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Abstract— The minimal-time function with respect to a closed
set for a constrained continuous-time system provides the first
time that a solution starting from a given initial condition
reaches that set. In this paper, we propose infinitesimal nec-
essary and sufficient conditions for the minimal-time function
to be locally Lipschitz. As an application of our results, we
show that, in constrained continuous-time systems, the Lipschitz
continuity of the minimal-time function with respect to the
boundary of the set where the solutions are defined plays a
crucial role on the Lipschitz continuity of the reachable set.

I. INTRODUCTION

In constrained continuous-time systems of the form ẋ ∈
F (x) x ∈ C, the minimal-time function with respect to a
closed subset K ⊂ C provides the first time that a solution
reaches the set K. The minimal-time function, denoted tmin

K ,
has a close relationship to the solution of the well-studied
Hamilton-Jacobi equation [1], [2]. Moreover, it is very useful
in minimal-time control problems, where the objective is to
steer the solutions towards a given target in minimal time
[3]. Furthermore, when the set K coresponds to the jump
set of a hybrid system, tmin

K is shown in [4] and [5] to be
key when characterizing orbital stability. The name time-to-
impact function is used in the latter two references.

One of the most interesting questions related to tmin
K

concerns the analysis of its continuity properties. Such a
problem has been widely studied in the literature, see, e.g.,
[1], [6], [7], where different continuity properties have been
established under particular assumptions on the data defining
the system. In particular, the case when the vector field is
constant is treated in [8]. The case when the vector field is a
general set-valued map satisfying mild continuity conditions
is treated in [6]. In addition, the case when the vector field
is set-valued and time dependent is treated in [7]. On the
other hand, to the best of our knowledge, the case when the
system is subject to constraints has not been considered in
the literature.

For constrained continuous-time systems, the Lipschitz
continuity of tmin

∂C , where ∂C is the boundary of the con-
straint set C, plays a key role when analyzing the Lipschitz
continuity of the reachable sets of such systems. Reachable
sets are often viewed as set-valued maps [9]. One of the most
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standard reachable sets studied in the literature, denoted R,
maps an initial condition xo and a time to to all the points
reached by the solutions starting from xo before time exceeds
to. Another widely used reachable set, denoted Rb, includes
only the final values reached by each maximal solution start-
ing from xo before time exceeds to. The Lipschitz continuity
of R and Rb allows quantification of the separation between
the solutions starting from different initial conditions, see
[10], [11]. This property is useful in many contexts including
discretization of continuous-time systems [12], controllabil-
ity analysis [13], and finite-time optimization problems [1].
In unconstrained systems, Lipschitz continuity of R and Rb

can be established using the well-known Filippov Lemma
[10]. However, in the constrained case, where the solutions
are defined only within the set C, even if the solutions are
unique, the maps R and Rb can fail to be locally Lipschitz.
One of the scenarios preventing such a property is when the
function tmin

∂C is not locally Lipschitz, see the forthcoming
Example 1.

In the first part of this paper, we analyze the Lipschitz
continuity of tmin

∂C for constrained continuous-time systems.
More precisely, we propose necessary and sufficient infinites-
imal conditions to guarantee that tmin

∂C is locally Lipschitz.
We assume that the set C is closed and that F is single
valued and locally Lipschitz. Our approach is mainly inspired
by the results proposed in [1] and [6] for unconstrained
differential inclusions ẋ ∈ F (x) x ∈ Rn. As we shall see,
even when the solutions are unique, the results in [1] and
[6] are not directly applicable to the constrained setting.
Moreover, their extension offers some technical challenges.
In particular, since the solutions are defined only on the set
C, the proposed infinitesimal conditions must be satisfied on
C. However, by doing so, we will show that the arguments
used in the aforementioned references are not enough to
prove Lipschitz continuity of tmin

K . To handle this situation,
extra assumptions are proposed in this paper, see (C1)-
(C3). Relaxing (or showing the necessity) of the proposed
assumptions as well as considering the general case of
nonunique solutions are interesting open questions, which
will be the subject of our future work.

