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Abstract— Recent results on asymptotically stabilizing model
predictive control for hybrid dynamical systems are relaxed
by exploiting basic knowledge about the structure of the set
of trajectories. Specifically, it is shown that when the system
to be controlled has trajectories with infinitely many discrete
transitions, the cost functional of the underlying optimal control
problem does not need to weight the state and the input in
continuous time. An analogue of this result shows that when
trajectories are defined over all ordinary time, the functional
does not need to weight the state and the input during discrete
transitions. Results are demonstrated with recurring examples.

I. INTRODUCTION

Building on the foundational work detailed in [1], further
detailed in [2], and following the framework therein, this
paper presents model predictive control (MPC) schemes for
hybrid dynamical systems. The model of a hybrid system
considered here allows the state to flow, according to a
constrained differential equation, and jump, according to a
constrained difference equation. It is derived from the general
framework of [3], where hybrid systems without inputs are
given by the combination of constrained differential and
difference inclusions.1 Roughly speaking, we are interested
in the MPC problem for hybrid systems where either every
complete trajectory flows for an infinite duration of ordinary
time, or every trajectory has infinitely many jumps. We
refer to these cases as persistent flows and persistent jumps,
respectively, and study asymptotic stability properties of each
case under the MPC algorithm proposed in [2] (referred sim-
ply as the hybrid MPC algorithm) and recalled in Section III.
For both persistent flows and jumps, we provide alternatives
to the sufficient conditions in [2] guaranteeing asymptotic
stability under the hybrid MPC algorithm.

To motivate the study of MPC strategies pertaining to
persistent flows or jumps, we consider the hybrid model of
a ball bouncing vertically on a horizontal flat surface with
height x1 and velocity x2. When x1 ≥ 0, the motion of the
ball can be represented by the the differential equation

ẋ1 = x2, ẋ2 = −γ, (1)
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1The rich descriptive capabilities of the hybrid inclusions framework are
demonstrated in [3], and discussed in [1], [2], and [4].

where γ > 0 is the gravitational constant. Impacts with the
surface are modeled by the difference equation

x+1 = x1, x
+
2 = −λx2 + u, (2)

which takes effect when x1 = 0 and x2 ≤ 0. Here, λ ∈ [0, 1]
is the coefficient of restitution, and u ≥ 0 is an input that
affects the velocity after impacts. For the bouncing ball, the
time-to-impact from any initial state x := (x1, x2) with x1 ≥
0 is finite, which implies that trajectories of the system have
persistent jumps; see [3, Example 2.12]. In the autonomous
case with dissipative jumps (i.e., when u = 0 and λ < 1),
asymptotic stability of the origin can then be certified by the
total energy function W (x) := γx1 + x22/2. Although W
is constant during flows, it decreases with each jump away
from the origin. Hence, it is a Lyapunov function for the
system due to persistence of jumps [3, Example 3.15].

The relevance of the above observation to the hybrid
MPC algorithm is multifaceted. The sufficient conditions
for asymptotic stability in [2] require a terminal cost V
that is a control Lyapunov function (CLF), decreasing away
from the target set during both flows and jumps under
an appropriate feedback law. Then, the value function of
the underlying optimal control problem (OCP) inherits the
descent characteristics of V , and is therefore a stability
certificate for the closed loop under the hybrid MPC al-
gorithm. From this perspective, it is of interest to relax
these requirements by allowing V to be nonincreasing during
jumps (respectively, flows) for persistent flows (respectively,
jumps), thus simplifying the design of the terminal cost. Un-
der the relaxed conditions on V , made precise in Section IV,
descent characteristics of the value function are still inherited
from V (Section V). Nevertheless, combined with persistence
of jumps or flows, asymptotic stability can again be shown
via the value function, as illustrated in Section VI.

A secondary interpretation comes from the functions defin-
ing the OCP. The cost functional of the OCP is defined
by the terminal cost V , along with two functions LC
and LD, weighting the state-input pair during flows and
jumps, respectively. Without any information on persistence,
these functions are required to be positive definite. The
relaxed conditions reveal that under persistence of flows
(respectively, jumps) the function LD (respectively, LC)
can be taken as zero, leading to a simpler functional and
reducing computational burden. From a physical perspective,
this simplification pertains to systems where either flows or
jumps can be deemed unimportant, perhaps due to being
uncontrolled (e.g. an underactuated walking robot). The price
to pay for these relaxations is that optimal trajectories need



to satisfy some properties that can be difficult to verify. To
overcome this issue, in Section IV, we provide sufficient con-
ditions on the system data guaranteeing that these properties
hold.

