
Zeroing Control Barrier Functions for Safe
Volitional Pedaling in a Motorized Cycle ?

Axton Isaly ∗ Brendon C. Allen ∗

Ricardo G. Sanfelice ∗∗Warren E. Dixon ∗

∗Department of Mechanical and Aerospace Engineering, University of
Florida, Gainesville FL 32611-6250, USA Email: {axtonisaly1013,

brendoncallen, wdixon}@ufl.edu.
∗∗Department of Electrical and Computer Engineering, University of

California, Santa Cruz. Email: ricardo@ucsc.edu.

Abstract: A minimally restrictive robust controller is developed for a motorized rehabilitative
cycling system. The controller yields a forced-use movement therapy that constrains the rider’s
cadence to remain within a user-defined range. The controller is designed using a zeroing control
barrier function (ZCBF), which facilitates the therapy by reducing control effort when the rider
can sustain the desired cadence volitionally. Moreover, the ZCBF design approach certifies
the rider’s safety by ensuring the desired cadence range is an asymptotically stable set. The
effectiveness of the controller is demonstrated with a preliminary experimental result, which
shows the cadence constrained within a range of 50±8 RPM even when the rider stops pedaling
volitionally mid-trial. Additionally, the rider was able to pedal with no intervention from the
motor when volitional effort was present.
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1. INTRODUCTION

Motorized cycling is an effective tool for the rehabilitation
of individuals with neuromuscular disorders Hooker et al.
(1992); Rösche et al. (1997); Johnston et al. (2008). Au-
tomated cycling programs can assist physical therapists
by using closed-loop control to yield safe, consistent, and
accurate cycling repetitions despite uncertainty in the
nonlinear human-machine dynamic system Kawai et al.
(2019); Bellman et al. (2017). Results such as Duenas et al.
(2018); Cousin et al. (2019) are robust to unknown, person-
specific parameters such as muscle fatigue rate and power
transfer ratio. Although successful forced-use therapy may
require intermittent assistance from the motorized system,
greater physiological benefits (e.g., increased heart rate
and power output) are attained by allowing the rider to
pedal using their volitional effort whenever a reasonable
cadence can be sustained without assistance Harrington
et al. (2012); Rouse et al. (2018); Combs et al. (2010).
Thus, it is desirable to develop control strategies in which
the motor is inactive within a range of prescribed thera-
peutic cadence values.

Rider safety is the most critical consideration when de-
signing any automated therapy program. Potential dan-
gers to the rider’s safety in forced-use therapy include
uncontrolled or erratic cadences and control action from
the motor that is excessive or abrupt. Barrier functions
can be used to develop automatic controllers that ensure
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a set of states (e.g., a safe range of cadence values) is
forward invariant, meaning that trajectories starting in
the set remain there for all of time Ames et al. (2019);
Maghenem and Sanfelice (2018). However, some common
barrier functions are undefined outside the set of interest,
and therefore cannot certify safety for states outside the set
Tee et al. (2009); Ames et al. (2016). In contrast, zeroing
control barrier functions (ZCBFs) are defined on the entire
state space and provide robust safety guarantees such as
asymptotic stability Xu et al. (2015). Additionally, ZCBFs
use minimal conditions for invariance to allow control
effort to be relaxed for states within the set. Moreover,
ZCBFs are applicable to dynamic systems with distur-
bances and unknown parameters Emam et al. (2019). The
aforementioned results motivate investigating ZCBFs as
a design method to facilitate the aims of safe, forced-
use cycling within a desired cadence range with minimal
control effort. Specifically, the objective of this paper is
to develop an automated motor controller that ensures a
user-defined range of cadence values is uniformly globally
asymptotically stable (UGAS).