In the second part of this paper, as an application of
our results, we use the Lipschitz continuity of tmin

∂C to
formulate sufficient conditions to conclude the Lipschitz
continuity of the maps R and Rb in the constrained setting.
To the best of our knowledge, this is an original contribution
that constitutes a key step to analyze the continuity of the
reachable sets for general hybrid systems [14].



The rest of this paper is organized as follows. Preliminaries
on constrained continuous-time systems, reachable sets, and
minimal-time functions are in Section II. A general motiva-
tion to our work is in Section III. Necessary and sufficient
conditions for Lipschitzness of tmin

K , in the constrained
setting, are in Section IV. The Lipschitz continuity of R
and Rb, in the constrained setting, is analyzed in Section V.
Examples are introduced to illustrate our results.

Due to space constraints, the proofs are omitted and will
be published elsewhere.

Notation. For x, y ∈ Rn, x> denotes the transpose of x,
|x| the norm of x, |x|K := infy∈K |x−y| defines the distance
between x and the nonempty set K, and 〈x, y〉 = x>y
denotes the inner product between x and y. For a set K ⊂
Rn, we use int(K) to denote its interior, ∂K to denote its
boundary, cl(K) to denote its closure, and U(K) to denote an
open neighborhood of K. For a set O ⊂ Rn, K\O denotes
the subset of elements of K that are not in O. For the sets
(O,K, I) ⊂ Rn ×Rn ×R, O+K := {x1 + x2 : (x1, x2) ∈
O × K} and IK := {x1x2 : (x1, x2) ∈ I × K}. By B,
we denote the open unit ball in Rn centered at the origin.
Finally, F : Rn ⇒ Rn denotes a set-valued map associating
each element x ∈ Rn to a subset F (x) ⊂ Rn.

II. PRELIMINARIES: CONSTRAINED SYSTEMS,
REACHABILITY MAPS, AND MINIMAL-TIME FUNCTIONS

A constrained differential inclusion Hf := (C,F ) is
defined as the continuous-time system

Hf : ẋ ∈ F (x) x ∈ C ⊂ Rn, (1)

with the state variable x ∈ Rn, the flow set C ⊂ Rn

and the dynamics F : Rn ⇒ Rn. The set C in (1) is
not necessarily open and does not neccessarily correspond
to Rn, as opposed to the existing literature dealing with
unconstrained differential inclusions where C ≡ Rn [15],
[16].

Next, we introduce the concept of solutions to Hf .
Definition 1: (Solution to Hf ) A function x : domx →

Rn with domx ⊂ R≥0 and t 7→ x(t) locally absolutely
continuous is a solution to Hf if

(S1) x(0) ∈ cl(C),
(S2) x(t) ∈ C for all t ∈ int(domx),
(S3) ẋ(t) ∈ F (x(t)) for almost all t ∈ domx.

•
A solution to Hf is said to be maximal if there is no

solution z to Hf such that x(t) = z(t) for all t ∈ domx
with domx a proper subset of dom z. It is said to be trivial
if the set domx contains only one element. The system Hf

is said to be forward complete if every maximal solution
to Hf is defined on an unbounded hybrid time domain.
Finally, the system Hf is said to be pre-forward complete,
if every maximal solution to Hf is either forward complete
or bounded.

Remark 1: Constrained differential inclusions Hf =
(C,F ) constitute a key component in the modeling of hybrid
systems. Indeed, according to [17], a general hybrid system
modeled as a hybrid inclusion is given by

H :

{
x ∈ C ẋ ∈ F (x)
x ∈ D x+ ∈ G(x), (2)

where, in addition to the continuous dynamics Hf = (C,F ),
the discrete dynamics is defined by the jump set D ⊂ Rn and
the jump map G : Rn ⇒ Rn. The solutions to Hf = (C,F )
according to Definition 1, correspond to the solutions to H,
according to [17, Definition 2.6], that never jump. •

For a constrained system Hf = (C,F ), the reachability
maps R and Rb from xo over the interval [0, to] are given
by

