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Abstract— This paper presents a control algorithm for the
full H-bridge inverter that renders an arbitrary small neigh-
borhood of a given desired sinusoidal reference trajectory
forward invariant. The proposed control algorithm is hybrid
and predictive in nature. Moreover, it consists on steering a
quadratic Lyapunov function of the tracking errors towards an
arbitrarily small value. Hence, the trajectories of the inverter
remain sufficiently close to the reference trajectory. The latter
is guaranteed in the presence of an unknown resistive load.
Indeed, a finite-time estimator is incorporated to the control
loop in order to estimate the unknown load in finite time. The
simulations illustrating the main result show that the proposed
algorithm maintains the frequency of the switches within a
reasonable range.

I. INTRODUCTION

The future of energy depends on smart grids that intercon-
nect different power generation sources, such as photovoltaic
arrays, wind turbines, hydroelectric generators as well as
energy storage units, into a bigger power network. The
development of power electronic converters and efficient
controllers allows the integration of different types of sources
into the smart grid. Inverters are the main technology used
to transform a Direct Current (DC) input voltage into a
given Alternating Current (AC) output voltage. This can
be done by controlling the switching configuration of the
inverter. In most cases, DC/AC inverters are controlled using
Pulse Width Modulation (PWM) methods [1], [2]. The PWM
approach consists in comparing a sinusoidal reference signal
to a carrier signal (typically a triangular wave). Then, the
change of the switches is triggered whenever the sign of
the difference between these two signals changes. There
are two main drawbacks to these approaches: the lack of
robustness to perturbations due to their open-loop nature and
the production of high harmonic distortion [2], [3].

Over the past two decades, advances have been proposed
to solve the tracking control problem for DC/AC inverters
in a theoretically well-founded manner. Optimization-based
approaches that stabilize the solutions towards an invariant
set around the reference are used in [4]. Furthermore, in [4]
and for a half-bridge DC/AC inverter in the presence of a
known load, a control strategy using Linear Quadratic Regu-
lator (LQR) techniques is proposed. This strategy selects the
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control signal that minimizes the tracking error and guar-
antees a minimum dwell time between the switching events
at the price of not tracking the reference perfectly. More
precisely, the error coordinates are shown to converge only to
a small neighborhood of the origin. When tracking a general
sinusoidal reference, the load can play an adversary role
in the tracking-error dynamics. Hence, in [4], the reference
trajectory is chosen carefully so that the load plays a positive
role. Beside optimal control techniques, some nonlinear
control approaches are also present in the literature. For
example, a sliding-mode-based control approach is proposed
in [5]. However, the performance of this technique is limited
due to the chattering phenomenon that inevitably results in
slow convergence, low tracking accuracy, and the lack of
robustness with respect to disturbances [5]. Also, in [6] and
[7], hybrid control algorithms are proposed but in the absence
of a load.

In this paper, we extend the hybrid predictive tracking
algorithm proposed in [7] by assuming the presence of an
unknown resistive load. Indeed, the proposed control strategy
consists in selecting the input that forces a quadratic function
of the tracking error to decreases, for some time, along the
DC/AC solutions. The change of the input is triggered when
the quadratic function reaches a given upper bound (tracking
precision) and when it is not decreasing along the solutions.
The latter generates a hysteresis effect that explains the
hybrid nature of the proposed algorithm. Furthermore, when
different values for the input can be chosen, we select the
one that renders the next triggering time the largest, which
explains the predictive nature of the algorithm. Due to the
presence of the load, it is not easy to address the tracking
problem while considering a general sinusoidal reference.
Hence, as in [4], we propose a class of reference signals that
allows us to handle the effect of the load. Furthermore, as
we assume that the load is unknown, a finite-time hybrid
estimator is incorporated in the control loop to estimate the
right value of the resistive load in finite time. It is shown, via
simulations, that the proposed algorithm delivers a clean AC
output voltage, to have a good disturbance rejection ability,
and to allow the tracking error to remain within a sufficiently
small neighborhood of the origin.

The rest of the paper is organized as follows. Preliminaries
on hybrid systems are in Section II. The inverter open-loop
model is in Section III. The control problem is formulated
in Section IV. The hybrid controller and the finite-time
hybrid estimator are introduced in Section V. Finally, the
effectiveness of the proposed approach is illustrated via



simulations in Section VI.

