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Abstract— In this paper, motivated by the safety problem
in hybrid systems, two set-valued reachability maps are intro-
duced. The outer semicontinuity, the continuity, and the local
boundedness of the proposed reachability maps with respect to
their arguments are analyzed under mild regularity conditions.
This study is then used to revisit and improve the existing
converse safety statements in terms of barrier functions. In
particular, for safe hybrid systems satisfying the aforemen-
tioned regularity conditions, we construct time-varying barrier
functions that depend on the proposed reachability maps.
Consequently, we show that the constructed barrier functions
inherit the continuity properties established for the proposed
reachability maps.

I. INTRODUCTION

For continuous-time systems, the reachable set (or equiv-
alently the attainable set) over a finite window of time
[0, T ] can be seen as a set-valued map that maps an initial
condition xo to the collection of points reached by the
solutions starting from xo during the window [0, T ] [1], [2].
Reachable sets are very useful in predictive and finite-horizon
optimal control problems, as such problems can be expressed
as standard optimization problems over reachable sets [3].
For hybrid systems modeled according to the framework in
[4], depending on the context of study, different reachability
maps have been used in the literature, see, e.g., [4, Section
6.3.2] and [5].

One of the fundamental questions related to reachability
maps concern their continuity with respect to their ar-
guments. Such results are already well-established in the
particular case of continuous-time systems, see e.g., [6],
[7]. The continuity of the reachability maps is key, for
example, when analyzing discretization of continuous-time
systems [8], [9]. Furthermore, in this paper, it is shown that
the regularity properties of reachability maps play a key
role in the converse safety problem, particularly for hybrid
systems. The converse safety problem consists of showing
the existence of a barrier function that satisfies sufficient
conditions for safety provided that the system is safe; namely,
the solutions starting from a given initial set never reach a
given unsafe set [10]. One of the challenges in this context
is to show the existence of a barrier function with the best
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possible degree of smoothness. Indeed, the smoothness of the
barrier function allows the characterization of safety using
infinitesimal conditions without any knowledge about the
solutions [11].

In this paper, motivated by the safety problem, we in-
troduce two reachability maps for hybrid systems modeled
as hybrid inclusions. A hybrid inclusion is defined as a
differential inclusion with a constraint, which models the
flow or continuous evolution of the system, and a difference
inclusion with a constraint, modeling the jumps or discrete
events. Both reachability maps admit as arguments a given
number of jumps J , a given amount of flow T , and an initial
condition xo. The first map, denoted by R, is defined as
the set reached by the solutions starting from xo during the
interval of flow [0, T ] with at most J many jumps. In the
particular case of continuous-time systems, this map reduces
to the one used in [1]. It also reduces to the union, up to
T , of the one studied in [6], [12], [8]. The second map,
denoted by R̂, is a prolongation of R using the solutions to
the system. The map R̂ includes not only the points reached
during the interval of flow [0, T ] with at most J jumps, but
also those reached after time T until the maximal possible
jump, without exceeding J , is achieved.

In the first part of this paper, we analyze the continuity
properties for the proposed reachability maps under mild
regularity conditions. In particular, we show that the map R
is outer semicontinuous and locally bounded with respect to
its arguments. Furthermore, we show that the map R̂ shares
the same properties only when an extra condition is satisfied.
Finally, under the same conditions, we show that R̂ enjoys
a stronger continuity property as a function of the ordinary
(flow) time. In the second part of this paper, the properties
established for R and R̂ are used to revisit the converse
safety results in [11]. We re-introduce the barrier functions
constructed in [11] as functions of the map R. Consequently,
we prove that these barrier functions inherit the regularity
properties established for the reachability map R. Finally, we
propose a new barrier function using the map R̂ and show
that it inherits the relatively stronger regularity properties of
the map R̂.

The rest of the paper is organized as follows. Notions
related to set-valued maps are in Section II. Preliminaries
are in Section III. The proposed reachability maps are in
Section IV. The main results are in Section V. Finally, the
application of the results in Section V to the converse safety
problem is in Section VI. Due to space constraints, the proofs
are omitted and will be published elsewhere.