In our related work in Rouse et al. (2020), we developed
a hybrid controller that switched between the cycle motor
and functional electrical stimulation (FES) of the rider’s
lower-limb muscle groups to establish controlled regions
outside of the desired cadence range, while no controller
was applied when the rider pedaled within the desired
cadence region. In contrast, the ZCBF control method
in this paper is applied with minimal interaction near
the midpoint of the cadence range, with increasing con-
trol effort near the boundary. This approach guarantees
forward invariance of the specified range, and encourages



rider effort because the cadence cannot be sustained at
the midpoint without volitional input. While this paper
only considers control efforts by the cycle motor, future
extensions can incorporate additional FES inputs follow-
ing the work in results such as Rouse et al. (2020, 2019).
To account for the unknown dynamics and time-varying
disturbances in rehabilitative cycling, we show how tradi-
tional ZCBF methods can be generalized to incorporate
Lyapunov-based robust control tools. Moreover, we con-
struct an explicit control law that ensures the existence of a
ZCBF while solving a min-norm quadratic program (QP).
The controller was developed in Xu et al. (2015) under
a stronger regularity condition than the one used here.
The controller is locally Lipschitz continuous on the entire
state space. A preliminary experimental trial shows that,
despite intentional disruptions in the volitional effort, the
cadence is constrained within a desired range of 42 to 58
RPM. When volitional effort is present, there is no input
from the motor during a 30-second segment of cycling.
Additional experiments are in progress.

2. MODEL

The dynamics of the motorized cycle-rider system are
Bellman et al. (2017)

M (q) q̈ + τb (q̇) + Vp (q, q̇) q̇ +G (q) + P (q, q̇) + τd (t)

= τe (t) + τvol (t)
(1)

where 1 q : R≥0→ R denotes the cycle’s measurable crank
angle, q̇ : R≥0 → R is the measurable angular velocity,
and q̈ : R≥0 → R is the angular acceleration. The effects
of inertial, centripetal-Coriolis, gravitational, and passive
viscoelastic tissue forces in both the cycle and the rider’s
limbs are denoted by M : R → R>0, Vp : R2 → R,
G : R → R, and P : R2 → R, respectively. The unknown
torque due to viscous damping is denoted by τb : R → R,
and τd : R≥0 → R denotes disturbances from effects such
as spasticity or changes in load. The rider’s volitional
torque is denoted by τvol : R≥0 → R, and the torque
produced by the electric motor is τe : R≥0 → R. The
control input is designed in terms of the motor torque,
which can be related to the current input to the motor,
ue : R≥0 → R, with τe (t) = Beue (t), where Be ∈ R≥0.
The following properties of the cycle-rider system in (1)
are derived from a detailed dynamic model, as discussed
previously in Bellman et al. (2017).

Property 1. The inertial term is smooth (i.e. infinitely
differentiable), and can be lower- and upper-bounded as
cm ≤ M (q) ≤ cM , where cm,cM ∈ R>0 are known
constants. Property 2. |Vp (q, q̇)| ≤ cV |q̇|, where cV ∈ R>0

is a known constant. Property 3. |G (q)| ≤ cG, where
cG ∈ R>0 is a known constant. Property 4. |P (q, q̇)| ≤
cP1 + cP2 |q̇|, where cP1, cP2 ∈ R>0 are known constants.
Property 5. |τb (q̇)| ≤ cb |q̇|, where cb ∈ R>0 is a known
constant. Property 6. |τd (t)| ≤ cd, where cd ∈ R>0 is a
known constant. Property 7. |τvol (t)| ≤ cvol, where cvol ∈
R>0 is a known constant. Property 8. 1

2Ṁ (q) = Vp (q, q̇).

