θc in (31). Since (29) and the fact that

ρc(x) is positive for every x ∈ Mc, 〈∇V (x), ξ〉 < 0, for

every x ∈ Mc and ξ ∈ Fu,w(x, κc(x), 0). Then, (18) and (31)

together implies the feedback κc(x) selected from Θc(x) for

every x ∈ Mc are such that Fw(x, 0)∩TΠw
c (Cw)(x) 6= ∅. Thus,

item 3.14.3) holds. Item 3.14.4) holds by assumption. The

definition of Θd in (7) implies (22) holds. Hence, the set Mr

is robustly controlled forward invariant for H̃ via the selected

(κc, κd). Furthermore, as showed above, the pair (κc, κd) is

Hu,w− admissible and renders the set Mr robustly controlled

forward invariant for Hu,w by Definition 3.2. �

Theorem 3.18 uses an alternative RCLF for forward in-

variance that is defined based on Θc as in (31) instead of

Ψu
c as in Definition 3.6. This RCLF leads to the existence

of state-feedbacks rendering Mr robust controlled forward

invariance for Hu,w. By selecting κc from the map Θc in

(31) rather than the generic map Ψu
c , we guarantee existence

of nontrivial solution pairs from every x ∈ Mr \ Πd(Du,w).
This follows from an application of Lemma A.9 and the

fact that items 3.14.1), 3.14.3), and 3.14.4) in Theorem 3.14

hold. Moreover, item 3.14.4) ensures completeness of every

(φ,w) ∈ SHw
(Mr).

Remark 3.19: Results about selecting feedbacks from reg-

ulation maps for nominal hybrid systems (without perturba-

tions), developed using a different set conditions and notion

of control Lyapunov functions for forward invariance appeared

in [29]; see details in [29, Definition 4.1]. More precisely,

the results in [29] are derived from sufficient conditions

for forward invariance of generic sets and are not tailored

to sublevel sets of V. In particular, in [29], to guarantee

that the state component of every solution pair remains in

Mr, the feedback law κc needs to be locally Lipschitz, see

[29, Theorem 4.7, R4)]. To get such a property, condition

[29, Theorem 4.7, R1’)] asks the regulation map Θ̃c to be

locally Lipschitz, leading to κc being a Lipschitz selection. By

9Note that the selected κc in proof of Theorem 3.16 is not necessarily
continuous on Πc(Cu,w).

exploiting results in Section III-B, Theorem 3.18 only requires

κc to be a continuous selection.

Remark 3.20: In the case where control inputs affect only

the jumps, the conditions in Theorem 3.16 lead to robustly

controlled forward invariance of Hu,w, provided (20) holds

during flows. Similarly, when control inputs affect only the

flows, the conditions involving Fu,w and Cu,w in Theo-

rem 3.16, together with (21), lead to robust controlled forward

invariance of Mr. In addition, the results in this section can

be applied to purely continuous-time and purely discrete-time

systems by defining RCLF for forward invariance only based

on (10) or (11), respectively.

Example 3.21: (Existence of continuous state-feedback con-

trol law for the bouncing ball) First, since

Md = {0} × [−
√

2Emax,−
√
γhmin]

and Ψu
d(x) = Ud, 3.16.1) in Theorem 3.16 holds for Hu,w.

Following the steps in Section III-A, we construct the regu-

lation map Γd. Since there is no control input during flows,

we omit defining Γc. Moreover, since the input ud is only

active when (x, ud, wd) ∈ D1, we define the map Γd based

on G1 only. Then, for r = −γhmin and for every (x, ud) ∈
{(x, ud) ∈ R

2×Ud : (x, ud, wd) ∈ (LV (r)×Ud×Wd)∩D1},

with σ = 1
2 , Γd is given by

Γd(x, ud) = max
wd∈[e1,e2]

V (G1(x, ud, wd)) +
ρd(x)

2
− r

= − (ud − e1x2)
2

2
+ γ

(ε
2
+ hmin

)
.

Item 3.16.2) in Theorem 3.16 holds since, for each x ∈ Md,

the function ud 7→ Γd(x, ud) is convex on Θd(x). For each

x ∈ R
2, the map Sd in (27) is given by

Sd(x) :=





{ud ∈ Θd(x) : γ(
ε
2 + hmin)− (ud−e1x2)

2

2 < 0}
if x ∈ LV (r) ∩Πd(D1),

R otherwise.