Notation. Let R≥0 := [0,∞) and N := {0, 1, . . . ,∞}. For
x, y ∈ Rn, x> denotes the transpose of x, |x| the Euclidean
norm of x, |x|K := infy∈K |x − y| defines the distance
between x and the nonempty set K, and 〈x, y〉 = x>y
denotes the scalar product of x and y. For a set K ⊂ Rn, we
use int(K) to denote its interior, ∂K to denote its boundary,
cl(K) to denote its closure, and U(K) to denote any open
neighborhood of K. For a set O ⊂ Rn, K\O denotes the
subset of elements of K that are not in O. By B, we denote
the closed unit ball in Rn centered at the origin. Finally,
F : Rm ⇒ Rn denotes a set-valued map associating each
element x ∈ Rm to a set F (x) ⊂ Rn.

II. BACKGROUND

We start this section by recalling the following continuity
notions for set-valued and single-valued maps.

Definition 1 (Semicontinuous set-valued maps): Consider
a set-valued map F : K ⇒ Rn, where K ⊂ Rm.

• The map F is said to be outer semicontinuous at
x ∈ K if, for every sequence {xi}∞i=0 ⊂ K and for
every sequence {yi}∞i=0 ⊂ Rn with limi→∞ xi = x,
limi→∞ yi = y ∈ Rn, and yi ∈ F (xi) for all i ∈ N, we
have y ∈ F (x); see [4, Definition 5.9].

• The map F is said to be lower semicontinuous (or,
equivalently, inner semicontinuous) at x ∈ K if for each
ε > 0 and yx ∈ F (x), there exists U(x) satisfying the
following property: for each z ∈ U(x)∩K, there exists
yz ∈ F (z) such that |yz − yx| ≤ ε; see [13, Proposition
2.1].

• The map F is said to be upper semicontinuous at x ∈ K
if, for each ε > 0, there exists U(x) such that for each
y ∈ U(x) ∩K, F (y) ⊂ F (x) + εB; see [14, Definition
1.4.1].

• The map F is said to be continuous at x ∈ K if it is
both upper and lower semicontinuous at x.

Furthermore, the map F is said to be upper, lower, outer
semicontinuous, or continuous if it is upper, lower, outer
semicontinuous, or continuous for all x ∈ K, respectively. •

Definition 2 (Semicontinuous single-valued maps):
Consider a scalar function B : K → R, where K ⊂ Rm.

• The scalar function B is said to be lower semicontin-
uous at x ∈ K if, for every sequence {xi}∞i=0 ⊂ K
such that limi→∞ xi = x, we have lim infi→∞B(xi) ≥
B(x).

• The scalar function B is said to be upper semicontinu-
ous at x ∈ K if, for every sequence {xi}∞i=0 ⊂ K such
that limi→∞ xi = x, we have lim supi→∞B(xi) ≤
B(x).

• The scalar function B is said to be continuous at x ∈ K
if it is both upper and lower semicontinuous at x.

Furthermore, B is said to be upper, lower semicontinuous, or
continuous if it is upper, lower semicontinuous, or continuous
for all x ∈ K, respectively. •

Definition 3 (Locally bounded set-valued maps): A set-
valued map F : K(⊂ Rm) ⇒ Rn is said to be locally
bounded if for any x ∈ K there exist U(x) and β > 0 such
that

|ζ| ≤ β ∀ζ ∈ F (y) ∀y ∈ U(x) ∩K.

•

III. HYBRID INCLUSIONS AND BASIC CONDITIONS

Following [4], a hybrid dynamical system is modeled by
a hybrid inclusion H = (C,F,D,G) given by

H :

{
x ∈ C ẋ ∈ F (x)
x ∈ D x+ ∈ G(x), (1)

with the state variable x ∈ Rn, the flow set C ⊂ Rn, the
jump set D ⊂ Rn, the flow and jump maps F : Rn ⇒ Rn
and G : Rn ⇒ Rn, respectively.