R(to, xo) := {φ(t) : φ ∈ S(xo), t ∈ domφ ∩ [0, to]} , (3)

Rb(to, xo) := {φ(t) : φ ∈ S(xo), t ∈ domφ ∩ [0, to],

6 ∃t′ ∈ [0, to] ∩ domφ s.t. t′ > t} , (4)

where S(xo) is the set of maximal solutions to Hf starting
from xo ∈ cl(C). Finally, we use reach(xo) to denote the
set generated by the maximal solutions starting from xo ∈
cl(C); namely,

reach(xo) := {x(t) : t ∈ domx, x ∈ S(xo)} . (5)

Finally, we define the minimal-time function for con-
strained differential inclusions.

Definition 2 (Minimal-time function): The minimal-time
function tmin

K : cl(C) → Rn with respect to a closed set
K ⊂ C and for a system Hf = (C,F ) is given by

tmin
K (xo) :=



+∞ if reach(xo) ∩K = ∅

min
x(t) ∈ K
t ∈ domx
x ∈ S(xo)

t otherwise. (6)

•
The minimal-time function tmin

K in Definition 2 provides
the first time that a maximal solution starting from xo reaches
the set K. If all the solutions starting from xo never reach
the set K, the minimal-time function is set to infinity.

III. MOTIVATION

In unconstrained systems Hf = (Rn, F ), one can use
the well-known Filippov Theorem [10, Theorem 5.3.1] to
conclude that, when F is a Lipschitz set-valued map with
closed values, the maps Rb and R are locally Lipschitz1.

Proposition 1: Suppose the differential inclusion Hf =
(Rn, F ) is pre-forward complete and such that F is locally

1A set-valued map F : Rn ⇒ Rm is locally Lipschitz if for each compact
K ⊂ Rn there exists k > 0 such that, for all x ∈ K and y ∈ K,

F (y) ⊂ F (x) + k|x− y|B. (7)



Lipschitz. Then, the set-valued maps Rb and R are locally
Lipschitz. �

However, in the general case of constrained systems Hf =
(C,F ), the maps Rb and R may fail to be locally Lipschitz
even if Hf is pre-forward complete, the solutions are unique,
and F is locally Lipschitz. As we show in this paper, the
Lipschitz continuity of the minimal-time function tmin

∂C plays
a key role in this case. Indeed, one of the scenarios preventing
Lipschitz regularity of R and Rb is described below.

(?) The function t∂C : cl(C)→ R≥0 is not locally Lipschitz
on the set S∂C defined as

S∂C := {x ∈ cl(C) : t∂C(x) <∞} , (8)

where, given a closed set K ⊂ cl(C), the function tK is
given by

tK(xo) :=


tmin
K (xo) if xo 6∈ K or

S(xo) is trivial,

inf
x∈S(xo)

lim inf
t→0+

tmin
K (x(t)) otherwise.

(9)

Remark 2: The only difference between tK and tmin
K is

that, when xo ∈ K and the maximal solutions starting from
xo immediately leave the set K, tK(xo) provides the next
time, after the initial time, at which a maximal solution
reaches the set K. The latter is captured by the “otherwise”
in (9). •

The scenario (?) is illustrated in the following simple
example.

Example 1: Consider the constrained system Hf =
(C,F ) with

F (x) := [1 0]> ∀x ∈ C :=
{
x ∈ R2 : x1 ≤

√
|x2|+ 2

}
.

Note that F is single-valued and locally Lipschitz and that
Hf is pre-complete. Hence, the conditions in Proposition
1 hold. Moreover, t∂C(x) = tmin

∂C (x) for all x ∈ C.
Furthermore, let (xo, yo) ∈ C × C with xo := [1 0]>

and yo := [1 β]>, for some β ∈ [0, 1]. After some
computations, we obtain that t∂C(yo) = tmin

∂C (yo) = 1+
√
β,

t∂C(xo) = tmin
∂C (xo) = 1, y(t∂C(yo)) = [2 +

√
β β]>, and

x(t∂C(xo)) = [2 0]>. First, it is easy to see that the function
t∂C is not locally Lipschitz since |t∂C(yo) − t∂C(xo)| =√
β and |yo − xo| = β. Furthermore, for t∗ = 2, we obtain

Rb(t∗, yo) = y(t∂C(yo)) and Rb(t∗, xo) = x(t∂C(xo)).