(34)

In addition, Hu,w given in (4) satisfies conditions (A1’) - (A3’)

in Lemma 2.3. According to Theorem 3.16, there exists a state

feedback κd : R2 → R that is continuous on Md. In particular,

such a feedback is selected from the closure of the map Sd

given in (34), which reduces to an interval:

Sd(x) :=

[
max

{√
2γ

(ε
2
+ hmin

)
+ e1x2, 0

}
, (35)

√
2Emax + e2x2

]
.

One such continuous selection is

κd(x) :=

√
γ( ε2 + hmin)

Emax
x2 +

√
2γ

(ε
2
+ hmin

)
. (36)

Applying [1, Theorem 4.15 and Lemma 4.12], we verify that

our design of κd in (36) indeed renders Mr robustly controlled

forward invariant for Hu,w. To this end, we check the corner

cases of jumps from Mr ∩Πd(D1) and from Mr ∩Πd(D2).
More precisely, the worst case for impact with zero height is

when x is such that x2 = −√
2γhmin before the impact and,

after the impact, x is updated by the map G1(x, κd(x), e1), i.e.,

G1(x, κd(x), e1) ≥
√
2γ

(
ε
2 + hmin

)
since

√
γ
(
ε
2 + hmin

)
<

e1
√
Emax.

Simulations are generated to show solutions to Hu,w con-
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trolled by κd in (36) with system parameters γ = 9.81, hmin =
10, hmax = 12, vmax = 6

√
γ, e1 = 0.8, e2 = 0.9, ep =

0.95, ε = 0.1, and δp = 0.01.10 Over the simulation horizon,

the disturbance wd is randomly generated within interval

[e1, e2], and updated after each impact. One solution that starts

from the initial condition for x(0, 0) = (11, 0) is shown

in Figure 3. Figure 3(a) presents the randomly generated

disturbance wd for Hu,w. Moreover, even under the effect

of the disturbance, as desired, the peaks of the resulting

height reach values larger than hmin and smaller than hmax as

Figure 3(a) shows. Figure 3(b) shows, on the (x1, x2) plane,

that the solution stays within the set Mr for all time, which

is the region bounded by dark green dashed line. △

0

6
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-25
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15
25
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x1

x2

e2

e1
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t [sec]

(a) Height and velocity of the ball and wd.

0 6 12
-25

-15

0

15

25

x2

x1

Mr

(11,0)

(b) State component of closed-loop solution on the (x1, x2) plane.

Fig. 3: Simulation of Hu,w controlled by κd in (36).

In the next example, we apply results in this section to de-

sign an invariance-based controller for the robotic manipulator

introduced in Example 3.9.

Example 3.22: (Existence of continuous feedback control

law for the robotic manipulator) Consider the system Hu,w

in Example 3.9. For this system, the set Mc in (18) is equal

to I(r, r∗). Furthermore, since ∂Πc(Cu) \ D = ∅, for every

x ∈ Mc, we have Θc(x) = Ψc(x). Thus, item 3.18.1) in

Theorem 3.18 holds. Next, we construct Γc and the regulation

map following the steps in Section III-C.11 For r < r∗ = bv2

and for every (x, uc) ∈ {(x, uc) ∈ R
2×Uc : x ∈ LV (r)}, with

σ = 1
2 , Γc is given by Γc(x, uc) = max

ξ∈Fu(x,uc)
〈∇V (x), ξ〉 −

10All simulations in this section are generated via the Hybrid
Equations (HyEQ) Toolbox for MATLAB; see [47]. Code avail-
able at https://github.com/HybridSystemsLab/InvariantBoucingBall and at
https://github.com/HybridSystemsLab/InvariantPointMass

11Due to the absence of control inputs during jumps, we omit defining Γd .

