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Abstract— This paper presents HyNTP, a distributed hybrid
algorithm that synchronizes the time and rate of a set of
clocks connected over a network. Clock measurements of the
nodes are given at aperiodic time instants and the controller at
each node uses these measurements to achieve synchronization.
Due to the continuous and impulsive nature of the clocks
and the network, we introduce a hybrid system model to
effectively capture the dynamics of the system and proposed
hybrid algorithm. Moreover, the HyNTP algorithm allows each
agent to estimate the skew of its internal clock in order
to allow for synchronization to a common timer rate. We
provide sufficient conditions guaranteeing synchronization of
the timers, exponentially fast. Numerical results illustrate the
synchronization property induced by the proposed algorithm
as well as robustness to communication noise.

I. INTRODUCTION

Accurate and reliable clock synchronization has been a
growing topic of importance in recent years due to the
increased use of packet-switched networks in time-critical
distributed applications. The low cost, ease of implemen-
tation, and resiliency to changes in network topography of
packet-switched networks have led to their adoption in a
variety of non-traditional system settings such as robotic
swarms, automated manufacturing, distributed optimization,
among many others, see [1]. The discrete nature of the net-
work communication and the reliance on dynamical models
for control and estimation requires consensus among the
distributed agents on a shared time scale. In fact, it is not
realistic to assume that consensus on time is for free when
the distributed system is subjected to network imperfections
such as noise, delay, and jitter. It is therefore paramount that
distributed systems employ clock synchronization schemes
to establish and maintain the required time consensus for
their algorithms.

A common and natural approach to clock synchronization
is to use reference-based algorithms where the network
agents synchronize to a known reference that is either
injected or provided by a leader agent. One such algorithm
of this kind is the seminal Networking Time Protocol (NTP)
presented in [2] that has been widely used due to its
simplicity and ease of implementation. However, algorithms
like NTP were designed for relatively static network envi-
ronments with a defined hierarchy and are most times unfit
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for applications with dynamic network topologies. Other
centralized approaches, such as those shown in the works
of [3] and [4], consider a least-squares minimization to
synchronize with an elected reference. Unfortunately, these
approaches suffer robustness issues when communication
with the reference node fails or if the random delays in the
transmission are not Gaussian distributed, see [5].

The noted discrepancies in the robustness of the central-
ized approaches have recently motivated consensus-based so-
lutions that do not rely on a designated reference. In the work
of [1], [6] and more recently [7], average consensus protocols
are considered that result in asymptotic synchronization of
the network clocks. However, these approaches suffer from
computational complexity in both memory allocation and
execution of the algorithm. Moreover, a high number of
iterations is often required before the desired synchronization
accuracy is achieved. The work of [8] and [9] also provide
asymptotic results using a proportional-integral (PI) consen-
sus algorithm. Though the PI consensus algorithm provides
faster convergence than the other approaches using average
consensus, the PI algorithm still requires a large number of
iterations before synchronization is achieved.

This paper presents HyNTP, a distributed hybrid algorithm
that exponentially synchronizes a set of clocks connected
over a network. Clock measurements of the nodes are
given at aperiodic time instants, and each node uses these
measurements to achieve synchronization. Inspired by con-
sensus algorithms in [10], this paper introduces a hybrid
system model of a network with continuous and impulsive
dynamics that uses a hybrid algorithm to synchronize the
network clocks in the presence of non-ideal clock skews.
The algorithm also allows for the estimation of the skew of
the internal clock at each agent to achieve synchronization
with a common rate of change for the timers. The use
of a hybrid systems model to solve the problem under
consideration allows for the application of a Lyapunov-based
analysis to show stability of a desired set of interest. Using
results from [11], we show that, via a suitable change of
coordinates, our distributed hybrid clock synchronization
algorithm guarantees the synchronization configuration of the
timers, exponentially fast.

This paper is organized as follows. Section II presents
preliminary material on graph theory and hybrid systems.
Section III introduces the clock synchronization problem
and the system being studied, an outline of the algorithm
under consideration, and the associated hybrid model of the
closed-loop system. Section IV has the main results. Section
V provides numerical examples. Due to space constraints,



the proofs of several results along with other details will be
published elsewhere.