1 R>0 indicates strictly positive real numbers while R≥0 indicates
non-negative reals.

To facilitate the subsequent development, we define z ,
[q, q̇]

T
and use Property 1 to rewrite the dynamic model

in (1) as[
ż1
ż2

]
=

[
z2

M−1 (z1) τf (z, d (t))

]
︸ ︷︷ ︸

f(z,d(t))

+

[
0

M−1 (z1)

]
︸ ︷︷ ︸

g(z)

τe, (2)

where τf : R2 × Ω→ R is an auxiliary term defined as

τf (z, d (t)) , d (t)− [τb (z2) + Vp (z) z2 (3)

+G (z1) + P (z)] ,

and the volitional effort and system disturbances are mod-
eled by a continuous, unknown, time-dependent distur-
bance d : R≥0 → Ω as

d (t) , τvol (t)− τd (t) . (4)

Properties 6 and 7 imply that the range of the disturbance
term, Ω ⊂ R, is compact.

Property 9. In (2), the function g (z) is globally Lipschitz
in z. The function f (z, d (t)) is locally Lipschitz in z and,
on any convex subset of R2 for which z2 is bounded,
is Lipschitz in z for all t ≥ 0. These properties are
developed using the fact that all dependencies on the state
z1 are embedded in trigonometric functions Bellman et al.
(2017).

3. CONTROL DEVELOPMENT

3.1 Control Objective and Barrier Function Selection

The control objective is to constrain the rider’s cadence
within a user-defined range about a constant setpoint. This
objective is quantified by defining the tracking error as

e , z2d − z2, (5)

where z2d ∈ R>0 is a user-defined desired cadence.
The goal is to constrain the tracking error so that e ∈
[−∆d,∆d], where ∆d ∈ R>0 defines the desired cadence
range. As a secondary objective, the motor control effort
should be small for small tracking errors so that the rider
is forced to pedal volitionally to maintain the target ca-
dence of z2d. ZCBFs are well suited for accomplishing the
aforementioned control objectives. In addition, ZCBFs will
guarantee the safety of the rider by ensuring asymptotic
stability of the desired cadence range, which results in
robustness properties as detailed in Xu et al. (2015). To
motivate the subsequent ZCBF-based analysis, consider
the following definition. 2

Definition 1. Consider a smooth function h : R2 → R and
the safe set S defined as S ,

{
z ∈ R2 : h (z) ≤ 0

}
. The

function h is a ZCBF for the dynamic system in (2) if
there exist a set D with S ⊆ D ⊆ R2 and an extended
class K function 3 α such that

inf
τe∈R

[
∂h

∂z
f (z, d (t)) +

∂h

∂z
g (z) τe

]
≤ −α (h (z)) , (6)

for all z ∈ D and t ≥ 0.
2 The definition of a ZCBF for the disturbed system in (2) is
based on Xu et al. (2015). Inspired by conventions associated with
Lyapunov-based analysis methods, we define the safe set by the
negative values of the ZCBF candidate.
3 An extended class K function is defined as a continuous function
β : (−b, a) → (−∞,∞) for some a, b > 0 that is strictly increasing
and β (0) = 0 Xu et al. (2015).



Given additional assumptions, the existence of a ZCBF
implies there exists a control input that renders the
set S either forward invariant or asymptotically stable.
Following from Maghenem and Sanfelice (2018) and Lin
et al. (1996), we provide conditions in Corollary 1 of the
Appendix for the set S to have these properties for a
closed-loop system. Notice that (6) implies that the ZCBF
may increase for states inside the safe set, which permits
control effort relaxation.

Motivated by the subsequent analysis, we encode the
cycling control objective by defining the ZCBF candidate

h (z) ,
1

2
M (z1)

(
e2 −∆2

d

)
, (7)

where the safe set is

S =
{
z ∈ R2 : |e| ≤ ∆d

}
= R× [z2d −∆d, z2d + ∆d] . (8)

The term M (z1) is included in (7) to compensate for the
unknown term in the control effectiveness matrix g (z) in
(2). Using Property 1, it can be shown that h (z) is smooth.

3.2 Safety Constraint Development

ZCBFs induce a constraint on the control input of the
system. Using this constraint, we can construct a contin-
uous controller that ensures safety while minimizing the
magnitude of the motor control input. Our goal is to apply
Corollary 1 in the Appendix, which requires finding any
control input with which we can show that (6) holds.