The latter implies that x 7→ Rb(t∗, x) is not locally Lipschitz
on C since |yo − xo| = β and

|Rb(t∗, yo)−Rb(t∗, xo)| = |y(t∂C(yo))− x(t∂C(xo))|
=
√
β + β2.

�

Analyzing the Lipschitz continuity of tK reduces to ana-
lyzing the same property for the minimal-time function tmin

Ka
,

where Ka ⊂ K is a closed set such that

tK(x) = tmin
Ka

(x) ∀x ∈ cl(C). (10)

For example, in the following lemma, we show that (10)
holds when the following assumption is satisfied:

(M) The set Ka is closed and such that
1) tK(x) = 0 for all x ∈ Ka,
2) tcl(K\Ka)(x) =∞ for all x ∈ cl(C)\Ka.

Lemma 1: Consider a constrained differential inclusion
Hf = (C,F ), a closed set K ⊂ cl(C), and a subset Ka ⊂ K
such that (M) holds. Then, (10) holds. �

The latter facts are illustrated in the following example.
Example 2: [Bouncing ball] The continuous dynamics of

the bouncing ball hybrid model is given by Hf := (C,F ),
where F (x) := [x2 −γ]>, C :=

{
x ∈ R2 : x1 ≥ 0

}
, and the

constant γ > 0 is the gravitational acceleration. Furthermore,
we consider the following useful set:

D :=
{
x ∈ R2 : x1 = 0, x2 ≤ 0

}
. (11)

Next, we will show that (M) is satisfied with (K,Ka) =
(∂C,D). Indeed, the set D is closed and is a subset of ∂C.
Furthermore, it is easy to see that each solution starting from
D is trivial; hence, t∂C(x) = 0 for all x ∈ D. Furthermore,
tcl(∂C\D)(x) = ∞ for all x ∈ ∂C\D since the solutions
starting from ∂C\D leave ∂C\D immediately and never
reach it again. �

IV. LIPSCHITZNESS OF MINIMAL-TIME FUNCTIONS IN
CONSTRAINED SYSTEMS

In this section we investigate necessary and sufficient
conditions such that the minimal-time function tmin

K in
Definition 2 is locally Lipschitz on the set

Smin
K :=

{
x ∈ C : tmin

K (x) <∞
}
. (12)

The proposed conditions are infinitesimal, i.e., they in-
volve only the sets K and C, and the map F .

A. Assumptions

Throughout this paper, we are concerned with the partic-
ular class of constrained nonlinear systems Hf = (C,F )
satisfying the following condition:

(SA) The set C is closed and F is single valued and locally
Lipschitz on C.

Furthermore, given a closed set K ⊂ C, we impose the
following assumptions in some of our results2:

(C1) There exists U(K) such that, for each (xo, t1, t2) ∈
Smin
K ×R≥0 ×R≥0 with 0 ≤ t1 < t2 < tmin

K (xo), the
solution x to Hf from xo does not satisfy

x(t) ∈ (∂C ∩ U(K))\K ∀t ∈ [t1, t2].

2So far, we are not assuming any of these assumptions to hold.



(C2) For a given (xo, ηo) ∈ K × R>0, (xo + ηoB) ∩ C ⊂
Smin
K .