II. PRELIMINARIES ON HYBRID SYSTEMS

Following [8], a hybrid dynamical system modeled as a
hybrid inclusion H = (C, F,D, G) is given by

H :

{
x ∈ C ẋ ∈ F (x)
x ∈ D x+ ∈ G(x),

(1)

where x ∈ Rn is the state variable, C ⊂ Rn is the flow set,
D ⊂ Rn is the jump set, and F : Rn ⇒ Rn and G : Rn ⇒
Rn are the flow and jump maps, respectively.

The notion of hybrid arcs is used to define the concept
of solutions to H. A hybrid arc φ is parametrized by an
ordinary time variable t ∈ R≥0 := (0,∞) and a discrete
jump variable j ∈ N := {0, 1, . . . }. Its domain of definition,
denoted domφ, is a hybrid time domain: it is such that for
each (T, J) ∈ domφ, domφ ∩

(
[0, T ]× {0, 1, . . . , J}

)
=

∪Jj=0

(
[tj , tj+1]× {j}

)
for a sequence

{
tj
}J+1

j=0
, such that

tj+1 ≥ tj and t0 = 0. A hybrid arc φ is a solution to H if
it satisfies its dynamics; see [8, Definition 12].

A solution φ to H is said to be maximal if there is no
solution ψ to H such that φ(t, j) = ψ(t, j) for all (t, j) ∈
domφ with domφ a proper subset of domψ. It is said to be
trivial if domφ contains only one element. The system H is
said to be forward complete if the domain of each maximal
solution is unbounded. It is said to be pre-forward complete
if the domain of each maximal solution is closed. Finally,
we use S(xo) to denote the set of maximal solutions to H
starting from xo.

III. THE OPEN-LOOP INVERTER MODEL

The circuit diagram of the DC/AC inverter considered in
this paper is in Figure 1. The current through the resistor R
and the inductor L is denoted by iL. The current through
the capacitor C and the load RL is denoted by iC and iRL

,
respectively. The output of the H-bridge Vin serves as the
input voltage for the RLC filter. The H-bridge consists in
four single-pole/single-throw (SPST) switches S1, S2, S3,
and S4. Moreover, the switch S5 defines the connectivity of
the resistive load. Each switch is assumed to be ideal and
switches instantaneously between “ON” and “OFF”. A logic
variable ` ∈ {0, 1} is used to denote the status of S5; namely,
` = 1 when the switch S5 is “ON” and ` = 0 otherwise.

VDC

S1

S2

S4

S3

S5

Vin

R

→ iL

L

C

↓
iC

RL

↓
iRL

Fig. 1. Single-phase DC/AC inverter with load circuit diagram

Depending on the configuration of the switches, the follow-
ing three values of the input Vin are possible:

Vin =

 VDC if S1 = S3 = ON and S2 = S4 = OFF
0 if S2 = S3 = ON and S1 = S4 = OFF

−VDC if S2 = S4 = ON and S1 = S3 = OFF.

Applying Kirchhoff’s laws to the RLC filter leads to the
following three possible dynamics for iL:

i̇L =



VDC

L − R
L iL −

1
LvC if S1 = S3 = ON and

S2 = S4 = OFF
−RL iL −

1
LvC if S2 = S3 = ON and

S1 = S4 = OFF
−VDC

L − R
L iL −

1
LvC if S2 = S4 = ON and

S1 = S3 = OFF.

(2)

The configuration of the H-bridge affects the dynamics of
iL whereas the connectivity of the switch S5 impacts the
dynamics of vC as follows:

v̇C =

{
1
C iL −

1
CRL

vC if S5 = ON,
1
C iL if S5 = OFF.

(3)

Combining the above, the circuit in Figure 1 is described
by the following differential equation with state z :=
[iL vC ]> ∈ R2 and input u ∈ U := {−1, 0, 1}:

ż =

[
i̇L
v̇C

]
= fz(z, u) :=

[
VDC

L u− R
L iL −

1
LvC

1
C iL −

vC
CRL

`

]
. (4)

Having u = 1 implies that Vin = VDC , u = −1 implies
that Vin = −VDC , u = 0 implies that Vin = VDC = 0. To
simplify the presentation, the variable ` ∈ {0, 1} is treated
as a parameter.

IV. PROBLEM FORMULATION, REFERENCE, AND ERRORS
DYNAMICS

The goal of this paper is to design a controller that solves
the following tracking problem.