A hybrid arc φ is defined on a hybrid time domain denoted
domφ ⊂ R≥0 × N. The hybrid arc φ is parametrized by an
ordinary time variable t ∈ R≥0 and a discrete jump variable
j ∈ N. Its domain of definition domφ is such that for
each (T, J) ∈ domφ, domφ ∩ ([0, T ]× {0, 1, . . . , J}) =
∪Jj=0 ([tj , tj+1]× {j}) for a sequence {tj}J+1

j=0 , such that
tj+1 ≥ tj , t0 = 0, and tj+1 = T .

Definition 4 (Concept of solutions to H): A hybrid arc
φ : domφ→ Rn is a solution to H if

(S0) φ(0, 0) ∈ cl(C) ∪D;
(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ} has

nonempty interior, t 7→ φ(t, j) is absolutely continuous
and

φ(t, j) ∈ C for all t ∈ int(Ij),
φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij ;

(2)
(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) ∈ G(x(t, j)). (3)

•
A solution toH is said to be maximal if there is no solution

ψ to H such that φ(t, j) = ψ(t, j) for all (t, j) ∈ domφ and
domφ is a proper subset of domψ. It is said to be trivial if
domφ contains only one element. It is said to be continuous
if it never jumps. Finally, it is said to be non-Zeno if it has a
finite number of jumps on each finite interval of (ordinary)
time. The system H is said to be forward complete if the
domain of each maximal solution is unbounded. It is said
to be pre-forward complete if the domain of each maximal
solution is closed. Finally, we use ŜH(xo) to denote the set
of solutions to H starting from xo.

Well-posed [4, Definition 6.2] hybrid systems refer to a
class of hybrid inclusions with very useful structural proper-
ties [4, Chapter 6]. A hybrid inclusion H = (C,F,D,G)
is well-posed if the following conditions known as the
hybrid basic conditions are satisfied [4, Assumption 6.5], [4,
Theorem. 6.8].



(A1) Both C and D are closed.
(A2) The flow map F : Rn ⇒ Rn is outer semicontinu-

ous and locally bounded relative to C, and F (x) is
nonempty and convex for all x ∈ C.

(A3) The jump map G : Rn ⇒ Rn is outer semicontin-
uous and locally bounded relative to D and G(x) is
nonempty for all x ∈ D.

IV. REACHABILITY MAPS IN HYBRID SYSTEMS

In this section, we introduce the reachability maps con-
sidered for hybrid dynamical systems modeled as hybrid
inclusions. Given xo ∈ cl(C)∪D, T ∈ R≥0, and J ∈ N, we
define the reachable set from the initial condition xo along
the hybrid interval T (T, J) := [0, T ] × {0, 1, . . . , J} as the
set-valued map R : R≥0 × N × (cl(C) ∪ D) ⇒ cl(C) ∪ D
given by

R(T, J, xo) :={
φ(t, j) : φ ∈ ŜH(xo), (t, j) ∈ domφ ∩ T (T, J)

}
. (4)

In [4] and [5], the slightly different reachability map RH :
R≥0× (cl(C)∪D) ⇒ cl(C)∪D is proposed. It is given by

RH(τ, xo) :={
φ(t, j) : φ ∈ ŜH(xo), (t, j) ∈ domφ, t+ j ≤ τ

}
. (5)

Note that for all (τ, xo) ∈ R≥0 × (cl(C) ∪D),

RH(τ, xo) =

[τ ]⋃
j=0

R(τ − j, j, xo), (6)

where [τ ] is the integer part of τ . The relationship between
R and RH in (6) is very useful as it allows us to conclude
continuity properties of the map RH as a straightforward
consequence of the continuity properties of the map R.