Notation: The set of natural numbers including zero, i.e.,
{0, 1, 2, . . .} is denoted by N. The set of natural numbers
is denoted as N>0, i.e., N>0 = {1, 2, . . .}. The set of
real numbers is denoted as R. The set of non-negative real
numbers is denoted by R≥0, i.e., R≥0 = [0,∞). The n-
dimensional Euclidean space is denoted Rn. Given sets A
and B, F : A ⇒ B denotes a set-valued map from A
to B. For a matrix A ∈ Rn×m, AT denotes the transpose
of A. Given a vector x ∈ Rn, |x| denotes the Euclidean
norm. Given two vectors x ∈ Rn and y ∈ Rm, we use
the equivalent notation (x, y) = [xT yT ]T. Given a matrix
A ∈ Rn, |A| := max{

√
|λ| : λ ∈ eig(ATA)}. For two

symmetric matrices A ∈ Rn and B ∈ Rn, A � B means
that A−B is positive definite; conversely, A ≺ B means that
A−B is negative definite. Given a function f : Rn → Rm,
the range of f is given by rge f := {y : ∃ x s.t. y = f(x)}.
A vector of N ones is denoted 1N . Given a closed set
A ⊂ Rn and a closed set B ⊂ A, the projection of A onto
B is denoted by projB(A). The matrix In is used to denote
the identity matrix of size n× n.

II. PRELIMINARIES

A. Preliminaries on Graph Theory

Let G = (V, E , A) be a weighted directed graph (digraph)
where V = {1, 2, . . . , n} represents the set of n nodes, E ⊂
V × V the set of edges, and A ∈ {0, 1}n×n represents the
adjacency matrix. An edge of G is denoted by eij = (i, j).
The elements of A are denoted by aij where aij = 1 if
eij ∈ E and aij = 0 otherwise. The in-degree and out-
degree of a node i are defined by din(i) =

∑n
k=1 aki and

dout(i) =
∑n
k=1 aik, respectively. The largest and smallest

in-degree of a digraph is given by d̄ = maxi∈Vdin(i) and
d = mini∈Vdin(i). The in-degree matrix is a diagonal matrix
denoted D with elements given by

dij =

{
din(i) if i = j

0 if i 6= j
∀i ∈ V

The Laplacian matrix of a digraph G, denoted by L,
is defined as L = D − A and has the property that
L1n = 0. The set of nodes corresponding to the neighbors
that share an edge with node i is denoted by N (i) :=
{k ∈ V : eki ∈ E }. In the context of networks N (i), this
represents the set of nodes for which an agent i can com-
municate with.

Lemma 2.1: ((Olfati-Saber and Murray, 2004, Theorem
6),(Fax and Murray, 2004, Propositions 1, 3, and 4)) For an
undirected graph, L is symmetric and positive semidefinite
and each eigenvalue of L is real. For a directed graph, zero
is a simple eigenvalue of L if the directed graph is strongly
connected.

Lemma 2.2: (Godsil and Royle (2001)) Consider an n×n
symmetric matrix A = {aik} satisfying

∑n
i=1 aik = 0 for

each k ∈ {1, 2, . . . , n}. The following statements hold:

• There exists an orthogonal matrix U such that

U>AU =

[
0 0
0 ?

]
where ? represents any nonsingular

matrix with appropriate dimensions and 0 represents
any zero matrix with appropriate dimensions.

• The matrix A has a zero eigenvalue with eigenvector
1n ∈ Rn.

Definition 2.3: A weighted digraph is said to be

• balanced if the in-degree matrix and out-degree matrix
for every node is equal, i.e., din(i) = dout(i) for each
i ∈ V .

• complete if every pair of distinct nodes is connected by
a unique edge, i.e., aik = 1 for each i, k ∈ V, i 6= k.

• strongly connected if and only if for any two distinct
nodes there exists a path of directed edges that connects
them.