To compensate for the unknown dynamics and time-
varying disturbances present in the model in (2),
Lyapunov-based robust control methods typically use a
worst-case bound of the unknown terms. We will show
that a similar procedure can be conducted in a ZCBF-
based design to arrive at a conservative constraint that is
sufficient for satisfaction of (6). Considering the system in
(2) and the ZCBF candidate in (7), we compute:

∂h

∂z
f (z, d (t)) =

1

2
Ṁ (z1)

(
e2 −∆2

d

)
− eτf (z, d (t)) , (9)

∂h

∂z
g (z) = −e. (10)

Using Property 8 and making cancellations, the dynamics
in (9) are written as

∂h

∂z
f (z, d (t)) =− Vp (z) ∆2

d − e [d (t)− τb (z2)

−Vp (z) z2d −G (z1)− P (z)] . (11)

Using Properties 2-7, the dynamics can be upper bounded
as

∂h

∂z
f (z, d (t)) ≤ h̄C (e) ∀z ∈ R2, t ≥ 0, (12)

where
h̄C (e) , C1 + C2 |e|+ C3e

2,
and C1, C2, C3 ∈ R>0 are known positive constants. To
facilitate the subsequent control design, we also define

h̄K (e) , K1 +K2 |e|+K3e
2,

where K1,K2,K3 ∈ R>0 are user-defined control gains
selected so that

h̄C (e) ≤ h̄K (e) ∀e ∈ R. (13)

From (10), (12), and (13) it follows that

∂h

∂z
f (z, d (t)) +

∂h

∂z
g (z) τe ≤ h̄K (e)− eτe, (14)

for all z ∈ R2 and t ≥ 0.

Controllers based on Definition 1 frequently use the value
of the ZCBF explicitly in the control law; however, M (z1)
in (7) is unknown. We will consequently use a substitute
function in the developed control law as an indicator of the
distance to the boundary of the safe set. This substitute
function is defined as

hs (e) , Kb

(
e2 −∆2

d

)
, (15)

where Kb ∈ R>0 is an additional control gain. In the
subsequent stability analysis, we will find an extended
class K function α so that α (h (z)) lower bounds hs (e).
Considering Definition 1 with D = R2, and using the
bound developed in (14), satisfaction of the following
inequality for all e ∈ R implies that h in (7) is a ZCBF:

h̄K (e)− eτe ≤ −hs (e) . (16)

Specifically, given (13), condition (6) will hold at any point
for which (16) holds. When e = 0, the constraint in (16)
cannot be influenced by the control input. The following
result, which follows immediately from (16), will allow
selection of a minimal control at and around the point
e = 0.

Lemma 1. For all e ∈ R such that hs(e) + h̄K(e) ≤ 0, the
inequality in (16) is satisfied with τe = 0.

Using the fact that hs and h̄K are continuous, we can
ensure that hs (e) + h̄K (e) ≤ 0 in a neighborhood about
the point e = 0 by requiring the following strict inequality
to hold:

hs (0) + h̄K (0) = K1 −Kb∆
2
d < 0. (17)

Because the terms in (17) are user-selected, they can be
designed so the inequality holds.

3.3 Control Design

In this application, we wish to turn the motor off whenever
possible while still ensuring safety. Following Lemma 1, we
design a control law that sets τe = 0 whenever this input
satisfies the inequality in (16). The following controller will
be shown to satisfy (16) with minimal control effort:

τ∗e (e) =

{
τcon (e) hs (e) + h̄K (e) > 0

0 otherwise,
(18)

where

τcon (e) ,
hs (e) + h̄K (e)

e
∀e 6= 0. (19)

We emphasize that because the parameters in (17) are
user-selected, there is a tuneable neighborhood about the
point e = 0 where τ∗e (e) = 0. The controller in (18) for
various gain selections satisfying (17) is shown in Figure
1.