Next, we introduce a new reachability map, which is
denoted by R̂ and includes more points than those included
in R (and RH). Given xo ∈ cl(C)∪D, T ∈ R≥0, and J ∈ N,
the set R̂(T, J, xo) is an extension of the set R(T, J, xo) that
is given by

R̂(T, J, xo) :={
φ(t, j) : φ ∈ ŜH(xo), (t, j) ∈ domφ ∩ Tφ(T, J)

}
, (7)

where Tφ is an extension of T that depends on φ and is
given by

Tφ(T, J) := [0, T + δφ(T, J)]× {0, 1, . . . , J} , (8)

δφ(T, J) :=
min{δ ≥ 0 : (T + δ, Jφ(J)) ∈ domφ}

if IJφ(J) ∩ [0, T ] = ∅

0 otherwise,

(9)

Jφ(J) := max{j ≤ J : ∃t ≥ 0 : (t, j) ∈ domφ}, (10)

and

IJφ(J) := {t ≥ 0 : (t, Jφ(J)) ∈ domφ} . (11)

The reachability map R̂(T, J, xo) includes not only the
elements reached by the solutions starting from xo over the
hybrid interval T (T, J), but also the elements reached by
each solution φ starting from xo after ordinary time T up to
the time the Jφ(J)-th jump happens, if that jump happens
after T . The Jφ(J)-th is the last jump with Jφ(J) less than
or equal to J that the solution φ achieves.

Remark 1: Note that R̂ ≡ R when H = (C,F, ∅, ?).
Furthermore, when there is a unique maximal solution φ
starting from x ∈ cl(C) ∪ D, it follows that R̂(T, J, x) =
R(T + δφ(T, J), J, x) for all (T, J) ∈ R≥0 × N. •

Example 1 (Bouncing ball): Consider the hybrid system
H = (C,F,D,G) modeling the so-called bouncing
ball, where F (x) := (x2,−γ) for each x ∈ C :={
x ∈ R2 : x1 ≥ 0

}
and G(x) := (0,−λx2) for each x ∈

D :=
{
x ∈ R2 : x1 = 0, x2 ≤ 0

}
. The constants γ > 0 and

λ ∈ [0, 1] are the gravitational acceleration and the restitution
coefficient, respectively. Let xo := (xo1, xo2) ∈ int(C)\D
(i.e., xo1 > 0) and let φ be the maximal solution starting
from xo. Furthermore, let To ≥ 0 be the time at which
the solution φ achieves the first jump, which is given as
To =

(
xo2 +

√
x2o2 + 2γxo1

)
/γ. Now, for each T ∈ (0, To),

according to (4), we conclude that

R(T, 1, xo) = R(T, 0, xo) = φ([0, T ], 0)

=

T⋃
s=0

{[
−1

2
γs2 + xo2s+ xo1 − γs+ xo2

]>}
. (12)

On the other hand, to compute R̂(T, 1, xo), we use (9) to
conclude that δφ(T, 1) = To−T ; hence, using (7), we obtain

R̂(T, 1, xo) = R(To, 1, xo) = φ([0, To], 0)
⋃
{φ(To, 1)}

= φ([0, To], 0) ∪ {G(φ(To, 0))}

=

To⋃
s=0

{[
−γs2/2 + xo2s+ xo1 − γs+ xo2

]>}
∪
{[

0 λ
(
x2o2 + 2γxo1

) 1
2

]>}
. (13)

We also notice that R̂(T, 1, xo) = R(T, 1, xo) ∀T ≥ To. �

V. SEMICONTINUITY, BOUNDEDNESS, AND CONTINUITY
OF THE REACHABLE SETS

In this section, key continuity properties of the maps R
and R̂ are analyzed for well-posed hybrid systems satisfying
(A1)-(A3). Under appropriate extra conditions, we show that
the map R̂ has better continuity properties with respect to
ordinary (flow) time than the map R. The usefulness of the
continuity properties of R̂ is shown in Section VI as we
revisit the converse safety problem using barrier functions.



A. Outer Semicontinuity and Local Boundedness of R

In the following result, we provide mild conditions under
which the reachability map R in (4) is locally bounded and
outer semicontinuous.

Proposition 1: Consider a pre-forward complete hybrid
system H = (C,F,D,G) satisfying (A1)-(A3). Then, R is
outer semicontinuous and locally bounded. �

Outer semicontinuity and local boundedness of RH in (5)
follows as a consequence of Proposition 1.