(C3) For a given (xo, ηo) ∈ K × R>0, for all x ∈ (xo +
ηoB)∩K and y ∈ C such that x = projK(y), y− x ∈
MC(x) with

MC(x) := {v ∈ Rn : ∃ε > 0 : x+ [0, ε]v ⊂ C} . (13)

Remark 3: Property (C1) prevents the solutions that reach
the set K from sliding in (∂C ∩U(K))\K. Lemma 2 in the
Appendix proposes sufficient infinitesimal conditions such
that (C1) holds. •

Remark 4: Condition (C2) is trivially satisfied if, for
example, the set K is locally attractive. Moreover, condition
(C3) is satisfied if the set C is locally convex around xo;
namely, there exists ε > 0 such that C∩(xo+εB) is convex.
•

Example 3: [Bouncing ball] Consider the constrained sys-
tem Hf = (C,F ) studied in Example 2 and assume that
K = D, where D is introduced in (11). To verify (C1), notice
that the nontrivial solutions flowing from ∂C are only those
starting from ∂C\D =

{
x ∈ R2 : x1 = 0, x2 > 0

}
, and are

given by x(t) = [− 1
2γt

2 + xo2t − γt + xo2]
> for all

t ≥ 0 and for all xo := [xo1 xo2]
> ∈ ∂C\D. Note that

x1(t) > 0 for all t ∈ (0, 2xo2/γ); hence, x(t) ∈ int(C) for
all t ∈ (0, 2xo2/γ). Hence, (C1) is verified with Smin

D = C.
Another way to conclude (C1) consists in using Lemma 2
and the fact F (xo) ∈ DC(xo) for all xo ∈ ∂C\D, where
DC is introduced in (20). To show that (C2) and (C3) hold,
notice that tmin

D (x) < ∞ for all x ∈ C; hence, (C2) holds.
Moreover, the set C is convex; hence, (C3) is also satisfied.
�

B. Main Result

We are now ready to establish the main result of this
section.

Theorem 1: Suppose that the constrained system Hf =
(C,F ) satisfies (SA).

1) If (C1) holds and, for all xo ∈ K, there exist β > 0
and η1 > 0 such that

〈F (x), ζx〉 ≤ −β|ζx| ∀x ∈ ((xo + η1B) \K) ∩ C,
∀ζx ∈ {x− y : y ∈ projK(x)} , (14)

then, the minimal-time function tmin
K is locally Lips-

chitz on Smin
K .

2) If (C1) holds and there exist xo ∈ K, β > 0, and η1 > 0
such that (14) holds, then there exists η2 > 0 such that
tmin
K is locally Lipschitz on Smin

K ∩ (xo + η2B).
3) Conversely, if tmin

K is locally Lipschitz on Smin
K ∩

(xo + ηoB) for some ηo > 0, xo ∈ K, and (C2)-(C3)
hold with (xo, ηo), then there exists η1 > 0 and β > 0
such that (14) holds.

�

Example 4: [Bouncing ball] Consider the continuous dy-
namics of the bouncing-ball hybrid model introduced in (3)

and let the set D be as introduced in (11). In this example,
we propose first to show analytically that the minimal-
time function tmin

D is locally Lipschitz around any element
zo ∈ C\ {0}. However, it is not locally Lipschitz around
the origin. As a next step, we propose to validate such a
claim using Theorem 1. Note that ∂C =

{
x ∈ R2 : x1 = 0

}
.

Furthermore, according to Definition 2, we conclude that
Smin
D = C. Indeed, from any element xo ∈ C, either

there exists a nontrivial solution to Hf that reaches ∂C and
D at the same time, otherwise, the solution starting from
∂C ∩ D and is trivial. Also, according to Definition 2 and
after some easy computations, we conclude that tmin

D (xo) =(
xo2 +

√
x2o2 + 2γxo1

)
/γ for all x ∈ C. Hence, tmin

D

are C1, thus locally Lipschitz, except at the origin. Now,
we propose to confirm the latter result using Theorem 1;
that is, without computing the system’s solutions. Let zo ∈
C\ {0}, let z be the solution flowing from zo, and K = D.
Furthermore, let ηo > 0 such that (zo + ηoB) ∩ {0} = ∅.
We start by noticing that, for all yo ∈ (zo + ηoB) ∩ C,
tmin
K (yo) < ∞; thus, yo ∈ Smin