It should be emphasized that to the best of our knowledge,
the cost functionals appearing in the literature (see the
references in [1], [2]) assume a more specific structure
than the one in [2], and as such, similar relaxation results
have not been reported before. The cost functional in [5] is
closest in spirit to the one in [2], but relaxation results for
the MPC strategy therein are not available. Due to space
constraints, proofs are omitted and will be published in
another venue. The main focus here is to present the essence
of the relaxation results along some examples, and show how
they afford flexibility in the application of CLF-based hybrid
MPC. In particular, in Section VII, we revisit the numerical
example from [2] from a persistent jumps perspective and
show that the relaxation results lead to a more natural design.

II. PRELIMINARIES

We use R to represent real numbers and R≥0 its nonneg-
ative subset. The set of nonnegative integers is denoted N.
The notation S1 ⊂ S2 indicates S1 is a subset of S2, not
necessarily proper. The 2-norm is denoted |.|. The distance
of a vector x ∈ Rn to a nonempty set A ⊂ Rn is
denoted |x|A := infa∈A |x− a|. We denote by A + δB the
set of all x ∈ Rn such that |x − a| ≤ δ for some a ∈ A.
The interior and closure of a set S ⊂ Rn are denoted intS
and clS, respectively. We denote by Π : Rn×Rm → Rn the
standard projection onto Rn such that Π(x, y) = x. A strictly
increasing continuous unbounded function α : R≥0 → R≥0
is said to belong to class-K∞ if α(0) = 0.

A. Hybrid Control Systems

This paper considers hybrid control systems H of the form

H

{
ẋ = f(x, u) (x, u) ∈ C

x+ = g(x, u) (x, u) ∈ D,
(3)

where x ∈ Rn is the state and u ∈ Rm is the input. The flow
map f : C → Rn describes the continuous evolution of x
when (x, u) belongs to the flow set C ⊂ Rn × Rm. The
jump map g : D → Rn describes the discrete evolution of x
when (x, u) belongs to the jump set D ⊂ Rn × Rm.

Assumption 2.1: The set C or the set Π(C) is closed.

Example 2.2 (Bouncing Ball): The dynamics of the
bouncing ball system in Section I can be represented in
the form of (3) by incorporating the constraints therein
to (1)-(2). The flow map is given as f(x, u) = (x2,−γ) on
the flow set C = {(x, u) : x1 ≥ 0}. Similarly, the jump
map is given as g(x, u) = (x1,−λx2 + u) = (0,−λx2 + u)
on the jump set D = {(x, u) : x1 = 0, x2 ≤ 0, u ≥ 0}.

We refer to an input signal u and the corresponding state
trajectory x collectively as a solution pair (x, u) of H. A
solution pair (x, u) is parametrized by (t, j) ∈ R≥0 × N,
where t denotes the duration of flows and j denotes the
number of jumps. The domain of x, denoted domx, is a

hybrid time domain: for every (T, J) ∈ domx, there exists
a finite nondecreasing sequence {tj}J+1

j=0 so that t0 = 0 and

domx∩ ([0, T ]×{0, 1, . . . , J}) =
⋃J

j=0
([tj , tj+1]× {j}) .

Here, for every j ∈ {1, 2, . . . , J}, tj is the ordinary time of
the j-th jump of x. The domain of u is denoted domu in a
similar fashion, and is equal to domx.

Definition 2.3: Given a pair of functions x : domx→ Rn
and u : domu → Rm, (x, u) is said to be a solution pair
of (3) if dom(x, u) := domx = domu is a hybrid time
domain, (x(0, 0), u(0, 0)) ∈ cl (C) ∪ D, and the following
hold.