Corollary 1: Consider a pre-forward complete hybrid sys-
tem H = (C,F,D,G) satisfying (A1)-(A3). Then, the set-
valued map RH is outer semicontinuous and locally bounded.
�

B. Continuity of the Map T 7→ R(T, Jo, xo)

In this section, we show that, when Jo and xo are fixed,
the set-valued map T 7→ R(T, Jo, xo) is actually continuous
at To ≥ 0 provided that (To, Jo, xo) satisfies the following
condition:

(?) If Jo > 0 and To > 0, then, for each j ∈ {1, 2, . . . , Jo},
no solution to H starting from xo achieves the j-th jump
at ordinary time t = To.

Proposition 2: Consider a pre-forward complete hybrid
system H = (C,F,D,G) satisfying (A1)-(A3). Then, the
set-valued map T 7→ R(T, Jo, xo) is continuous at To ≥ 0
provided that (To, Jo, xo) satisfies (?). �

In the following result, we establish continuity of the map
τ 7→ RH(τ, xo) as a consequence of Proposition 2.

Corollary 2: Consider a pre-forward complete hybrid sys-
tem H = (C,F,D,G) satisfying (A1)-(A3). Then, the
set-valued map τ 7→ RH(τ, xo) is continuous at τo ∈
R≥0\{1, 2, ...} if, for each J ∈ {0, 1, . . . , [τo]}, (τo −
J, J, xo) satisfies (?). �

Assumption (?) is enforced to avoid the discontinuities
in the map T 7→ R(T, Jo, xo) at To > 0, which are
caused by jumps occurring at To. Continuity of the map
T 7→ R(T, Jo, xo) at To = 0 is a consequence of Proposition
1 and the nondecrease of T 7→ R(T, Jo, xo). When (?) does
not hold, it is easy to find examples of hybrid systems for
which the map T 7→ R(T, Jo, xo) is discontinuous at To > 0,
as the following example shows.

Example 2 (Bouncing ball): Consider the bouncing-ball
system in Example 1. It is easy to see that the hybrid
basic conditions (A1)-(A3) are satisfied and that the
system has unique maximal solutions. However, (To, 1, xo)
does not satisfy (?), and the map T 7→ R(T, 1, xo) is
discontinuous at To, with To ≥ 0 be the time at which
the solution starting from xo := (xo1, xo2), with xo1 > 0,
achieves the first jump. From Example 1, we conclude that
this time is given by To =

(
xo2 +

√
x2o2 + 2γxo1

)
/γ,

R(To, 1, xo) satisfies (13), and, for every T ∈ [To/2, To),
R(T, 1, xo) satisfies (12). Thus, limT→T−

o
R(T, 1, xo) =⋃To

s=0

{[
−γs2/2 + xo2s+ xo1 − γs+ xo2

]>}
is not

equal to R(To, 1, xo). �

C. Outer Semicontinuity and Local Boundedness of R̂

In this section, we show that the map R̂ is locally bounded
and outer semicontinuous with respect to its arguments
provided the following extra condition holds:

(A4) If, from xo, there exists a continuous or trivial maximal
solution, then there exists a neighborhood U(xo) such
that every maximal solution starting from U(xo) ∩ C
is continuous or trivial.

Proposition 3: Consider a forward pre-complete system
H = (C,F,D,G) satisfying (A1)-(A4). Then, for each
Jo ∈ N, the set-valued map (T, x) 7→ R̂(T, Jo, x) is outer
semicontinuous and locally bounded. �

When (A4) is not satisfied, R̂ may fail to be outer
semicontinuous. The following example illustrates such a
situation.