B. Preliminaries on Hybrid Systems

A hybrid system H in Rn is composed by the following
data: a set C ⊂ Rn, called the flow set; a set-valued mapping
F : Rn ⇒ Rn with C ⊂ dom F , called the flow map;
a set D ⊂ Rn, called the jump set; a set-valued mapping
G : Rn ⇒ Rn with D ⊂ dom G, called the jump map.
Then, a hybrid system H := (C,F,D,G) is written in the
compact form

H

{
ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(1)

where x is the system state. In this paper, a single-valued flow
map is used and is denoted f . Solutions to hybrid systems are
parameterized by (t, j), where t ∈ R≥0 defines ordinary time
and j ∈ N is a counter that defines the number of jumps. The
evolution of φ is described by a hybrid arc on a hybrid time
domain [7]. A hybrid time domain is given by dom φ ⊂
R≥0 × N if, for each (T, J) ∈ dom φ, dom φ ∩ ([0, T ] ×
{0, 1, ..., J}) is of the form

⋃J
j=0([tj , tj+1]×{j}), with 0 =

t0 ≤ t1 ≤ t2 ≤ tJ+1. A solution φ is said to be maximal
if it cannot be extended by flow or a jump, and complete if
its domain is unbounded. The set of all maximal solutions
to a hybrid system H is denoted by SH and the set of all
maximal solutions to H with initial condition belonging to a
set A is denoted by SH(A). A hybrid system is well-posed
if it satisfies the hybrid basic conditions in [11, Assumption
6.5].

Definition 2.4: Let a hybrid system H be defined on Rn.
Let A ⊂ Rn be closed. The set A is said to be stable for H
if for every ε > 0 there exists δ > 0 such that every solution
φ to H with |φ(0, 0)|A ≤ δ satisfies |φ(t, j)|A ≤ ε for all
(t, j) ∈ dom φ.

Definition 2.5: Let a hybrid system H be defined on Rn.
Let A ⊂ Rn be closed. The set A is said to be globally
exponentially stable (GES) for H if there exist κ, α > 0 such
that every maximal solution φ to H is complete and satisfies
|φ(t, j)|A ≤ κe−α(t+j)|φ(0, 0)|A for each (t, j) ∈ dom φ.



III. PROBLEM STATEMENT AND THE HYNTP
ALGORITHM

A. Problem Statement

Consider a group of n sensor nodes connected over a
network represented by a digraph G = (V, E , A). Two clocks
are attached to each node i of G: an (uncontrollable) internal
clock τ∗i ∈ R≥0 whose dynamics are given by

τ̇∗i = ai (2)

and an adjustable clock τ̃i ∈ R≥0 with dynamics

˙̃τi = ai + ui (3)

where ui ∈ R is a control input.1 In both of these models,
the (unknown) constant ai represents the drift of the internal
clock.

At times tj for j ∈ N (with t0 = 0), node i receives mea-
surements τ̃k from its neighbors. The resulting sequence of
time instants {tj}∞j=1 is assumed to be strictly increasing and
unbounded. Moreover, for such a sequence, the time elapsed
between each time instant when the clock measurements are
exchanged is governed by

T1 ≤ tj+1 − tj ≤ T2 ∀j ∈ N \ {0}
0 ≤ t1 ≤ T2

(4)

where 0 < T1 ≤ T2, with T1 defining a minimum time
between consecutive measurements and T2 defines the max-
imum allowable transfer interval (MATI).

Remark 3.1: The models for the clocks are based on the
hardware and software relationship of the real-time system
that implements them. That is, the internal clock τ∗i is treated
as a type of hardware oscillator while the adjustable clock
τ̃i is treated as a virtual clock, implemented in software (as
part of the proposed algorithm), that evolves according to
the dynamics of the hardware oscillator. Any virtual clock
implemented in node i inherits the drift parameter ai of the
internal clock, which cannot be controlled. More importantly,
this drift parameter is not known due to the fact that universal
time information is not available to any node.

Under such a setup, our goal is to design a distributed
hybrid controller that assigns the input ui to drive each clock
τ̃i to synchronization with every other clock τ̃j and, rather
than having ˙̃τi = ai, to have a common prespecified constant
rate of change σ∗ > 0 for each clock. This problem is
formally stated as follows:

Problem 3.1: Given a network of n agents with dynamics
as in (2) and (3) represented by a directed graph G and σ∗ >
0, design a distributed hybrid controller that achieves the
following two properties:

i) Clock synchronization: limt→∞ |τ̃i(t) − τ̃k(t)| = 0 for
all i, k ∈ V , i 6= k;

ii) Common clock rate: limt→∞ | ˙̃τi(t) − σ∗| = 0 for all
i ∈ V .