Problem 1 (Tracking problem): Given a reference signal
t 7→ zr(t) := (ir(t), vr(t)) ∈ R2 and a tracking precision
δe > 0, find u = κ(t, zr, z) ∈ U such that the tracking error
e := z − zr satisfies

|e(t)| ≤ δe ∀t ≥ 0 (5)

without knowledge of RL. •
The tracking error e is initially small without loss of gener-
ality. Indeed, it is always possible to find a controller that,
when |e(t)| > δe, steers e to [0, δe] in finite time [7].

A. Reference Trajectory Dynamics

The reference voltage vr is a sinusoidal signal given by

vr(t) := A sin(ωt+ θ), (6)

where A is its amplitude, ω its frequency, and θ its initial
phase angle.



The desired reference current ir is given by

ir(t) := CωA cos(ωt+ θ) + `A sin(ωt+ θ)/RL. (7)

The dynamics of the reference zr := [vr ir]
> can be

computed by differentiating (6) and (7) with respect to time.
This leads to

i̇r = −ω2Cvr(1− `) +
`

CRL
ir −

1 + C2ω2R2
L

CR2
L

`vr

v̇r =
1

C
ir −

`

CRL
vr.

Hence, the reference t 7→ zr(t) is a solution to the system

[
i̇r

v̇r

]
= fzr (zr) :=

−ω
2Cvr +

RLir − vr
CR2

L

`

1

C
ir −

1

CRL
vr`

 , (8)

and with the initial condition[
ir(0)
vr(0)

]
=

[
CωA cos(θ) + A sin(θ)

RL
`

A sin(θ)

]
. (9)

Note that the range of the solution to (8) starting from (9),
namely, the set

{
zr(t) : t ∈ dom zr

}
is given by the ellipse:

Zr :=

{
zr ∈ R2 :

i2r
(ωC)2

+
((ωCRL)2 + `)v2r

(ωCRL)2
−

2vrir
ω2C2RL

` = A2

}
.

(10)

B. Error Dynamics

The dynamics of e := [ei ev]
> = z − zr are given by

ė = Aee+ be(u, zr, z), (11)

where

Ae :=

[
−RL −ω2C
1
C − 1

CRL
`

]
, be(u, zr, z) := [ν(u, zr, z) 0]>,

and

ν(u, zr, z) :=
VDC
L

u− R

L
ir +

LCω2 − 1

L
vC +

−RLir + vr
CR2

L

`.

(12)

V. A HYBRID CONTROLLER FOR TRACKING
WITH AN UNKNOWN LOAD

A. Choice of Quadratic Function of e

To achieve the property in Problem 1, we consider the
quadratic function

V (e) := e>Pe, (13)

where

P :=

[
1 ψ

2 (1− `)
ψ
2 (1− `) (Cω)2

]
(14)

and ψ := RC
L . The matrix P is symmetric. Furthermore, for

positive constants Cω and ψ, P is positive definite when

` = 1. However, when ` = 0, P is positive definite if and
only if R < 2ωL.

For δ > 0, the δ−sublevel set of V is given by

Λ(δ) :=
{
e ∈ R2 : V (e) ≤ δ

}
. (15)

Note that, when P is positive definite, given δe > 0, δ can
be chosen in the set (0, δe/λmin(P )] such that e ∈ Λ(δ)
implies that |e| ≤ δe.

Furthermore, the time derivative of V along the solutions
to (4) satisfies the following infinitesimal inequality:

V̇ (e, u, zr, z) + λV (e) ≤ 2e>Pbe(u, zr, z)

= 2ν(u, zr, z)(eih+
ψ

2
ev(1− `)),

where λ := 2`+(1−`)R/L is positive (for each ` ∈ {0, 1}).
Then, V decreases along the solutions to (4) if

ν(u, zr, z)(eih+
ψ

2
ev(1− `)) ≤ 0. (16)

In turn, (16) holds if the following conditions are satisfied:
ν(u, zr, z) > 0 if (eih+

ψ

2
ev(1− `)) < 0

ν(u, zr, z) < 0 if (eih+
ψ

2
ev(1− `)) > 0

(17)

B. Admissible Tracking Set

It can be shown that when z ∈ R2 is such that

sign
(
ν(u, zr, z)

)
= sign(u) ∀(zr, u) ∈ Zr × U, (18)

the conditions in (17) can always be enforced by properly
choosing u. When LCω2 6= 1, the set of points z ∈ R2 for
which (18) holds is given by

Γ :=

{
z ∈ R2 : |vC | ≤

VDC −RCωA
k

− `AR+ ωAL

kRL

}
,

where k :=
∣∣LCω2 − 1

∣∣ and A is as in (6). The set Γ is
referred to as the admissible tracking set.