1
2ρc(x). As presented in Example 3.9, when (14) and (15)

hold, the continuous feedback law

κc(x) = −kpx1 − kdx2 (37)

renders the set Mr in (13) robust controlled forward invariant

for Hu,w therein. The existence of such continuous feedback

follows from Theorem 3.16 since, for each x ∈ Mc, uc 7→
Γc(x, uc) is convex on Θc(x) and Hu,w satisfies conditions

(A1’) - (A3’) in Lemma 2.3. Next, we design the gain of

such a feedback law to satisfy (14) and (15). Consider r =
4
5r

∗ = 4
5bv

2 and the RCLF, i.e., V in (12), that is defined

with P =

[
5 1
1 2

]
. The working environment has parameters

kc = 0.1 and bc = 0.02, the velocity threshold is v = 0.6, the

coefficient of restitution parameters are e2 = 0.9 and e1 = 0.8,

and the maximum allowed input is fmax = 10. We simulate

several solutions to Hu,w controlled by κc given in (37) with

gain k = [−0.5 − 2].

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

s1
s2
s3
s4
s5
s6

Mr

Π(Dw)

V −1(r∗)

x2

x1

Fig. 4: Simulation of Hu,w in Example 3.5 controlled by κc

in (37).

As shown in Figure 4, the inner green dash line is the boundary

of set Mr and the outer green dash line is the r∗-level set of

V . Six solutions are shown in Figure 4. Each solution starts

with an initial condition (labeled as square pink points) that

is within the set Mr and converges to the origin (labeled as

a square black point) in the limit. Solutions labeled s1 and

s3 exhibit jumps when the trajectory reach set D (the shaded

red square), and the jumps are represented with red stars and

dotted lines that match the color of each solution. Note that

all solutions stay within the set Mr, as expected. △

D. Systematic Design of Pair (κc, κd) for Robust Controlled

Forward Invariance

Inspired by the pointwise minimum norm results in [44] and

[28, Theorem 5.1], we construct state-feedback pairs rendering

the set Mr as in (19) robust controlled forward invariant. We

employ Theorem 3.16 to show that the resulting closed-loop

has the desired property.

For a given pair (V, r∗) defining a RCLF for forward

invariance as in Definition 3.6, we first construct appropriate

functions Γc,Γd and regulation maps Sc, Sd in Section III-A.

When 3.16.2) in Theorem 3.16 holds, uc 7→ Γc(x, uc) is

convex on Ψu
c (x) for every x ∈ Mc, and ud 7→ Γd(x, ud)

is convex on Θd(x) for every x ∈ Md. Hence, the maps Sc

and Sd have nonempty and convex values on R
n. According
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to [48, Theorem 4.10], for every x ∈ LV (r
∗) ∩ Πc(Cu,w)

and x ∈ LV (r
∗) ∩ Πd(Du,w), respectively, the closure of

Sc(x) and Sd(x), i.e., Sc(x) and Sd(x), have unique element

of minimum norm. Thus, we construct the state-feedback

laws κm
c : LV (r

∗) ∩ Πc(Cu,w) → Uc and κm
d : LV (r

∗) ∩
Πd(Du,w) → Ud as

κm
c (x) := argmin

uc∈Sc(x)

|uc| ∀x ∈ LV (r
∗) ∩Πc(Cu,w),

κm
d (x) := argmin

ud∈Sd(x)

|ud| ∀x ∈ LV (r
∗) ∩Πd(Du,w).

(38)

Moreover, such state-feedback pair enjoys continuity when the

maps Ψu
c and Θd satisfy 3.16.1). We capture these in the

following result.

Theorem 3.23: (pointwise minimum norm state-feedback

laws for robust controlled forward pre-invariance) Consider a

hybrid system Hu,w as in (1) satisfying conditions (A1’)-(A3’)

in Lemma 2.3. Suppose there exists a pair (V, r∗) that defines

a robust control Lyapunov function for forward invariance of

Hu,w as in Definition 3.6. Let r < r∗ satisfy (8)-(11) and Θd

be given as in (7). Furthermore, suppose conditions 3.16.1)

and 3.16.2) in Theorem 3.16 hold. Then, the state-feedback

pair (κm
c , κm

d ) given as in (38) renders the set Mr in (19)

robustly controlled forward pre-invariant for Hu,w. Moreover,

κm
c and κm

d are continuous on set Mc and Md as in (18),

respectively.