Example 3: Consider the hybrid system H =
(C,F,D,G) with

F (x) := −
(

ρ(x)x1
2(ρ(x) + 1)

,
ρ(x)(x2 + 1)

2(ρ(x) + 1)

)
for each x ∈ C :=

{
x ∈ R2 : x2 ≥ 0

}
, ρ(x) := x21 +

(x2 + 1)2 − 1, ψ(x) := arctan ((x2 + 1)/x1), and G(x) :=
(−x1, x2) for each x ∈ D :=

{
x ∈ R2 : x2 = 0

}
. In

polar coordinates (ρ, ψ), the flow dynamics are given by
(ρ̇, ψ̇) = (−ρ, 0). Hence, the solutions starting from {x ∈
R2 : x2 > 0} tend to converge radially and asymptotically
to the circle µ until they hit the jump set D, where µ :={
x ∈ R2 : x21 + (x2 + 1)2 − 1 = 0

}
. Furthermore, since the

convergence to µ is radial (i.e. ψ̇ = 0) and asymptotic, it
follows that, for all α > 0, the solution φ starting from
xo := (0, α) never reaches the set D; hence, the solution
φ is continuous with domφ unbounded. However, from all
the remaining initial conditions within the set C\D, the
corresponding maximal solution reaches the jump set D. As
a consequence, (A4) is not satisfied.

Next, we show that the map x 7→ R̂(1, 1, x) is not outer
semicontinuous at xo = (0, 1). Indeed, consider the sequence
{xoi}∞i=1 that converges to xo with xoi := (1/i,

√
4− 1/i2−

1). Let φi be the nontrivial and continuous solution starting
from xoi. Since the solution φ is continuous, we conclude
that

R̂(1, 1, xo) = R(1, 1, xo) = R(1, 0, xo) =

φ([0, 1], 0) =
{
x ∈ R2 : x1 = 0, x2 ∈ [

√
3e−1 + 1− 1, 1]

}
.

Furthermore, for all i ∈ {1, 2, ...},

R̂(1, 1, xoi) = φi([0, 1 + δφi(1, 1)], 0) ∪ φi(1 + δφi(1, 1), 1)

=

{
x ∈ R2 : x1 =

1√
4i2 − 1

(x2 + 1),

x2 ∈
[
0,
√
4i2 − 1/i− 1

]}
∪
{
[−1/

√
4i2 − 1 0]>

}
.



Next, we consider the sequence {yi}∞i=1 with
yi = (−1/

√
4i2 − 1, 0) ∈ R̂(1, 1, xi). We notice that

limi→∞ yi = (0, 0) =: y /∈ R̂(1, 1, xo), which shows that
the map x 7→ R̂(1, 1, x) is not outer semicontinuous. �

D. Continuity of the Map T 7→ R̂(T, Jo, xo)

In the next result, we show that when xo and Jo are
fixed, the set-valued map T 7→ R̂(T, Jo, xo) is continuous,
instead of being only outer semicontinuous, provided that
(A4) holds.

Proposition 4: Consider a pre-forward complete system
H = (C,F,D,G) satisfying (A1)-(A4). Then, for each
(Jo, xo) ∈ N × (C ∪ D), the set-valued map T 7→
R̂(T, Jo, xo) is continuous. �

VI. APPLICATION TO CONVERSE SAFETY PROBLEM

In this section, using the continuity properties of the maps
R and R̂ established in Propositions 1, 3, and 4, we revisit
and improve the converse safety theorems in [11] by adopting
a new point of view.

A. Safety Analysis Using Barrier Functions

Following [11], given a hybrid system H = (C,F,D,G)
and two sets Xo ⊂ cl(C)∪D and Xu ⊂ Rn with Xo∩Xu =
∅, the hybrid system H is said to be safe with respect to
(Xo, Xu) if, for every xo ∈ Xo, every solution φ starting
from Xo satisfies φ(t, j) ∈ Rn\Xu for all (t, j) ∈ domφ.
Furthermore, a barrier function candidate for safety with
respect to the sets (Xo, Xu) is defined as a scalar function
B : cl(C) ∪D → R satisfying

B(x) > 0 ∀x ∈ Xu ∩ (cl(C) ∪D)
B(x) ≤ 0 ∀x ∈ Xo.

(14)

Such a barrier candidate certifies safety if it allows us to
conclude that the set K := {x ∈ cl(C) ∪D : B(x) ≤ 0} is
forward pre-invariant for H; namely, each maximal solution
to H starting from K1 stays in K. In particular, when B is
lower semicontinuous, the set K is forward pre-invariant if
the following conditions are satisfied [11]:

M1) For all x ∈ K ∩D,

G(x) ⊂ cl(C) ∪D and B(η) ≤ 0 ∀η ∈ G(x).