• For all j ∈ N such that Ij := {t : (t, j) ∈ dom(x, u)}
has a nonempty interior, 1) the function t 7→ x(t, j) is
locally absolutely continuous, 2) (x(t, j), u(t, j)) ∈ C
for all t ∈ int Ij , 3) the function t 7→ u(t, j) is Lebesgue
measurable and locally essentially bounded, and 4) for
almost all t ∈ Ij ,

ẋ(t, j) = f(x(t, j), u(t, j)). (4)

• For all (t, j) ∈ dom(x, u) such that (t, j + 1) ∈
dom(x, u),

(x(t, j), u(t, j)) ∈ D,
x(t, j + 1) = g(x(t, j), u(t, j)).

(5)

Throughout the paper, the set of solution pairs of H
originating from a set S ⊂ Rn is denoted ŜH(S). That
is, (x, u) ∈ ŜH(S) implies x(0, 0) ∈ S. Given a so-
lution pair (x, u), (T, J) ∈ dom(x, u) is said to be the
terminal (hybrid) time of (x, u) if T ≥ t and J ≥ j for
all (t, j) ∈ dom(x, u). The pair (x, u) is said to be complete
if dom(x, u) is unbounded. A complete (x, u) is said to have
• persistent flows if dom(x, u) is unbounded in the t-axis

(i.e., there exists no T ∈ R≥0 such that t ≤ T for
all (t, j) ∈ dom(x, u)), and

• persistent jumps if dom(x, u) is unbounded in the j-
axis (i.e., there exists no J ∈ N such that j ≤ J for
all (t, j) ∈ dom(x, u)).

Example 2.4 (Digital Control): Consider a continuous-
time control system with state z ∈ Rnp and input η ∈ Rnc ,
described by a function f̃ : Rnp×Rnc → Rnp . When the in-
put η of the plant is applied in a zero-order hold fashion, the
resulting digital control system can be expressed in the form
of (3) by treating η as a state component and introducing the
clock variable τs ∈ R. Letting x = (z, η, τs), the data of this
model is given by the flow set C = {(x, u) : τs ∈ [0, Ts]},
jump set D = {(x, u) : τs = Ts}, flow map f(x, u) =
(f̃(z, η), 0, 1), and jump map g(x) = (z, u, 0). During flows,
the timer τs counts up with a constant rate of one and η stays
constant, while z evolves according to the plant dynamics.
When τs reaches Ts, it gets reset to zero, while η is updated
with the input u of the hybrid system. Complete solution
pairs (x, u) of this system have persistent flows and jumps,
as the j-th jump occurs at ordinary time tj = Tsj− τs(0, 0).



We say that the hybrid system H has unique state tra-
jectories (t, j) 7→ x(t, j) if two inputs that are equivalent
(equal during jumps and equal almost everywhere during
flows) generate the same state trajectory from the same
initial condition. To ensure uniqueness for H, we adopt the
following assumption, where uniqueness is to be understood
in a similar sense.

Assumption 2.5: The constrained differential equation

ẋ = f(x, u) (x, u) ∈ C

has unique state trajectories t 7→ x(t).

Proposition 2.6: The hybrid control system H has unique
state trajectories if and only if Assumption 2.5 holds.

B. Hybrid Control Systems under Static State-Feedback

For analysis purposes, we also study the closed-loop
system arising from the application of given feedback con-
trollers κC : Rn → Rm and κD : Rn → Rm to H. This
closed-loop system, denoted Hκ, is represented in the form

Hκ

{
ẋ = fκ(x) := f(x, κC(x)) x ∈ Cκ

x+ = gκ(x) := g(x, κD(x)) x ∈ Dκ,
(6)

where
Cκ := {x ∈ Rn : (x, κC(x)) ∈ C},
Dκ := {x ∈ Rn : (x, κD(x)) ∈ D}.

We define trajectories of (6) over hybrid time domains
via Definition 2.3. Namely, we say that a function x is a
state trajectory of (6) if there exists a solution pair (x, u)
generated by the feedback κ; that is, if there exists a solution
pair (x, u) of H that satisfies (4) with u(t, j) = κC(x(t, j))
for all t ∈ int Ij and (5) with u(t, j) = κD(x(t, j)).

III. OVERVIEW OF HYBRID MPC

The hybrid MPC algorithm in [2] is implemented by
measuring the state of the plant H in (3) and solving an OCP,
in a moving horizon fashion. In comparison to conventional
continuous/discrete-time MPC, two key differences arise.
• Since hybrid systems can have solution pairs from

nearby initial conditions with drastically different time
domains, similar to free end-time optimal control, the
terminal time is allowed to vary within a set.