1The input ui is unconstrained as allowed by hardware platforms in
practice.

B. The HyNTP Algorithm

We define the hybrid model that provides the framework
and a solution to Problem 3.1. First, since we are interested
in the ability of the rate of each clock to synchronize to
a constant rate σ∗, we propose the following change of
coordinates: for each i ∈ V , define ei := τ̃i − r, where
r ∈ R≥0 is such that ṙ = σ∗. The state r is only used for
analysis. Then, the dynamics for ei are given by

ėi = ˙̃τi − σ∗ ∀i ∈ V (5)

By making the appropriate substitutions, one has

ėi = ai + ui − σ∗ ∀i ∈ V (6)

To model the network dynamics for aperiodic communication
events, we consider a timer variable τ with hybrid dynamics

τ̇ = −1 τ ∈ [0, T2]

τ+ ∈ [T1, T2] τ = 0
(7)

This model is such that when τ = 0, a communication event
is triggered, and τ is reset to a point in the interval [T1, T2]
in order to preserve the bounds given in (4); see [12].

The HyNTP algorithm assigns a value to ui so as to solve
Problem 3.1. The algorithm implements two feedback laws:
a distributed feedback law and a local feedback law. The
distributed feedback utilizes a control variable ηi ∈ R that
is impulsively updated at communication event times using
both local and exchanged measurement information τ̃k, i.e.,
it takes the form

η+i =
∑

k∈N (i)

Kk
i (τ̃i, τ̃k)

where Kk
i (τ̃i, τ̃k) := −γ(ei − ek) with γ > 0. Between

communication event times, ηi evolves continuously. The
local feedback strategy utilizes a continuous-time linear
adaptive estimator with states τ̂i ∈ R and âi ∈ R to estimate
the drift ai of the internal clock. The estimate of the drift
is then injected as feedback to negate the effect of ai on
the evolution of τ̃i. Furthermore, the local feedback strategy
injects σ∗ to give the desired clock rate.

Inspired by the protocol in [10, Protocol 4.1], the dynamics
of the i-th hybrid controller are given by

u̇i = 0

η̇i = hηi
˙̂ai = −µ(τ̂i − τ∗i )

˙̂τi = âi − (τ̂i − τ∗i )

 τ ∈ [0, T2]

η+i = −γ
∑

k∈N (i)

(ei − ek)

u+i = −γ
∑

k∈N (i)

(ei − ek)− âi + σ∗

â+i = âi

τ̂+i = τ̂i


τ = 0

(8)

where h ∈ R, µ > 0, and γ > 0 are controller parameters.
The state η is included in the model to facilitate a model



reduction used in the results that follow. Note that ui is
treated (with some abuse of notation) as an auxiliary state of
the controller. This state is kept constant in between events
and is reset to the new value of ηi − âi + σ∗ at jumps.

With the timer variable and hybrid controller de-
fined in (8), we construct the hybrid closed-loop sys-
tem H = (C, f,D,G) obtained from the interconnec-
tion. Let x = (e, u, η, τ∗, â, τ̂ , τ) ∈ Rn × Rn ×
Rn × Rn × Rn × Rn × [0, T2] =: X , where e =
(e1, e2, . . . , en), u = (u1, u2, . . . , un), η = (η1, η2, . . . , ηn),
τ∗ = (τ∗1 , τ

∗
2 , . . . , τ

∗
N ), τ̂ = (τ̂1, τ̂2, . . . , τ̂N ), a =

(a1, a2, . . . , aN ), and â = (â1, â2, . . . , ân). The data
(C, f,D,G) of H is given by

f(x) :=



a+ u− σ∗1n
0
hη
a

−µ(τ̂ − τ∗)
â− (τ̂ − τ∗)

−1


, G(x) :=



e
−γLe− â+ σ∗1n

−γLe
τ∗

â
τ̂

[T1, T2]


(9)

C := X and D := {x ∈ X : τ = 0}.
With the hybrid system defined, the next two results

establish the existence of solutions to H and that every
maximal solution to H is complete. In particular, we show
that, through the satisfaction of some basic conditions on the
hybrid system data, the system H is nominally well-posed
and that each maximal solution to the system is defined for
arbitrarily large t+ j.