M2) The function B is monotonically nonincreasing along
flows; namely, there exists U(K) such that for every
solution φ to H satisfying φ(t, 0) ∈ (U(K)\int(K)) ∩
cl(C) for all (t, 0) ∈ domφ, the map t 7→ B(φ(t, 0))
is nonincreasing.

The converse safety problem consists of showing the ex-
istence of a barrier function B satisfying (14) and M1)-M2)
provided that H is safe with respect to (Xo, Xu). One of the
challenges, in this case, is to show the existence of a barrier
function B with the best possible degree of smoothness. The

1By convention, points not in cl(C) ∪ D are considered unsafe, which
implies that Rn\(cl(C) ∪D) ⊂ Xu.

smoothness of B allows us to replace the solution dependent
condition M2) with infinitesimal conditions involving only
the flow set C and the flow map F .

It is shown in [15] that in some cases of smooth and safe
differential equations, it is not possible to find a continuous
and autonomous barrier function satisfying (14) and M1)-
M2). To address this issue, in [15] and [11], time-varying
barrier-like functions are introduced for safe differential
equations and hybrid systems, respectively.

Before recalling the barrier-like functions used in [11], we
define the notion of backward solutions to H. We say that
φ is a backward solution to H if φ is a trivial hybrid arc
with φ(0, 0) ∈ D, or there exists a solution ψ to the hybrid
system H− = (C,−F,G(D), G−1D ) such that domφ =
−domψ and ψ(t, j) = φ(−t,−j) for all (t, j) ∈ domψ,
where G−1D : G(D) ⇒ Rn is the reciprocal map of the
jump map G restricted to the set D; namely, G−1D (y) :=
{x ∈ D : y ∈ G(x)}. Furthermore, for each x ∈ cl(C) ∪D,
the set of backward solutions to H is denoted by Ŝ−H(xo).

The non-autonomous barrier-like function used in [11] is
given by:

B(T, J, x) := inf{|φ(t, j)|Xo : φ ∈ Ŝ−H(x),
(t, j) ∈ T (−T,−J), (t, j) ∈ domφ}, (15)

where T (−T,−J) := [−T, 0] × {−J, ...,−1, 0}. Moreover,
when the backward solutions to H are non-Zeno, the follow-
ing time-varying barrier function is proposed in [11].

B(T, x) := inf{|φ(t, j)|Xo : φ ∈ Ŝ−H(x),
(t, j) ∈ T (−T,−κ(−T, φ)), (t, j) ∈ domφ}, (16)

where κ : R≤0 × Ŝ−H(x) → N determines the number of
jumps in the backward solution φ over the ordinary-time
interval [−T, 0]. The function κ is well-defined when the
backward solutions to H are non-Zeno. In particular, when
H is a continuous-time system (i.e. H = (C,F, ∅, ?)), κ ≡ 0.

The very important and yet challenging question concern-
ing the regularity of the barrier functions in (15) and (16)
arises. Indeed, it is shown in [11] that the latter functions
are lower semicontinuous provided that H− is well posed;
namely, in addition to (A1)-(A2), the data of H satisfies:

(A5) The reciprocal jump map G−1D : G(D) ⇒ Rn is outer
semicontinuous and locally bounded.

Next, we re-express the barrier functions in (15) and (16)
as functions of the reachability map R. Then, we prove
that these barrier functions inherit the regularity properties
established for R in Proposition 1. Finally, we propose a new
construction of a barrier function that uses R̂ instead of R.
We show that this new construction inherits the regularity
properties established for R̂ in Propositions 3 and 4.