The following lemma and the stability result in Section 4
show that the controller in (18) meets all of the control ob-
jectives for the system. Namely, it constrains the cadence
to the desired range using minimal control effort, thereby
ensuring the rider’s safety while encouraging volitional
pedaling. A closed-form solution to a comparable min-
norm QP based on ZCBFs was developed in Theorem 8 of
Xu et al. (2015) under an assumption which, in this work,
corresponds to ∂h

∂z g (z) 6= 0 for all z ∈ R2. The alternate
construction presented here highlights the challenge of
relaxing this assumption.



Fig. 1. Control input from the controller in (18) as a
function of e for various sets of control gains that
satisfy (17). Compared to Set 1, Set 2 had larger
values for K1 and K2. In Set 3, Kb was larger than
in Set 1 while the other terms were the same. The
dashed vertical lines represent the boundary of the
safe range, where ∆d = 8.

Lemma 2. Assume that the gain condition in (17) holds.
Then the controller τ∗e in (18) solves the following QP:

τ∗e (e) = arg min
τe∈R

τ2e (20)

s.t. h̄K (e)− eτe ≤ −hs (e) .

Furthermore, the controller τ∗e is locally Lipschitz on R,
and there exists a neighborhood U (0) about the point
e = 0 such that τ∗e (e) = 0 for all e ∈ U (0).

Proof. We will show that the controller τ∗e satisfies the
constraint in (20) while minimizing the objective function.
Choose e ∈ R such that hs(e) + h̄K(e) ≤ 0. From (18),
τ∗e (e) = 0, which clearly minimizes the objective function.
Moreover, Lemma 1 shows that the constraint is satisfied.
Now choose e ∈ R such that hs(e) + h̄K(e) > 0. Note that
(17) ensures that e 6= 0 in this case. From (18) and (19),
the constraint in (20) is satisfied since τ∗e (e) = τcon (e) and

h̄K (e)− eτcon (e) = −hs (e) .

Furthermore, there is no τe,2 ∈ R with τ2e,2 < τ2con (e)
that satisfies the constraint. Indeed, because eτcon (e) is
positive when hs(e) + h̄K(e) > 0, one can find that
−eτe,2 > −eτcon (e) for any such τe,2. Then,

h̄K (e)− eτe,2 > h̄K (e)− eτcon (e) = −hs (e) ,

which shows that τe,2 does not satisfy the constraint. It
follows that τ∗e (e) solves the QP in (20) for every e ∈ R.

To prove the final claims of the lemma, first notice that
because the functions hs and h̄K are continuous and
hs (0) + h̄K (0) < 0, there exists a neighborhood U (0)
about the point e = 0 for which hs (e) + h̄K (e) < 0 for all
e ∈ U (0). From (18), τ∗e (e) = 0 for all e ∈ U (0). It then
follows from the definition of a locally Lipschitz function
and the fact that e 7→ 0 is locally Lipschitz that τ∗e (e)
is locally Lipschitz at e = 0. The argument that τ∗e (e) is
locally Lipschitz for all e ∈ R now follows from arguments
made in the proof of Theorem 8 in Xu et al. (2015). �

Remark 1. The controller in (18) can be rewritten as

τ∗e (e) =

{
τcon (e) |e| > β

0 otherwise,

where β > 0 is guaranteed to exist when (17) is satisfied.
In fact, β can be determined by finding the roots of the
expression

hs (e) + h̄K (e)

= (K3 +Kb) e
2 +K2 |e|+

(
K1 −Kb∆

2
d

)
.

4. STABILITY ANALYSIS

The Appendix contains a definition of UGAS and Corol-
lary 1, which will be used in the following theorem to show
that the set S in (8) is UGAS.