K . Next, since the system’s
nontrivial flows never reach the origin, we conclude the
existence of η2 > 0 such that (z(tmin

D (zo))+η2B)∩{0} = ∅
and, according to Proposition 1, each solution y starting from
yo ∈ (zo + ηoB) ∩ C reaches (z(tmin

D (zo)) + η2B) ∩ C
before reaching the set D, for ηo > 0 sufficiently small.
We also notice that η2 > 0 can be made sufficiently small
by taking ηo > 0 sufficiently small. That is, using the second
statement in Theorem 1, we conclude that the minimal-time
function tmin

D is locally Lipschitz around zo since we can
always show the existence of η1 > 0 and β > 0 such that
(14) holds for all xo := z(tmin

D (zo)) ∈ D\ {0}. Indeed,
it suffices to take η1 > 0 sufficiently small such that, for
all x := [x1 x2]

> ∈ ((xo + η1B) \D) ∩ C, x2 ≤ 0;
hence, ζx = x − projD(x) = [x1 0]> with x1 > 0; thus,
〈ζx, F (x)〉 = −λx1 = −λ|ζx|.

Next, we propose to use the third statement in Theorem 1
in order to conclude that tmin

D is not locally Lipschitz around
the origin. Indeed, we already established in Example 3 that
(C2)-(C3) are satisfied. Now, in order to confirm the claim,
we show that, for all η1 > 0 and for all β > 0, there exists
x ∈ (η1B\D) ∩ C such that 〈F (x), ζx〉 > −β|ζx|. That is,
let x = [η1/2 0]>, it is easy to see that x ∈ (η1B\D) ∩ C,
ζx = x, and F (x) = [0 − γ]>; hence, 〈F (x), ζx〉 = 0 >
−βη1 = −β|ζx|, which confirms that tmin

D is not locally
Lipschitz around the origin. �

C. Discussion

• The first and second items in Theorem 1 are inspired by
[6, Theorem 3.2]. Assumption (C1) plays a role when
adapting the arguments used in the aforementioned ref-
erence. Indeed, since the proof is based on [6, Theorem
2.1], condition (C1) is assumed to guarantee that the
z in [6, Theorem 2.1] belongs to the set C. The latter
does not hold for free in the constrained case. Showing
the necessity of (C1), or relaxing it, is an interesting
open question.



• If we consider the general case where F is set valued
with compact and convex images, a key step to extend
Theorem 1 consists in extending the condition (14).
Indeed, it has been shown in [6, Theorem 3.1] that,
when C = Rn, (14) can be replaced by

〈ηx, ζx〉 ≤ −β|ζx| for some ηx ∈ F (x) and
∀x ∈ (xo + η1B) \K,
∀ζx ∈ {x− y : y ∈ projK(x)} . (15)

Under (15) and starting from each xo ∈ Rn close
enough to K, we can prove the existence of a nontrivial
solution x ∈ S(xo) that reaches K while satisfying

|x(t)|K − |xo|K ≤ −t/co ∀t ∈ [0, tmin
K (xo)]. (16)

However, in the constrained case, the solution x sat-
isfying (16) can be cut by the set C before reaching
K. At the same time, it is possible to have a different
solution starting from the same xo that reaches K while
not satisfying (16).

• The proof of the third statement in Theorem 1 is
inspired by the proof in [6, Theorem 6.2] and the
arguments used therein do not apply to the constrained
case when we remove (C2)-(C3).

V. LIPSCHITZNESS OF REACHABILITY MAPS IN
CONSTRAINED SYSTEMS

In this section, we analyze the Lipschitz continuity of
the reachability maps Rb and R in constrained systems.
In addition to (?), the following scenarios prevent such a
regularity of the reachability maps Rb and R.