C. Forward Invariance of Λ(δ)

Since solving Problem 1 suggests that the set Λ(δ) is to
be rendered forward invariant for the closed-loop system, we
want to make sure that e ∈ Λ(δ) and zr ∈ Zr imply that
z = zr + e ∈ Γ. To guarantee this property, the following
assumption is imposed.

Assumption 1: Given ` ∈ {0, 1}, the positive constants
A, L, C, R, ω, RL, and VDC are such that LCω2 6= 1,
R < 2ωL, and there exists δ̄ > 0 such that

A ≤

VDC
k
−

√
δ̄

(Cω)2 − (RC2L )2(1− `)

Ξ, (19)

where Ξ := k/(k + ωRC + R+ωL
RL

`) and A as in (6). •
Lemma 5.1: Let ` ∈ {0, 1} and let A, L, C, R, ω, RL,

VDC , and δ̄ be positive constants such that Assumption 1
holds. Then,

Λ(δ)+Zr := {e+zr : (e, zr) ∈ Λ(δ)×Zr} ⊂ Γ ∀δ ∈ [0, δ̄].



D. Hybrid Control Strategy When the Load is Known

In this section, a hybrid controller is proposed to solve
Problem 1 with RL known. Following [7], the proposed
controller Hc admits u ∈ U as a state variable and η :=
(z, zr) ∈ R2 × Zr as input. It is given as

Hc :

{
u̇ = 0 (u, η) ∈ Cc

u+ ∈ Gc(η) (u, η) ∈ Dc,
(20)

where Dc := {(u, η) ∈ X : δ ≤ V (e) ≤ δ̄, V̇ ≥ −λV (e)},
Cc := cl(X \Dc), and X := U × R2 × Zr. The map Gc is
to define next.

The proposed construction of Gc implements a switching
logic that provides an admissible value of u that maintains
the error e inside Λ(δ) and, at the same time, maximizes
the time between two consecutive updates of u (or jumps).
By maximizing the time in between jumps, we reduce the
switching frequency, which, in turn, improves the utilization
of the switches. The jump map Gc is constructed in three
steps:

Step 1 According to (17) and to force V to decrease along
the solutions, we define the auxiliary set-valued map

Ĝc(η) := {u ∈ U : (17) holds}.

Step 2 If Ĝc(η) has more than one element, for each
û ∈ Ĝc(η) simulate the solution t 7→ η̂(t) to (4) and (8)
starting from η along a given time window [0, Tp], where
Tp > 0 is a parameter of the controller. Then, evaluate the
time for the solution to reach the set Dc. This time is denoted
as TI(û, η) and given by the functional

TI(û, η) := inf{t > 0 : (û, η̂(t)) ∈ Dc}.

Step 3 Using the result in Step 2, select the new value of
u as the element û ∈ Ĝ(η) that enables the errors to remain
within Λ(δ) for the largest amount of time. This mechanism
in implemented in Gc as

Gc(η) := argmax{TI(û, η) : û ∈ Ĝc(η)}. (21)

Proposition 1: Consider the system in (4). Let ` ∈ {0, 1}
and let A, L, C, R, ω, RL, VDC , and δ̄ be positive constants
such that Assumption 1 holds. Then, for each δ ∈ [0, δ̄],
Problem 1 is solved by the hybrid controller Hc in (20). �

The hybrid closed-loop system Hocl = (Cocl, F ocl,Docl, Gocl)
resulting from (4) and (20) admits as state variable xo :=
(u, z, zr) ∈ X with the data Gocl(x

o) :=
(
Gc(z, zr), z, zr

)
for each xo ∈ Docl := {(u, z, zr) ∈ X : δ ≤ V (e) ≤
δ̄, V̇ (e) ≥ −λV (e)}, F ocl(xo) :=

(
0, fz(z, u), fzr (zr)

)
for

each x ∈ Cocl := cl(X \ Docl), and Goc(z, zr) as defined in
(21).