Lemma 3.2: The hybrid system H satisfies the hybrid
basic conditions defined in [11, Assumption 6.5].

Lemma 3.3: For every ξ ∈ C ∪ D = X , every maximal
solution φ to H with φ(0, 0) = ξ is complete.

With the hybrid closed-loop system in (9), the set to asymp-
totically stabilize so as to solve Problem 3.1 is

A:={x ∈ X : ei = ηi = 0, âi = ai, τ
∗
i = τ̂i ∀i ∈ V}

Note that ei = ek and ηi = 0 for all i, k ∈ V imply
synchronization of the clocks, meanwhile âi = ai and
τ∗i = τ̂i for all i, k ∈ V ensure no error in the estimation
of the clock skew, and that the internal and estimated clocks
are synchronized, respectively. It can be shown that the set
A is forward invariant for the hybrid system H.

IV. MAIN RESULTS

A. Reduced Model – First Pass

In this section we recast the hybrid system H into a
reduced model obtained by setting u = η − â + σ∗1n.
This model is given in error coordinates for the parameter
estimation of the internal clock rate. We let εa = a − â
denote the estimation error of the internal clock rate and
ετ = τ̂ − τ∗ represent the estimation error of the internal
clock state. Then, using this reduced model, we perform
a change of coordinates to obtain an auxiliary closed-loop
hybrid system model for which asymptotic stability of A

can be assessed. The state of the reduced model is given by
xε := (e, η, εa, ετ , τ) ∈ Rn×Rn×Rn×Rn× [0, T2] =: Xε
with dynamics defined by the data

fε(xε) :=


η + εa
hη
µετ

−ετ − εa
−1

 , Gε(xε) :=


e

−γLe
εa
ετ

[T1, T2]


Cε := Xε and Dε := {xε ∈ Xε : τ = 0}. This system is
denoted Hε = (Cε, fε, Dε, Gε). Note that the construction
u = η − â+ σ∗1n, which holds along all solutions after the
first jump, leads to ė = η + εa.

Observe that the state of Hε utilizes most of the state
components of H except for the control input u as it’s value
is captured by the states η and ε directly in the dynamics of
e.

With the reduced model Hε in place, we consider the
following set to asymptotically stabilize for Hε

Aε:={xε ∈ Xε : ei = ηi = 0 ∀i ∈ V, εa = 0, ετ = 0}

This set is equivalent to A but given in the error coordinates
xε.

B. Reduced Model – Second Pass

Global exponential stability of Aε for Hε is established
by performing a Lyapunov analysis on a version of Hε
obtained after an appropriate change of coordinates, one
where the flow and jump dynamics are linearized. The
model is obtained by exploiting an important property of the
eigenvalues of the Laplacian matrix for strongly connected
digraphs. To this end, let G be a strongly connected digraph.
By Lemmas 2.1 and 2.2, there exists a nonsigular matrix

T = [1N , T1], T1 ∈ RN×N−1 such that T −1LT =

[
0 0
0 L̄

]
where L is the graph laplacian of G and L̄ is a diagonal
matrix with the positive eigenvalues of L as the diagonal
elements given by (λ2, λ3, . . . , λN ), see [13], [14], and [15]
for more details.

To perform the change of coordinates, we use T to first
perform the following transformations: ē = T −1e, η̄ =
T −1η, ε̄a = T −1εa and ε̄τ = T −1ετ . Then, we define
vectors z̄ = (z̄1, z̄2) and w̄ = (w̄1, w̄2), where z̄1 :=
(ē1, η̄1), z̄2 := (ē2, . . . , ēN , η̄2, . . . , η̄N ), w̄1 = (ε̄a1 , ε̄τ1),
and w̄2 = (ε̄a2 , . . . , ε̄an , ε̄τ2 , . . . , ε̄τn). Finally, we define
χε := (z̄1, z̄2, w̄1, w̄2, τ) ∈ R2 ×R2(n−1) ×R2 ×R2(n−1) ×
[0, T2] =: Xε as the state of the new version of Hε, which
is denoted H̃ε and has data given by

f̃ε(χε):=


Af1 z̄1
Af2 z̄2
Af3w̄1

Af4w̄2

−1

+


Bf1w̄1

Bf2w̄2

0
0
0

 , G̃ε(χε):=

Ag1 z̄1
Ag2 z̄2
w̄1

w̄2

[T1, T2]