A. When the Solutions are Nontrivial After Reaching ∂C

Assume the existence of a solution x starting from xo ∈
int(C) such that 0 < t∂C(xo) < ∞ and domx := [0, t∗]
with t∗ > t∂C , see Example 5. In this case, it is possible
to find an example where there exists a sequence of initial
conditions {xoi}∞i=0 ⊂ int(C) with limi→∞ xoi = xo such
that each maximal solution xi staring from xoi satisfies
domxi := [0, t∂C(xoi)] with t∂C(xoi) ≤ t∂C(xo) < t∗.
Hence, in such a scenario, the map x 7→ Rb(t∗, x) fails to
be locally Lipschitz since

|Rb(t∗, xo)−Rb(t∗, xoi)| = |x(t∗)− xi(t∂C(xoi))|,

and the time mismatch in the right-hand side of the previous
equality will not allow the map Rb to be locally Lipschitz.

Example 5: Consider the constrained system Hf with
F (x) := [−1 0]>, C := R2\ {x ∈ R<0 × R : |x2| < 1}.
It is easy to see that (SA) is satisfied. Furthermore, let x be
the solution starting from xo := [1 1]>, and let xi be the
solution starting from xoi := [1 1 − (1/i)]>. It is easy to
see that t∂C(xoi) = t∂C(xo) = 1, (t∂C is locally Lipschitz)
and domxi = [0, t∂C(xoi)] = [0, 1] for all i ∈ N. However,
domx = [0,+∞]; hence, when t∗ = 2 and for any i ∈ N,

|Rb(2, xo)−Rb(2, xoi)| = |x(2)− xi(1)|
=|[−1 1]> − [0 1− (1/i)]>| > 1,

which shows that the map x 7→ Rb(2, x) is not locally
Lipschitz on K. �

B. When the Solutions Start From ∂C

We assume, in this case, the existence of xo ∈ ∂C
such that a nontrivial solution x starting from xo exists;
namely, domx = [0, t∗], for some t∗ > 0. In this case,
the following two situations prevent the maps R and Rb

from being locally Lipschitz. The first situation is when
there exists a sequence of initial conditions {xoi}∞i=0 ⊂ ∂C
with limi→∞ xoi = xo such that each maximal solution xi
starting from xoi is trivial, i.e., domxi = {0}. For example,
consider the constrained system Hf in Example 5, and let
xo := [0 1]> and xoi := [0 1−1/(i+1)]> for all i ∈ N. In
such a scenario, the map x 7→ Rb(t∗, x) fails to be locally
Lipschitz since |Rb(t∗, xo)−Rb(t∗, xoi)| = |x(t∗)− xi(0)|,
and the time mismatch in the right-hand side of the previous
equality will not allow the map to be locally Lipschitz.

The second situation is when the solution x starting
from xo ∈ ∂C remains in ∂C and its domain is un-
bounded. However, there exists a sequence of initial con-
ditions {xoi}∞i=0 ⊂ ∂C with limi→∞ xoi = xo such that
each maximal solution xi starting from xoi is nontrivial
but its domain is bounded, i.e., domxi = [0, t∂C(xoi)]
and supi∈N {t∂C(xoi)} < ∞. For example, consider the
constrained system Hf = (C,F ) with F (x) := [1 0]>,
C := R2\

{
x ∈ R2 : x1 ∈ (1, 2), |x2| > 0

}
, and let xo :=

[0 0]> and xoi := [0 1/(i + 1)]> for all i ∈ N. In such a
scenario, the map x 7→ Rb(t∗, x) fails to be locally Lipschitz
for sufficiently large t∗ > 0 since

|Rb(t∗, xo)−Rb(t∗, xoi)| = |x(t∗)− xi(t∂C(xoi))|.

C. Assumptions and Main Result

To avoid the scenarios in (?) and Sections V-A-V-B, we
assume the following to hold on a given set X ⊂ C.

(M1) The set X ⊂ C is forward pre-invariant (i.e.,
x(domx) ⊂ X for all x ∈ S(X)) and, for all
x ∈ S(X), domx is closed.