Proof The first claim follows from similar proof steps in

Theorem 3.16. In particular, since κm
c and κm

d are selected

from the closure of Sc and Sd, i.e., κm
c (x) ∈ Sc(x) and

κm
d (x) ∈ Sd(x), it follows that

κm
c (x) ∈ Ψu

c (x), Γc(x, κ
m
c (x)) ≤ 0 ∀x ∈ Mc,

κm
d (x) ∈ Θd(x), Γd(x, κ

m
d (x)) ≤ 0 ∀x ∈ Md,

which lead to
sup

ξ∈Fu,w(x,κm
c (x),wc)

〈∇V (x), ξ〉 + ρc(x) ≤ 0

∀(x, κm
c (x), wc) ∈ C̃u,w,

sup
ξ∈Gu,w(x,κm

d
(x),wd)

V (ξ) + ρd(x) − r ≤ 0

∀(x, κm
d (x), wd) ∈ D̃u,w.

(39)

The feedback pair (κm
c , κm

d ) can be extended to every point

in Πc(Cu,w) and Πd(Du,w), respectively, by selecting values

from the nonempty sets Ψu
c (x) for every x ∈ Πc(Cu,w) and

Θd(x) for every x ∈ Πd(Du,w). Then, applying Theorem 3.10,

we establish the robust controlled forward pre-invariance of

Mr for Hu,w via (κm
c , κm

d ).
Finally, the continuity of κm

c and κm
d follow directly from

Proposition A.8. In particular, maps Sc and Sd are lower

semicontinuous with nonempty closed convex values as shown

in proof of Theorem 3.16. �

A similar result to Theorem 3.23 can be derived using

Theorem 3.18 to render Mr robustly controlled forward

invariant for Hu,w via (κm
c , κm

d ). In such a case, the feedback

law κm
c is selected from the closure of a map Sc that is defined

using Θc given as in (31) instead of using Ψu
c . More precisely,

we consider the state feedback laws κm
c defined as in (38) with

Sc given by

Sc(x) :=

{
{uc ∈ Θc(x) : Γc(x, uc) < 0} if x ∈ Mc,

R
mc otherwise.

(40)

In addition to conditions 3.18.1) and 3.18.2) in Theorem 3.18,

robustly controlled forward invariance of Mr requires item

3.14.4) in Theorem 3.14 to hold for the closed-loop system

Hw. We formally present such a result as follows.

Theorem 3.24: (pointwise minimum norm state-feedback

laws for robust controlled forward invariance) Consider a

hybrid system Hu,w as in (1) satisfying conditions (A1’)-(A3’)

in Lemma 2.3. Suppose there exists a pair (V, r∗) that defines

a robust control Lyapunov function for forward invariance for

Hu,w as in Definition 3.6. Let r < r∗ satisfy (8)-(11), Θc and

Θd be given as in (31) and (7), respectively. Furthermore,

suppose conditions 3.18.1) and 3.18.2) in Theorem 3.18 hold.

Then, the state-feedback pair (κm
c , κm

d ) given as in (38)

defined using Sc as in (40) renders the set Mr in (19) robustly

controlled forward invariant for Hu,w if condition 3.14.4) in

Theorem 3.14 holds for the closed-loop system Hw. Moreover,

κm
c and κm

d are continuous on the sets Mc and Md as in (18),

respectively.

Proof The proof resembles the one for Theorem 3.23. In

particular, the selection (κm
c , κm

d ) given as in (38) defined

using Sc as in (40) leads to

κm
c (x) ∈ Θc(x), Γc(x, κ

m
c (x)) ≤ 0 ∀x ∈ Mc,

κm
d (x) ∈ Θd(x), Γd(x, κ

m
d (x)) ≤ 0 ∀x ∈ Md,

which, in turn, leads to the inequalities in (39). The feedback

pair (κm
c , κm

d ) can be extended to every point in Πc(Cu,w)
and Πd(Du,w), respectively, by selecting values from the

nonempty sets Θc(x) for every x ∈ Πc(Cu,w) and Θd(x)
for every x ∈ Πd(Du,w). Then, applying Theorem 3.14, we

establish robust controlled forward pre-invariance of Mr for

Hu,w via (κm
c , κm

d ) with the addition of condition 3.14.4)

in Theorem 3.14 for the closed-loop system Hw. Then, the

continuity of κm
c and κm

d follow directly from Proposition A.8.

�
Next, applying Theorem 3.24, a control law with minimum

point-wise norm rendering the set Mr in (25) robustly con-

trolled forward invariant for the bouncing ball system Hu,w is

provided.