B. Using the Reachability Map R

First, we note that, for each (T, J, x) ∈ R≥0×N×(cl(C)∪
D), the barrier function in (15) satisfies

B(T, J, x) = inf{|y|Xo : y ∈ R(−T,−J, x)}, (17)



where the backward reachable set R(−T,−J, x) is de-
fined as in (4) while replacing Ŝ therein by Ŝ− and for
T (−T,−J) := [−T, 0]×{−J, . . . ,−1, 0}. Furthermore, for
each (T, x) ∈ R≥0 × (cl(C) ∪ D), the barrier candidate in
(16) satisfies

B(T, x) = inf{|y|Xo : y ∈ Rz(−T, x)}, (18)

Rz(−T, x) :=
{
φ(t, j) : φ ∈ Ŝ−H(x), (t, j) ∈

domφ ∩ [−T, 0]× {−κ(−T, φ), . . . ,−1, 0}} . (19)

Note that, when H− has unique solutions,

Rz(−T, x) = R(−T,−κ(−T, φ), x),

where φ ∈ Ŝ−H(x), if nontrivial, is the maximal solution to
H− starting from x. Proposition 1 leads to the following
result:

Proposition 5: Consider a system H = (C,F,D,G) such
that (A1)-(A2) and (A5) hold, and suppose that H− is pre-
forward complete. Then,

• The barrier function in (15) is lower semicontinuous.
• If, additionally, every solution to H− is non-Zeno, then

the barrier function in (16) is lower semicontinuous.

�

C. Using the Reachability Map R̂

For each (T, J, x) ∈ R≥0 ×N× (cl(C)∪D), we propose
the new barrier function given by

B(T, J, x) = inf{|y|Xo : y ∈ R̂(−T,−J, x)}, (20)

where R̂(−T,−J, x) is as in (7) while replacing ŜH therein
by Ŝ−H and with Tφ(−T,−J) = (0, 0) if φ is trivial, other-
wise, Tφ(−T,−J) = −Tψ(T, J), where ψ is the solution to
H− such that domφ = − domψ and ψ(t, j) = φ(−t,−j)
for all (t, j) ∈ domψ. We are now ready to improve the
converse safety theorem in [11, Theorem 3.5].

Theorem 1: Let H = (C,F,D,G) be a system such that
(A1)-(A2) and (A5) hold, H− is pre-forward complete, and
the solutions to H− satisfy (A4). Consider a set Xo ⊂ C∪D
and a set Xu ⊂ Rn with Xo closed, Xo∩Xu = ∅, and Rn \
(C ∪D) ⊂ Xu. Then, the system H is safe with respect to
(Xo, Xu) if and only if there exists a lower semicontinuous
barrier function candidate B : R≥0 × N × (C ∪ D) → R
such that T 7→ B(T, J, x) is continuous for each (J, x) ∈
N × (C ∪ D), B is nonincreasing along the flows, and the
following hold:

B(T, J, x) ≤ 0 ∀(T, J, x) ∈ R≥0 × N×Xo, (21)
B(T, J, x) > 0 ∀(T, J, x) ∈ R≥0 × N× (Xu ∩ (C ∪D)),

(22)
B(T, J + 1, η) ≤ 0 ∀η ∈ G(x) and

∀(T, J, x) ∈ K ∩ (R≥0 × N×D), (23)

G(x) ⊂ C ∪D ∀x : (T, J, x) ∈ (R≥0 × N×D) ∩K,
(24)

where

K := {(T, J, x) ∈ R≥0 × N× (C ∪D) : B(T, J, x) ≤ 0} .

�

The sufficiency part of the proof follows using [11, Theo-
rem 3.5]. To prove the necessity part, it can be shown that the
barrier candidate in (20) satisfies the conditions in Theorem
1 when H is safe with respect to (Xo, Xu).

In [16], under further restrictions on H, it is shown that
the barrier candidate in (20) is locally Lipschitz.

VII. CONCLUSION

In this paper, we introduced finite-horizon reachable sets
for hybrid dynamical systems. Those reachable sets are
viewed as set-valued maps for which we established useful
continuity properties. The continuity properties are analyzed
in the context of well-posed hybrid systems. The usefulness
of this study is illustrated when revisiting and improving
the existing converse safety theorems in terms of barrier
functions.
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