(M2) There exists Ka ⊂ ∂C such that (M) holds with K
therein replaced by ∂C and tmin

Ka
is locally Lipschitz

on S∂C ∩X .
(M3) S(xo) is trivial for all xo ∈ X ∩ ∂C reachable by a

solution staring from yo(6= xo) ∈ X .
(M4) For any xo ∈ ∂C ∩ X from which solutions are

nontrivial, there exists U(xo) ⊂ Rn such that

∀y ∈ S(U(xo) ∩X ∩ C), ∃ty > 0 : y((0, ty]) ⊂ int(C). (17)

Remark 5: Infinitesimal conditions to check (M3) and
(M4) are provided in Lemmas 3 and 4, respectively. •

Theorem 2: Suppose that the constrained system Hf =
(C,F ) satisfies (SA). Let X ⊂ C be such that (M1)-(M4)
hold. Then, the maps Rb and R are locally Lipschitz on
R≥0 ×X . �

Example 6: Consider the constrained system Hf =
(C,F ) studied in Example 2. Consider the set X := C\ {0}.



Note that the set X is forward pre-invariant since the
solutions starting from X never reach the origin. Note, also,
that Hf is pre-complete as the solutions cannot escape in
finite time under the linearity of F ; hence, (M1) holds.
Furthermore, we already established in Examples 2 and 4
that t∂C ≡ tmin

D is locally Lipschitz on C\ {0} = X , which
means that (M2) holds. Next, to verify (M3), we notice
that the set C is convex; thus, regular, see Definition 3.
Furthermore, (21) holds for all xo ∈ ∂C\D and ∂C\D is the
only set from which nontrivial solutions exist. Hence, (M3)
follows using the second statement in Lemma 3. Finally,
in order to verify (M4), we use Lemma 4 since the set
C is convex and we already showed in Example 3 that
F (xo) ⊂ DC(xo) for all xo ∈ ∂C such that S(xo) is
nontrivial. �

VI. CONCLUSION

Necessary and sufficient (infinitesimal) conditions for the
minimal-time function to be locally Lipschitz for constrained
continuous-time systems modeled as constrained differential
equations were formulated. It was shown that Lipschitz con-
tinuity of the reachable sets plays a key role in establishing
such a property. Establishing necessity of conditions (C1)-
(C3), and relaxing them if needed, is part of future work.
The more general case of constrained differential inclusions
is also part of future research.

APPENDIX

Here, we recall some useful tangent cones and the notion
of regular closed sets [11], [18], [16].

• The contingent cone of K at x is given by

TK(x) :=

{
v ∈ Rn : lim inf

h→0+

|x+ hv|K
h

= 0

}
. (18)

• The Clarke tangent cone of K at x is given by

CK(x) :=

{
v ∈ Rn : lim sup

y→x,h→0+

|y + hv|K
h

= 0

}
. (19)

• The Dubovtsky-Miliutin cone of K at x is given by

DK(x) := {v ∈ Rn : ∃ε > 0 : x+ (0, ε](v + εB) ⊂ K} .
(20)

Definition 3: A set K ⊂ Rn is said to be regular if
TK(x) = CK(x) for all x ∈ K. •

Lemma 2: Consider a constrained system Hf = (C,F )
such that (SA) holds. Property (C1) is satisfied if, for all
xo ∈ (∂C ∩ U(K))\K such that S(xo) is nontrivial, either
F (xo) = 0 or

F (xo) /∈ T∂C(xo). (21)

�

Lemma 3: Consider a constrained system Hf = (C,F )
such that (SA) holds. Property (M3) is satisfied if, for any

initial condition xo ∈ ∂C ∩X such that S(xo) is nontrivial,
either F (xo) = 0 or

−F (xo) 6∈ TC(xo). (22)

Moreover, when C is regular, (22) can be relaxed to (21). �
Lemma 4: Consider a constrained system Hf = (C,F )

such that (SA) holds. The condition (M4) is satisfied if, for
each xo ∈ ∂C ∩X such that S(xo) is nontrivial,

F (yo) ∈ DC(yo) ∀yo ∈ U(xo) ∩ ∂C. (23)

Moreover, if the set C is regular, condition (23) can be
relaxed to

F (xo) ∈ DC(xo). (24)

�
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