Example 3.25: (Minimum norm selection for the bouncing

ball system) Consider the feedback law

κm
d (x) = argmin

ud∈Sd(x)

|ud|,

where Sd(x) is as in (35). It leads to the continuous state-

feedback law

κm
d (x) = max

{√
2γ

(ε
2
+ hmin

)
+ e1x2, 0

}
, (41)

for every x ∈ Mr ∩ Πd(D1). Following same steps as in

Example 3.21, it can be shown that Mr in (25) is robustly

controlled forward invariant for Hu,w via κm
d .

Simulations are generated for Hu,w controlled by κm
d given

as in (41) with the same system settings as in Example 3.21.

One solution that starts from the same initial condition x =
(11, 0) is shown in Figure 5. As shown in Figure 5(a), the

peaks of the height in between impacts are between hmin = 10
and hmax = 12, while on the (x1, x2) plane, the trajectory

stays within the set Mr, which is the region bounded by dark

green dashed lines.
As expected, compared to Figure 3(a), we observe in

Figure 5(a) that there are only 7 impacts with the controlled
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surface within the time span of 0 to 20 seconds ; while there

are 14 impacts in Figure 3(a) and every impact is followed

with a pull. This indicates that less energy is used to bounce

the ball at the controlled surface to maintain peak position

within range [hmin, hmax]. This is also verified by the input

values from both controllers, where the state-feedback κm
d has

smaller value than the controller κd in Example 3.21. △

0
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(a) Ball position and velocity and wd.
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❆
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(b) Solution on the (x1, x2) plane.

Fig. 5: Simulation of Hu,w controlled by κm
d in (41).

IV. CONCLUSION

We propose methods for the design of controllers that render

sets robust controlled forward invariant for hybrid dynamical

systems. The hybrid systems are modeled using differential

and difference inclusions with state, control inputs, and dis-

turbance constraints. The robust controlled forward invariance

properties are guaranteed by conditions on the data of the

system, using CLFs for forward invariance. The invariance

property is guaranteed for the closed-loop system resulting

from using a feedback controller. When a set K enjoys such

properties, solutions to the closed-loop system evolve within

the set they start from, even under the presence of disturbances.
Conditions on the data of the closed-loop system guaran-

teeing that sublevel sets of a given Lyapunov-like function

are robustly forward invariant are presented. Such conditions

take advantage of the nonincreasing properties of V near

the boundary of its sublevel sets. To guarantee existence of

nontrivial solution pairs from every point in such sublevel sets

and completeness of every maximal solution pair, assumptions

similar to those in [1, Theorem 5.1] are enforced. When

compared to the conditions in [1, Theorem 5.1], on Cw

required here are less restrictive as it does not require the

flow set to be regular.

To systematically construct feedback pairs that render sets

forward invariant uniformly in disturbances, we introduce con-

trol Lyapunov functions for forward invariance. Such functions

are not necessarily nonincreasing within the set to render for-

ward invariant. The proposed RCLF notions are conveniently

used to derive conditions for the existence of continuous state-

feedback laws inducing forward invariance. The idea is to

select feedback control from two carefully constructed set-

valued maps, called the regulation maps. Very importantly, the

new RCLF notion is employed to synthesize state-feedback

laws with pointwise minimum norm that effectively guarantee

forward invariance. For the stronger robust controlled forward

invariance case, where completeness is required for every

maximal solution pair within the set, a regulation map for

flows involving the tangent cone of the flow set is derived

from the well-known Nagumo Theorem.

Research on properties of the chosen selections using in-

verse optimality are undergoing. Future research directions

also include the development of barrier certificates for hybrid

systems; see initial results in [41].
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APPENDIX

A. Definitions and Related Results

Definition A.1: (outer semicontinuity of set-valued maps)

A set-valued map S : Rn ⇒ R
m is outer semicontinuous at

x ∈ R
n if for each sequence {xi}∞i=1 converging to a point

x ∈ R
n and each sequence yi ∈ S(xi) converging to a point

y, it holds that y ∈ S(x); see [49, Definition 5.4]. Given a set

K ⊂ R
n, it is outer semicontinuous relative to K if the set-

valued mapping from R
n to R

m defined by S(x) for x ∈ K
and ∅ for x /∈ K is outer semicontinuous at each x ∈ K . �

Definition A.2: (lower semicontinuous set-valued maps) A

set-valued map S : Rn ⇒ R
m is lower semicontinuous if for

every x ∈ R
n, one has that lim inf

xi→x
S(xi) ⊃ S(x), where

lim inf
xi→x

S(xi) := {z : ∀xi → x, ∃zi → z s.t. zi ∈ S(xi)}
is the inner limit of S (see [49, Chapter 5.B]).