• To account for the differences in the time domains
of optimal controls, the optimization times are not
assumed to be periodic. Instead, the initial optimization
is performed at time (0, 0), and each subsequent opti-
mization time can be selected online, provided the re-
optimization occurs before the current control expires.

Next, we detail the formulation of the underlying OCP,
which comprises two explicit constraints described by
• the prediction horizon T ⊂ R≥0 × N, and
• the terminal constraint set X ⊂ Π(cl (C) ∪D).
Note that while the flow set C and jump set D implicitly

define mixed state-input constraints, any additional explicit
state-input constraints can be embedded in the problem by
modifying the system’s data. For example, the bouncing ball

system in Example 2.2 can be reformulated with the flow
set C = {(x, u) : x1 ∈ [0, hmax], u = 0} for any desired
maximum height hmax ≥ 0.

A. The Cost Functional

Given a solution pair (x, u) of H with compact domain
and terminal time (T, J), let {tj}J+1

j=0 be the sequence such
that dom(x, u) = ∪Jj=0([tj , tj+1] × {j}), where tJ+1 = T .
If x(T, J) ∈ X , then the cost of the pair (x, u) is given by

J (x, u) :=

 J∑
j=0

∫ tj+1

tj

LC(x(t, j), u(t, j)) dt


+

J−1∑
j=0

LD(x(tj+1, j), u(tj+1, j))

 + V (x(T, J)).

In the definition of the cost functional J , LC : C → R≥0
is called the flow cost, LD : D → R≥0 is called the jump
cost, and V : X → R≥0 is called the terminal cost.

B. The Prediction Horizon

To accommodate different hybrid time domains, we as-
sume the following structure for the prediction horizon T .

Assumption 3.1: There exists a finite nonincreasing se-
quence {tj}J+1

j=0 such that tJ+1 = 0, and

T :=

J⋃
j=0

([tj+1, tj ]× {j}) .

This assumption guarantees that every solution pair that
“lasts long enough” (in the sense that there exists large
enough t + j, (t, j) ∈ dom(x, u)) eventually “reaches” T ,
and is used to prove recursive feasibility [2], [1].

C. The Constrained OCP

With the terminal constraint set X and prediction hori-
zon T already defined, the minimization is performed over
solution pairs of H with initial condition x0, terminal con-
dition belonging to X , and terminal time belonging to T .

Problem 3.2: Given an initial condition x0 ∈ Rn,

minimize
(x,u)∈ŜH(x0)

J (x, u)

subject to (T, J) ∈ T
x(T, J) ∈ X,

(7)

where (T, J) denotes the terminal time of (x, u).
We say that a solution pair (x, u) is feasible if it satisfies

the constraints of (7) with x(0, 0) = x0. If, in addition (x, u)
minimizes J , it is said to be optimal. The feasible set X is
the set of all x0 with a feasible (x, u) ∈ ŜH(x0). The value
function J ∗ : X → R≥0 is defined as the infimum of all
feasible solution pairs at a given initial condition x0, i.e.,

J ∗(x0) := inf
(x,u)∈ŜH(x0)

(T,J)∈T
x(T,J)∈X

J (x, u) ∀x0 ∈ X , (8)

where (T, J) is the terminal time of (x, u).



D. Implementation

Having defined the OCP associated with the algorithm,
we formalize the implementation and recall the notion of
solution pairs generated by the hybrid MPC algorithm.

Definition 3.3: A solution pair (x, u) is said to be gen-
erated by the hybrid MPC algorithm if there exists a se-
quence {(Ti, Ji)}∞i=0 ∈ dom(x, u) with (T0, J0) = (0, 0)
such that the following hold.
• The sequence {Ti + Ji}∞i=0 is strictly increasing and

unbounded.
• For every i ∈ N, there exists an optimal solution

pair (xi, ui) such that for every (t, j) ∈ dom(x, u)
satisfying t+ j ∈ [Ti + Ji, Ti+1 + Ji+1),

x(t, j) = xi(t− Ti, j − Ji),
u(t, j) = ui(t− Ti, j − Ji).