E. Hybrid Finite-Time Estimator of the Load

When the load is unknown, inspired by [9] and [10], we
propose a hybrid estimator that estimates the load in finite
time. Note that (4) can be rewritten as

ż = f(z, u) + g(z, u)θ, (22)

where θ := 1/RL is the parameter to be estimated,

f(z, u) :=

[
−RL − 1

L
1
C 0

]
z +

[
VDC

L u
0

]
,

and g(z, u) := [0 − vC/C]>. Using the construction
in [9], the proposed estimator is a hybrid system de-
noted He = (Ce, Fe,De, Ge) with state variable xe :=
(ẑ, θ̂e, w,Q, η, γ) ∈ Xe := R2 × R2 × R ×MB × R>0 ×
R2 × R1 and input ue := (z, u), where ẑ is the estimate of
z, θ̂e is the estimate of θ, and w,Q, η, γ are auxiliary state
variables. The data of He is given by

Fe(xe) :=



f(z, u) + g(z, u)θ̂e + k(z − ẑ)
0

g(z, u)− w
w>w
−kη

w>(wθ̂e + z − ẑ − η)


(23)

for each xe ∈ Ce := {xe ∈ Xe : det(Q) ≤ ε}, ε > 0, where
k > 0 is a constant, and Ge(xe) :=

(
z>, Q−1γ, 0, 0, 0, 0

)
for

each xe ∈ De := {xe ∈ Xe : det(Q) ≥ ε}. The following
result is a direct consequence of [9, Theorem 1].

Proposition 2: Consider the system (4) with ` = 1 and L,
C, R, A, ω, RL, and VDC positive constants. Consider an
input t 7→ u(t) ∈ U and the corresponding solution t 7→ z(t)
starting from a compact set such that, for some σ > 0 and
β > 0, the following persistency of excitation property holds.∫ to+σ

to

g>(z(t), u(t))g(z(t), u(t))dt ≥ β ∀to ≥ 0. (24)

Then, for k sufficiently large, the solution to He under the
input t 7→ ue(t) = (u(t), z(t)) and starting from each xeo ∈
Xe is globally bounded. Moreover, θ̂e becomes equal to θ
right after the second jump. �

F. Closed-Loop System Using the Hybrid Estimator

In this section, we incorporate the hybrid estimator He
into the control loop. The estimate θ̂e provided by the hybrid
estimator He is used by the controller Hc only once the
estimatorHe achieves the second jump (i.e. once θ̂e becomes
equal to θ). Before that, the controller Hc keeps using an
internal variable, denoted θ̂, as an estimate of θ. The variable
θ̂ remains constant before the estimator He achieves the
second jump. However, once estimator achieves the second
jump, the variable θ̂ jumps to θ̂e. To implement this approach,
an extra counter variable τ ∈ {0, 1, 2}, initially set to
τ(0, 0) = 0, is included to track the amount of jumps that
the estimator has achieved. Hence, the controller starts using
the right value of θ once τ = 2. Indeed, when τ = 2,
the controller will know that θ̂e = θ and, thus, θ̂ jumps
to θ̂e = θ. When θ̂ is equal to θ, zr becomes a solution to
(8) and the control law in (20) is applied. Before the second
jump of the estimator, zr is a solution to (8) while replacing
RL in fzr therein by 1/θ̂. Furthermore, the control input is

1MB is a ball with size of M > 0.



computed using the same algorithm in (20) while using 1/θ̂
instead of RL at each step. Combining the estimator He and
the controller Hc, the resulting closed-loop system, denoted
Hcl, admits as state variable x := (xo, xe, τ, θ̂) ∈ Xcl :=
X ×Xe × {0, 1, 2} × R≥0.

Algorithm 1: Closed-Loop hybrid algorithms
Initialization: τ(0, 0) = 0.
if τ ≤ 2 then

use θ̂ in Hc
else

θ̂ = θ̂e
end

Proving that the hybrid closed-loop system Hcl solves
Problem 1, consists in showing the two flowing claims:

Cl1. The tracking error e is within the set Λ(δ̄) when θ̂ = θ.
This might be shown only When θ̂ is initially not very
far from θ.

Cl2. Condition (24) is satisfied along the closed-loop solu-
tions t 7→ (z(t), u(t)).