(10)



C̃ε := Xε and D̃ε := {χε ∈ Xε : τ = 0} where

Af1=

[
0 1
0 h

]
, Af2=

[
0 Im
0 hIm

]
, Af3=

[
0 µ
−1 −1

]
Af4=

[
0 µIm
−Im −Im

]
, Bf1=

[
1 0
0 0

]
, Bf2=

[
Im 0
0 0

]
Ag1=

[
1 0
0 0

]
, Ag2=

[
Im 0
−γL̄ 0

]
where m = N − 1. Then, H̃ε = (C̃ε, f̃ε, D̃ε, G̃ε) denotes
the new version of Hε. The set Aε to stabilize in the new
coordinates for this hybrid system is given by

Ãε := {χε ∈ Xε : z̄1=(e∗, 0), z̄2=0, w̄1=0, w̄2=0, e∗ ∈ R}
(11)

In the next result, we demonstrate how global exponential
stability of Ãε for H̃ε implies global exponential stability
of Aε for Hε. This is accomplished by exploiting the
relationship that exists between the two systems through the
transformation matrix T on the sets Ãε and Aε.

Lemma 4.1: Given 0 < T1 ≤ T2 and a strongly connected
digraph G, the set Ãε is GES for the hybrid system H̃ε if
and only if Aε is GES for the hybrid system Hε.

C. Parameter Estimator

Exponential stability of the set Ãε for H̃ε hinges upon
the convergence of the estimate â to a. We present a result
establishing convergence of â to a by considering a reduction
of H̃ε. To this end, consider the state χεr := (w̄1, w̄2, τ) ∈
R2 × R2(n−1) × [0, T2] =: Xεr . Its dynamics are given by
the system H̃εr = (C̃εr , f̃εr , D̃εr , G̃εr ) with data

f̃εr (χεr ) :=

Af3w̄1

Af4w̄2

−1

 G̃εr (χεr ) :=

 w̄1

w̄2

[T1, T2]


C̃εr := Xεr and D̃εr := {χεr∈Xεr : τ=0}. For this system,
the set to exponentially stabilize for the reduced hybrid
system H̃εr is given by

Ãεr := {0} × {0} × [0, T2] (12)

In the next result, we show global exponential stability
of the set Ãεr for H̃εr through the satisfaction of matrix
inequalities.

Proposition 4.2: Let 0 < T1 ≤ T2 be given. If there exist
a positive scalar µ and positive definite symmetric matrices
P2, P3 such that

P2Af3 +A>f3P2 ≺ 0 (13)

P3Af4 +A>f4P3 ≺ 0 (14)

hold, then the set Ãεr is globally exponentially stable for the
hybrid system H̃εr . Furthermore, every solution φ to H̃εr
satisfies

|φ(t, j)|Ãεr
≤
√
α2

α1
exp

(
− β̃

2α2
t
)
|φ(0, 0)|Ãεr

(15)

for each (t, j) ∈ dom φ, with α1 = min{λmin(P2), λmin(P3)}
α2 = max{λmax(P2), λmax(P3)} and β̃ > 0.

D. Exponential Stability of Reduced Model H̃ε
With the convergence of the clock rate parameter esti-

mation established, we introduce our main result. We show
globally exponential stability of the set Aε for the closed-
loop hybrid systemHε via an analysis of the auxiliary system
H̃ε and its global exponential stability for the auxiliary set
Ãε in (11).

Theorem 4.3: Given a strongly connected digraph G, if
the parameters T2 ≥ T1 > 0, µ > 0, h ∈ R, and γ > 0,
the positive definite matrices P1, P2, and P3 are such that
conditions (13), (14), and

A>g2exp(A>f2ν)P1exp(Af2ν)Ag2−P1 ≺ 0 ∀ν ∈ [T1, T2]
(16)∣∣∣ exp

( κ̄1
α2

T2

)(
1− κ̄2

α2

)∣∣∣ < 1 (17)

hold, where

κ̄1 = max
{κ1

2ε
,
κ1ε

2
− β2

}
κ1 = 2 max

v∈[0,T2]

∣∣ exp (A>f2v)P1 exp (Af2v)
∣∣

κ̄2 = min{1, κ2}

κ2∈
(

0,−( min
v∈[T1,T2]

λmin(A>g2exp (A>f2v)P1exp (Af2v)Ag2−P1))
)

α2 = max
s∈[0,T2]

{
exp (2hs), λmax

(
exp (A>f2s)P1 exp (Af2s)

)
,

λmax(P2), λmax(P3)
}

P2Af3 + A>f3P2 ≤ −β1I , and P3Af4 + A>f4P3 ≤ −β2I for
some ε > 0 then, the set Ãε in (11) is globally exponentially
stable for the hybrid system H̃ε in (10).