This definition is equivalent to [2, Definition 6.1].
Above, (Ti, Ji) is the hybrid time of the (i + 1)th opti-
mization. Under this definition, an appropriate notion of
asymptotic stability for the hybrid MPC algorithm is given in
Section VI. In general, asymptotic stability can be certified
by using the value function J ∗, without any assumptions
on persistence of jumps or flows [2, Theorem 6.3], provided
the cost functions defining J have basic positive definite-
ness properties. With persistence of jumps or flows, these
requirements can be relaxed, as detailed in the next section.

IV. MAIN ASSUMPTIONS

We now list the basic assumptions imposed on Problem 3.2
to ensure feasibility, and certify asymptotic stability of a
given closed set A ⊂ X of interest. The initial assumptions
are similar to their counterparts in [2], with some modi-
fications, primarily to account for the case where A may
be unbounded.2 Later, we outline the additional assumptions
needed for the case of persistent jumps and persistent flows,
and provide sufficient conditions guaranteeing them.

Assumption 4.1: For any x0 ∈ X , an optimal solution
pair (x, u) ∈ ŜH(x0) exists.

A set of sufficient conditions for Assumption 4.1 is
presented in [6]. The next assumption concerns the terminal
cost V and terminal constraint set X .

Assumption 4.2: There exists ε > 0 such that the follow-
ing hold.
(G1) There exist class-K∞ functions α1 and α2 such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ X∩(A+ εB).

(G2) The inclusion (A+ εB) ∩Π(cl (C) ∪D) ⊂ X holds.
The key stabilizing ingredient of the hybrid MPC algo-

rithm is given by the following familiar CLF-like assumption.
When the term LC(x, κC(x)) (respectively, LD(x, κC(x)))
is allowed to be zero, the terminal cost V can be viewed
as a Lyapunov function with the feedback κ, provided the
trajectories of the closed-loop system Hκ have persistent
jumps (respectively, flows). The term forward invariant ([7,

2The work in [1] and [2] deals with the case where A is compact.

Definition 3.1]) here means that maximal3 closed-loop tra-
jectories originating from X stay in X and have unbounded
domains, and such trajectories exist from everywhere on X .

Assumption 4.3: There exists a feedback κ such that the
terminal constraint set X is forward invariant for the hybrid
system Hκ in (6). Moreover, the terminal cost V is differ-
entiable on an open set containing cl (X ∩ Cκ), and

〈∇V (x), fκ(x)〉 ≤ −LC(x, κC(x)) ∀x ∈X ∩ Cκ,
V (gκ(x))− V (x) ≤ −LD(x, κD(x)) ∀x ∈X ∩Dκ.

(9)

A. The Case of Persistent Jumps

When the hybrid MPC algorithm generates solution pairs
with persistent jumps, we do not insist on the flow cost to be
positive definite with respect to the distance of the state x to
the set A. Instead, we assume a property on optimal solution
pairs (x, u) originating away from A.

Assumption 4.4: The following properties hold.
(D1) There exists a class-K∞ function αD such that for

every (x, u) ∈ D, LD(x, u) ≥ αD(|x|A).
(D2) There exists a continuous positive definite func-

tion γD : R≥0 → R≥0 such that lim infr→∞ γD(r) >
0, and for every optimal solution pair (x, u),

|x(tj+1, j)|A ≥ γD(|x(0, 0)|A)

for some j ∈ {0, 1, . . . , J}, where {tj}J+1
j=0 is the se-

quence satisfying dom(x, u) = ∪Jj=0([tj , tj+1]×{j}).
Condition (D2) guarantees that x is away fromA at a jump

time or at the terminal time. Since the flow cost need not be
positive definite and can be zero, (D2) is utilized to ensure
that the cost of (x, u) is nonzero. This property is enforced to
maintain positive definiteness of the value function J ∗ with
respect to A, as J ∗ will be used as a stability certificate for
the hybrid MPC algorithm.

Verifying Condition (D2) requires knowledge of optimal
solution pairs, which might not always be possible. Never-
theless, this requirement can be removed if the flows of the
system satisfy a Lyapunov-like inequality that limit the rate
of convergence to A and prohibit finite-time convergence.