It would be also interesting to show that the resulting closed-
loop system Hcl satisfies the hybrid basic conditions, which
would guarantee robustness of Hcl with respect to small
perturbations [8]. In this paper, we illustrate the latter two
claims as well as the robustness of the closed-loop system
via simulations. Rigorous proofs are subject to our future
work.

VI. NUMERICAL VALIDATION

TABLE I
SIMULATION PARAMETER

Quantity Symbol Value(sim1/sim2) unit

Input DC voltage Vdc 220/48 V

Output amplitude A 100/120
√

2 V

Output frequency ω 120π rad · s−1

RLC filter resistor R 1/1.5 Ω

Inductor L 2/50 mH

Capacitor C 1.063/0.1407 mF

Load resistor RL 100/240 mH

tracking accuracy δ 4/2

In this section, we present simulation results from two
sets of parameters that are used in [7] and [4], denoted
by sim1 and sim2, respectively. The system’s parameters
are in Table I. The simulation run time is 0.5s and for
the purpose of presentation, we only show 0.02s of the
simulation result. There are two metrics we use to determine
the performance of the algorithm: the amount of switches
of the signal u within the simulation run-time and the
total harmonic distortion of z for gried-tied inverters whose
maximum values are specified in [11]. The total harmonic
distortion t 7→ X(t) measures the quality of the signal and is
defined as THD(X) :=

√∑∞
n=2(X2

n)rms/(X1)rms, where
Xn is the nth harmonic distortion of the signal X and X1

is the harmonic distortion at the fundamental frequency. The
harmonic distortion and the switching frequency are in Table
II. The result in Table II indicates that the controller reduces

TABLE II
PERFORMANCE OF OUTPUT SIGNAL FOR NON-PERTURBED REFERENCE

Quantity S5 is OFF S5 is ON
sim1/sim2 sim1/sim2

Amount of switches u 12831/210 12802/162

THD(iL) 2.1485%/0.6989% 2.2073%/0.9353%

THD(vC ) 1.0311%/0.1821% 1.0479%/0.261%
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Fig. 2. Tracking an unperturbed sinusoidal reference for sim1
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Fig. 3. Tracking an unperturbed sinusoidal reference for sim2

the amount of switches in the presence of the unknown load
at the expense of the THD of the signals. Next, to show
robustness of the algorithm, a segmented step noise and a
sinusoidal noise are applied to VDC .
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Fig. 4. Simulation of the perturbed voltage VDC

The simulations using the parameters in Table I are in
Figures 5 and 6. The distortion and the switching frequency
are in Table III.

Comparing the results in Tables III and II, we can see



TABLE III
PERFORMANCE OF OUTPUT SIGNAL FOR PERTURBED REFERENCE

Quantity S5 is OFF S5 is ON
sim1/sim2 sim1/sim2

Amount of switches u 13356/224 13328/170

THD(iL) 2.4369%/1.5483% 2.4210%/1.9462%

THD(vC ) 1.0134%/0.3503% 1.0463%/0.6283%
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Fig. 5. Tracking a perturbed sinusoidal reference for sim1

that the switching frequency under a disturbed reference is
relatively closed to the one under a non-disturbed reference.
Furthermore, the finite-time estimator is illustrated in Figure
7. Figures 8 and 9 show that the errors for converges to a
Λ(δ) in finite time. The red dot represents the moment at
which the estimator converges to the right value of θ. The
corresponding distortion and the switching frequency are in
Table IV.

TABLE IV
PERFORMANCE OF OUTPUT SIGNAL FOR ESTIMATOR

Quantity S5 is ON

sim1 sim2

Amount of switches u 14291 160

THD(iL) 2.8797% 5.0865%

THD(vC ) 2.5502% 7.8611%

VII. CONCLUSION

This paper presented a hybrid controller for a single-
phase DC/AC inverter in the presence and absence of an
unknown resistive load. The proposed algorithm guarantees
the tracking of a reference signal by showing forward invari-
ance of an arbitrarily small neighborhood around the origin
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Fig. 6. Tracking a perturbed sinusoidal reference for sim2
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Fig. 7. Tracking the estimated sinusoidal reference

(a) sim1, S5 ON (b) sim2, S5 ON

Fig. 8. The parameter θ̂ for the finite-time estimator

of the tracking errors. Simulations show that the control
algorithm is robust to impulsive changes of the reference
signal, to small perturbations, and to variations of the DC
input voltage, while obtaining harmonic distortion of the
output signal within the standard 5% limit, according to [11].
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