Lemma A.3: ([50, Theorem 2.9.10]) Given a set S := {x :
h(x) ≤ 0}, suppose that, for every x ∈ {x : h(x) = 0}, h
is directionally Lipschitz at x with 0 /∈ ∇h(x) 6= ∅ and the

collection of vectors Y := {y : 〈∇h(x), y〉 < ∞} is nonempty.

Then, S admits a hypertangent at x and

1) y ∈ TS(x) if 〈∇h(x), y〉 ≤ 0;

2) ∃y ∈ intTS(x) ∩ intY s.t. 〈∇h(x), y〉 < 0. △
Corollary A.4: ([50, Corollary 2 of Theorem 2.9.8]) Let

C1, C2 ⊂ R
n and x ∈ C1 ∩ C2. Suppose that

TC1
(x) ∩ intTC2

(x) 6= ∅,
and that C2 admits at least one hypertangent vector at x.

Then, if C1 and C2 are regular at x, one has

TC1
(x) ∩ TC2

(x) = TC1∩C2
(x).

Corollary A.5: ([44, Corollary 2.13]) Given a lower semi-

continuous set-valued map W and an upper semicontinuous

function w, the set-valued map defined for each z as S(z) :=
{z′ ∈ W (z) : w(z, z′) < 0} is lower semicontinuous.

Theorem A.6: (Michael Selection Theorem, [44, Theorem

2.18]) Given a lower semicontinuous set-valued map S :
R

n ⇒ R
m with nonempty, convex, and closed values, there

exists a continuous selection s : Rn → R
m.

Theorem A.7: ([51, Theorem 4.1]) Given a closed set

A ⊂ R
n and a continuous map s : A 7→ R

m, there exists
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a continuous extension s̃ : R
n 7→ R

m of s. Furthermore,

s̃(x) ⊂ co(s(A)) for every x ∈ R
n.

Proposition A.8: (Minimal Selection Theorem [44, Propo-

sition 2.19]) Let the set-valued map S : Rn ⇒ R
m be lower

semicontinuous with closed graph and nonempty closed convex

values. Then, the minimal selection m : Rn → R
m, which is

given by

m(x) := argmin {|z| : z ∈ S(x)} ,
is locally bounded, and if gphm is closed and, then, m(x) is

continuous.

Lemma A.9: Consider a closed set Cw ⊂ R
n×Wc that has

0 ∈ Ψw
c (x) for every x ∈ Πw

c (Cw) and a map Fw : Rn ×
Wc ⇒ R

n satisfying item (A2w) in Definition 2.2. Suppose

there exists a pair (V, r∗), where the continuous function V is

continuously differentiable on an open set containing LV (r
∗)

and r∗ ∈ R is such that, for some r < r∗, items (20) and

3.14.1)-3.14.3) hold. Then, for every x ∈ ∂(Mr ∩Πw
c (Cw)) \

Πw
d (Dw),

Fw(x, 0) ∩ TMr∩Πw
c (Cw)(x) 6= ∅. (42)

Proof Let r < r∗ satisfy the properties in the statement of

the claim. Let K1 = int(LV (r))∩∂Πw
c (Cw), K2 = V −1(r)∩

int(Πw
c (Cw)), and K3 = V −1(r) ∩ ∂Πw

c (Cw). It is obvious

that K1,K2, and K3 are disjoint and
3⋃

i=1

Ki \ Πw
d (Dw) =

∂(Mr ∩ Πw
c (Cw)) \ Πw

d (Dw). We have the following three

cases:

i) For every x ∈ K1 \ Πw
d (Dw), since TMr∩Πw

c (Cw)(x) =
TΠw

c (Cw)(x), item 3.14.2) implies (42).

ii) For every x ∈ K2 \Πw
d (Dw), we have TMr∩Πw

c (Cw)(x) =
TLV (r)(x). Applying item 1) of Lemma A.3 to every such

x with h(x) = V (x)−r, hence, S = LV (r), and with any

point in Fw(x,wc) playing the role of y, we have that (20)

and item 3.14.1) imply Fw(x,wc) ⊂ TLV (r)(x) for every

wc ∈ Ψu
c (x). Then, with the assumption that 0 ∈ Ψu

c (x)
for every x ∈ Πw

c (Cw), (42) holds.