Proposition 4.5: Let Ṽ : Rn → R≥0 be a function
that is differentiable on an open set containing cl (Π(C)).
Suppose that there exist class-K∞ functions α̃1, α̃2, and a
constant λ ∈ R satisfying the following for some ε > 0:

α̃1(|x|A) ≤ Ṽ (x) ≤ α̃2(|x|A) ∀x ∈ Π(C) : |x|A ≤ ε,
(10)

〈∇Ṽ (x), f(x, u)〉 ≥ λṼ (x) ∀(x, u) ∈ C : |x|A ≤ ε. (11)

Then, (D2) holds if λ ≥ 0 or there exists Tmax ∈ R≥0 such
that T ≤ Tmax for every (T, J) ∈ T .

Example 4.6 (Bouncing Ball during Flows): Consider
the data of the bouncing ball system in Example 2.2,
and the total energy function W defined in Section I.
Let A = {x : x1 ≥ 0,W (x) = γh} for some h ≥ 0, which
corresponds to the limit cycle of the autonomous bouncing

3Closed-loop trajectories are maximal if they cannot be extended.



ball originating from (h, 0) when λ = 1. Since A is
compact and W is positive definite (on the domain x1 ≥ 0),
the function x 7→ (W (x) − γh)2 =: Ṽ (x) satisfies (10)
for some ε > 0 and class-K∞ functions α̃1 and α̃2,
as W is continuous. In fact, these functions can be chosen
independently of ε > 0, due to radial unboundedness of W .
Moreover, 〈∇Ṽ (x), f(x, u)〉 = 0 for all (x, u) ∈ C, so (11)
holds with arbitrarily large ε > 0.

B. The Case of Persistent Flows

For persistent flows, similar to Assumption 4.4, we do not
impose any conditions on the jump cost, and instead assume
a property on optimal solution pairs.

Assumption 4.7: The following properties hold.
(C1) There exists a class-K∞ function αC such that for

every (x, u) ∈ C, LC(x, u) ≥ αC(|x|A).
(C2) There exist a continuous positive definite function γC :

R≥0 → R≥0 such that lim infr→∞ γC(r) > 0, and
for every optimal solution pair (x, u) with terminal
time (T, J), either of the following holds.
• There exist t1, t2 ∈ [0, T ] such that t2 − t1 ≥
γC(|x(0, 0)|A), and |x(t, j)|A ≥ γC(|x(0, 0)|A) for
almost every (t, j) ∈ domx satisfying t ∈ [t1, t2].

• |x(T, J)|A ≥ γC(|x(0, 0)|A).
Again, the required knowledge of optimal solution pairs

in Condition (C2) can be replaced with some assumptions
on the system data. However, as opposed to the persistent
jumps case, where the substitute assumptions pertained only
to flows, the persistent flows case imposes requirements on
both flows and jumps. Indeed, a delicate matter that needs to
be taken care of now is to ensure that the optimal trajectories
do not tend to A arbitrarily fast during flows, potentially
resulting in the value function being zero outside A (due to
the integrand in the definition of J becoming zero almost
everywhere). While the Lyapunov-like conditions in Proposi-
tion 4.5 can be employed for such a task, a more direct way
of checking this property relies on the existence of a uniform
upper bound on the magnitude of the velocity ẋ = f(x, u)
away from A.

Proposition 4.8: Suppose that there exists a continuous
function σ : (0,∞)→ [0,∞) and ε > 0 satisfying

|f(x, u)| ≤ σ (|x|A) ∀(x, u) ∈ C : 0 < |x|A ≤ ε. (12)

Moreover, suppose that there exists a continuous increasing
positive definite function α̃D : R≥0 → R≥0 satisfying

|g(x, u)|A ≥ α̃D(|x|A)

∀(x, u) ∈ D : g(x, u) ∈ cl (Π(C)) ∪Π(D).

Then, (C2) holds if α̃D(r) ≥ r for every r ≥ 0, or there
exists Jmax ∈ N such that J ≤ Jmax for every (T, J) ∈ T .

Unlike the conditions in Proposition 4.5, (12) does allow
for finite-time convergence to A during flows. Existence of a
continuous function σ and ε > 0 satisfying (12) is guaranteed
when C = C ′ × U for a closed set C ′ ⊂ Rn and compact
set U ⊂ Rm, provided A is compact and f is continuous.