Though the details of the result have been omitted due to
space constraints, we note to the reader that the conditions
for which GES of Ãε for H̃ε is guaranteed can be established
via the following Lyapunov function candidate

V (χε) = V1(χε) + V2(χε) + Vεr (χε) (18)

where

V1(χε) = exp (2hτ)η̄21 Vεr (χε) = w̄>1 P2w̄1 + w̄>2 P3w̄2

V2(χε) = z̄>2 exp (A>f2τ)P1 exp (Af2τ)z̄2

Moreover, since the result establishes GES of Aε for Hε, we
have that solutions for H converge to A, exponentially fast;
hence, Problem 3.1 is solved.

V. NUMERICAL RESULTS

Example 5.1: Consider five agents with dynamics as in (2)
and (3) over a strongly connected graph with the following
adjacency matrix

GA =


0 1 1 0 1
1 0 1 0 0
1 0 0 1 0
0 0 1 0 1
1 0 1 1 0


Given T1 = 0.01, T2 = 0.1, and σ∗ = 1, then it can
be found that the parameters h = −1.3, µ = 3, γ =



Fig. 1. The trajectories of the state component errors ei − ek , εai , and τ
for i ∈ {1, 2, 3, 4, 5} of the solution φ for the case where σ = σ∗. Plot of
V from (18) evaluated along the solution φ projected onto the regular time
domain. (bottom)

0.125 and ε = 1.607 with suitable matrices P1, P2, and
P3 satisfy conditions (16) and (17) in Theorem 4.3 with
κ̄1 = 9.78, κ1 = 31.44, κ̄2 = 1, and α2 = 18.923. Figure
1 shows the trajectories of ei − ek, εai for components
i ∈ {1, 2, 3, 4, 5} of a solution φ for the case where
σ = σ∗ with initial conditions φe(0, 0) = (1,−1, 2,−2, 0),
φη(0, 0) = (0,−3, 1,−4,−1), and clock rates ai in the range
(0.85, 1.15). 2

Example 5.2: In this example we demonstrate by simula-
tion the system’s robustness to noise on the communication
channel and the clock rate reference σ∗. Consider the same
system presented in Example 5.1. Figure 2 shows input-to-
state stability for the trajectories of the errors ei − ek for
the components i ∈ {1, 2, 3, 4, 5} of a solution φ for the
case where the system is subjected to communication noise
mei(t, j) ∈ (0, 0.1) and noise on the clock rate reference
mσ∗

i
(t, j) ∈ (0.85, 1.15) for all (t, j) ∈ dom φ, respectively.

Moreover, after the respective transient period, the norm of
the relative error |ei − ek| converges to an average value of
0.0229 when subjected to noise mσ∗

i
and 0.0549 for noise

mei .

VI. CONCLUSION

In this paper, we modeled a network of clocks with
aperiodic communication that utilizes the presented HyNTP
algorithm to achieve synchronization, using the hybrid sys-
tems framework. Results were given to guarantee and show
synchronization of the timers, exponentially fast. Numerical
results validating the exponentially fast convergence of the
timers were also given. Numerical results were also provided
regarding its robustness to a class of perturbations. Future
work will demonstrate the algorithm’s robustness to a variety
of perturbations and extend the problem to the case of
asynchronous broadcasts between the nodes. Consideration
will also be given to the scenario of time-varying clock skew
parameters.

2Code at github.com/HybridSystemsLab/HybridClockSync

Fig. 2. (top) The trajectories of the errors ei − ek for the components
i ∈ {1, 2, 3, 4, 5} of a solution φ for the case where the system is subjected
to communication noise mei (top) and noise on the clock rate reference
mσ∗

i
(bottom).
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