iii) For every x ∈ K3 \Πw
d (Dw), we argue that there exists a

vector ξ ∈ Fw(x, 0) ∩ TΠw
c (Cw)(x) that is also contained

in TLV (r)∩Πw
c (Cw)(x). To this end, for every x ∈ K3 \

Πw
d (Dw), consider ξ ∈ Ξx as defined in 3.14.3). For a

given x ∈ K3 \Πw
d (Dw), let

C̃x := {x+ αξ : α ≥ 0} ∩ Πw
c (Cw).

If C̃x = {x}, we have ξ = 0 by the fact that x ∈
K3 ⊂ Πw

c (Cw) and item 3.14.2), which contradicts with

item 3.14.3). Hence, for every such x, C̃x has more than

one point and ξ 6= 0. Then, there exists x′ 6= x such

that x′ = (α′ξ + x) ∈ C̃x. By definition of C̃x, for each

λ ∈ [0, 1], x′′ = λx + (1 − λ)x′ is also in C̃x. Let Cx =
con{x, x′}. By construction, Cx is a convex subset of C̃x

and is not a singleton. Next, for every x ∈ K3 \Πw
d (Dw),

we apply Corollary A.4 with C1 = Cx and C2 = LV (r).
Item 3.14.3) implies TCx

(x)∩ intTLV (r)(x) 6= ∅. Applying

Lemma A.3 with h(x) = V (x)− r, the set LV (r) admits

a hypertangent at every x ∈ V −1(r) ∩ Πw
c (Cw). Then,

[50, Corollary 2 of Theorem 2.4.7 (page 56)] implies the

set LV (r) is regular at every x with f(x) = V (x) − r.

Since set Cx is regular at x by construction, Corollary A.4

implies that for every x ∈ K3 \Πw
d (Dw),

TCx
(x) ∩ TLV (r)(x) = TLV (r)∩Cx

(x).

Because of the properties of tangent cones in [52, Table

4.3, item (1)] and the fact that Cx ∩ LV (r) ⊂ Πw
c (Cw) ∩

LV (r) by construction of Cx, we also have

TLV (r)∩Cx
(x) ⊂ TLV (r)∩Πw

c (Cw)(x).

Then, by definition of tangent cone, ξ ∈ TCx
(x) and ξ ∈

(TLV (r)(x)∩TCx
(x)) ⊂ TLV (r)∩Πw

c (Cw)(x). Therefore, by

assumption, since ξ ∈ Fw(x, 0)∩TΠw
c (Cw)(x) and the fact

that Mr ∩ Πw
c (Cw) = LV (r) ∩ Πw

c (Cw), (42) holds for

every x ∈ K3 \Πw
d (Dw). �

B. Proof of Theorem 3.14

First, applying [1, Proposition 3.4], there exists a nontrivial

solution pair to Hw from every x ∈ Mr. Then, it follows from

Theorem 3.10 that Mr is robustly forward pre-invariant for

Hw. Such a property implies that every maximal solution pair

(φ,w) to Hw from Mr has rgeφ ⊂ Mr. Next, we show by

applying [1, Proposition 3.4] that every maximal solution pair

(φ,w) to Hw starting from Mr is also complete. Case b.1.1) in

[1, Proposition 3.4] is excluded for every (φ,w) ∈ SHw
(Mr)

since Mr ∩ Πw
c (Cw) is closed. Cases b.1.2) and c.2) are

excluded since (42) holds for every x ∈ Mr \ Πw
d (Dw).

This follows from Lemma A.9, and the fact that Mr ⊂
Πw

c (Cw) ∪ Πw
d (Dw) and TLV (r)∩Πw

c (Cw)(x) = R
n for every

x ∈ int(LV (r)∩Πw
c (Cw)). Case b.2) is not possible for every

maximal solution from Mr by assumption 3.14.4). Finally,

when (22) holds, namely, Gw((Mr×Wd)∩Dw) ⊂ Mr, case

c.1) in [1, Proposition 3.4] does not hold. Therefore, only case

a) is true for every maximal solution pair starting from Mr.

Hence Mr is robustly forward invariant for Hw.
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