Example 4.9 (Digital Control with Actuator Constraints):
Given a compact set U ⊂ Rm, we revisit the digital control
system in Example 2.4 with the modified flow/jump sets

C = {(x, u) : η ∈ U, τs ∈ [0, Ts]},
D = {(x, u) : η ∈ U, τs = Ts, u ∈ U}.

With this, we consider the compact set A = {0}×U×[0, Ts].
The first condition of Proposition 4.8 related to flows holds
as the flow map f is affine and does not depend on u. We
also note that |g(x, u)|A = |z| = |x|A for every (x, u) ∈ D,
so the second condition holds with α̃ as the identity.

Remark 4.10: The condition imposed on flows in Propo-
sition 4.8 has previously been used as part of the main
stabilizing assumptions; see [2, Assumption 4.2].

V. PROPERTIES OF THE OCP
This section presents the properties pertinent to Prob-

lem 3.2 that are used to show asymptotic stability of A. The
initial results are similar to those in [2], stated with more
generality. As opposed to [2], the results here do not require
any regularity, aside from Assumption 2.1 at times.

Proposition 5.1: Under Assumption 3.1, if there exists a
feedback κ such that the terminal constraint set X is forward
invariant for the hybrid system Hκ in (6), then, X ⊂ X .

Proposition 5.2: Suppose that there exists a feedback κ
such that the terminal constraint set X is forward invariant
for the hybrid system Hκ in (6). Moreover, suppose that
Assumptions 2.1 and 3.1 hold. Let (x, u) be a feasible
solution pair. Then, for any (t, j) ∈ dom(x, u), x(t, j)
belongs to the feasible set X ; i.e., x(t, j) ∈ X .

Proposition 5.1 and 5.2 show that the terminal constraint
set is contained in the feasible set, and recursive feasibility is
maintained with the moving horizon implementation, respec-
tively. The conditions in Proposition 5.1 and the inequalities
in Assumption 4.3 ensure an upper bound on the value
function J ∗ over the terminal constraint set X , in terms
of the terminal cost V . Combining this with the class-K∞
upper bound on V is the first step towards establishing J ∗
as a Lyapunov function for the hybrid MPC algorithm.

Lemma 5.3: Under Assumptions 3.1 and 4.3,

J ∗(x0) ≤ V (x0) ∀x0 ∈ X ⊂ X .
Next, we show that J ∗ is upper bounded by a nonin-

creasing function along optimal trajectories, which decreases
during flows (respectively, jumps) if LC (respectively, LD)
satisfies the lower bound in (C1) (respectively, (D1)).

Lemma 5.4: Suppose Assumptions 2.1, 3.1 and 4.3 hold.
Then, for any optimal (x, u) and any (t, j) ∈ dom(x, u),

J ∗(x(t, j)) ≤ J ∗(x(0, 0))

−
j∑
i=0

∫ si+1

si

LC(x(s, i), u(s, i)) ds

−
j−1∑
i=0

LD(x(si+1, i), u(si+1, i)),



where {si}j+1
i=0 is the sequence satisfying

dom(x, u)∩([0, t]×{0, 1, . . . , j}) = ∪ji=0 ([si, si+1]× {i}) .
The final step in establishing J ∗ as a Lyapunov function

is to show that it is positive definite with respect to the target
set A. This property holds when either of Assumptions 4.4
or 4.7 are combined with Assumption 3.1.

Lemma 5.5: Under Assumption 3.1, if either of Assump-
tions 4.4 or 4.7 holds, there exists a continuous positive
definite function α : R≥0 → R≥0 with lim infr→∞ α(r) > 0
such that the value function satisfies J ∗(x0) ≥ α(|x0|A) for
all x0 ∈ X .

VI. ASYMPTOTIC STABILITY OF HYBRID MPC

This section summarizes asymptotic stability of the hybrid
MPC algorithm in the case of persistent flows or jumps.

Definition 6.1: The hybrid MPC algorithm is said to ren-
der the set A asymptotically stable (for H) if H has unique
state trajectories and the following hold:
• There exists δ > 0 such that for every x0 ∈ Π(cl (C)∪
D) satisfying |x0|A ≤ δ, there exists a solution
pair (x, u) generated by the hybrid MPC algorithm
originating from x0.

• For every ε > 0, there exists δ > 0 such that given
any solution pair (x, u) generated by the hybrid MPC
algorithm, |x(0, 0)|A ≤ δ implies |x(t, j)|A ≤ ε for
all (t, j) ∈ dom(x, u).

• Every solution pair (x, u) generated by the hybrid MPC
algorithm satisfies limt+j→∞ |x(t, j)|A = 0.

Theorem 6.2: Suppose Assumptions 2.1, 2.5, 4.1, 4.2,
and 4.3 hold. Then, the hybrid MPC algorithm renders
the set A asymptotically stable for the hybrid system H if
Assumption 3.1 holds with t0 > 0 and J ≥ 1, and either of
the following statements are true.
• Every solution pair generated by the hybrid MPC algo-

rithm has persistent jumps and Assumption 4.4 holds.
• Every solution pair generated by the hybrid MPC algo-

rithm has persistent flows and Assumption 4.7 holds.

Remark 6.3: Persistence of jumps or flows are usually
inherited from the open-loop system H. For example, for the
bouncing ball in Examples 2.2 and 4.6, every complete solu-
tion pair has persistent jumps (see Section I). Consequently,
every solution pair generated by the hybrid MPC algorithm
has persistent jumps, regardless of the OCP formulation.

VII. ILLUSTRATIVE EXAMPLE

In this section, we revisit the bouncing ball example in [2,
Section VII] and show that exploiting persistence of jumps
leads to an MPC design that is much less involved.

Recall the bouncing ball model in Example 4.6, and note
that the flow set C therein is closed. Hence, Assumption 2.1
holds. Let X = Π(C). Given the function Ṽ in Example 4.6,
let V = Ṽ . Then, Assumption 4.2 holds. Indeed, (G2) holds
with any ε > 0, since X = Π(clC). Similarly, (G1) holds
with any ε > 0, as discussed in Example 4.6.

For the closed-loop system Hκ in (6), choose an arbitrary
function κC , which results in the set Cκ = {x : x1 ≥ 0} and
the mapping fκ(x) = f(x). For jumps, for any x ∈ R2,
let κD(x) = max{λx2 +

√
2γh, 0}, which leads to the

closed-loop jump set Dκ = {x : x1 = 0, x2 ≤ 0} and
jump map gκ(x) = (0,max{−λx2,

√
2γh}) for all x ∈ Dκ.

It follows that X = Π(C) = Cκ is forward invariant
for Hκ, since gκ(Dκ) ⊂ Cκ, and flows of Hκ eventually
reach Dκ; see [3, Example 2.12]. Select the flow cost LC
as the zero function. Let LD(x, u) = γh(x2 +

√
2γh)2/2

if x2 ≥ −
√

2γh/λ, otherwise, let

LD(x, u) = min
{
γh(x2 +

√
2γh)2/2,

(x22/2− γh)2 − (λ2x22/2− γh)2
}
.

Routine algebraic manipulations show that V (gκ(x)) −
V (x) ≤ −LD(x, κD(x)). Hence, Assumption 4.3 holds.
Moreover, it can be seen that Assumption 4.4 holds: (D2)
follows via Proposition 4.5, as shown in Example 4.6, and
(D1) holds by radial unboundedness of LD. Finally, by
inspection, it can be observed that regardless of the choice
of T , optimal solution pairs are generated by the feedback κ,
hence Assumption 4.1 holds, and Theorem 6.2 applies.

The cost functions LC , LD, and V chosen for the same
problem in [2, Section VII] have much more complex
expressions and depend on a parameter θ > 0, primarily to
ensure the inequality 〈∇V (x), fκ(x)〉 ≤ −LC(x, κC(x)) ≤
−αC(|x|A). The cost functions chosen in this section are
simpler and can be seen as pointwise limits of their coun-
terparts in [2, Section VII], as θ tends to zero. In particular,
the terminal cost V here has a much more natural expression
and is an obvious choice to stabilize the γh-level set of W .

VIII. CONCLUSION

For the CLF-based stabilizing MPC algorithm in [1]
and [2], we showed that the cost functions of the OCP can be
taken as positive semidefinite. In particular, for systems with
persistent flows (respectively, jumps), the jump (respectively,
flow) cost can be taken as zero. Future work will focus on
relaxing the structure of the prediction horizon under similar
persistence assumptions to preserve feasibility properties.
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