Theorem 1. Consider the the cycle-rider system in (2)
subjected to the control input in (18). The safe set S given
in (8) is UGAS for the closed-loop system provided that
the control gains satisfy (13) and (17).

Proof. Consider the ZCBF candidate h, as defined in (7).
Using Lemma 2, the bound in (14), and the gain conditions
in (13) and (17), it follows that the control law in (18)
ensures that

∂h

∂z
f (z, d (t)) +

∂h

∂z
g (z) τ∗e (e) ≤ −hs (e) , (21)

for all z ∈ R2 and t ≥ 0. Let the extended class K function
α be defined as

α (s) ,


Kb

cM
s s ≥ 0

2Kb

cm
s s < 0.

Using Property 1, it can be shown that α (h (z)) ≤ hs (e)
for all z ∈ R2. Combining the preceding inequality with
(21) leads to (22) in Corollary 1. We therefore conclude
that h in (7) is a ZCBF for the dynamic model in (2) on
R2. Note also that h is radially unbounded with respect
to S. To apply Corollary 1, it remains to show that each
maximal solution to the closed-loop system is complete,
which is non-trivial since S is not compact.

Before proving completeness of solutions, we will first show
some boundedness properties of trajectories. Using (21),
we find that for any trajectory, the distance of the state
z2 (t) from S is bounded. Since z2 takes bounded values
in S, we conclude that z2 (t) is bounded, i.e. z2 (t) ∈ L∞,
which implies that e (t) , h (e (t)) , hs (e (t)) ∈ L∞. From
boundedness of e (t) and continuity of the controller τ∗e
it follows that τ∗e (e (t)) ∈ L∞. Let z : dom z → R2

be a solution to the closed-loop system with domain of
definition dom z ⊆ [0,∞). Property 9, local Lipschitz
continuity of the controller, and boundedness of z2 (t)
imply that there exists an open, convex set W ⊂ R2

on which the closed-loop dynamics are Lipschitz in z,
uniformly in time, and z (t) ∈ W for all t ∈ dom z.
Therefore, for any time t0 ∈ dom z, Theorem 3.1 in
Khalil (2002) can be applied to find that the solution is
defined on the interval [t0, t0 + δ] for some δ > 0. Since
z (t0 + δ) ∈W , the procedure can be repeated indefinitely
to find that dom z is unbounded. It follows that every
maximal solution is complete. Corollary 1 can now be used



to conclude that the set S is UGAS. From the definition
of UGAS, we have that ‖e (t)‖S → 0 as t→∞ and, again
by definition, if e (0) ∈ S then e (t) ∈ S for all t ≥ 0 (i.e.
S is forward invariant). �

5. EXPERIMENTS

Experiments were conducted to evaluate the controller in
(18) in terms of its effectiveness both at maintaining the
desired cadence range and relaxing the control input when
volitional effort is sufficient. Experiments were performed
on an able-bodied person who gave written informed
consent approved by the University of Florida Institutional
Review Board.

5.1 Motorized Cycling Testbed

The experimental testbed consisted of a modified recum-
bent tricycle (TerraTrike Rover) with a 250 W, 24 V motor
(Unite Motor Co.) coupled to the drive chain. To measure
position and cadence, an optical encoder with an angular
resolution of 20,000 pulses per revolution (US Digital H1)
was mounted to the crank using spur gears. A desktop
computer running real-time control software (QUARC in-
tegrated with Simulink) was used to interface the encoder
and motor through a data acquisition board (Quanser Q-
PIDe) at a sampling rate of 500 Hz. For additional safety,
an emergency stop switch was mounted on the cycle to
allow the participant to end the experiment if required.
Further details are available in Rouse et al. (2020).

5.2 Experimental Procedure

The participant was asked to pedal according to a prede-
termined pattern. During an initial ramp-up, the motor
was used to bring the rider’s cadence to the setpoint,
z2d = 50 RPM, through a smooth trajectory, during
which the rider could sit passively. The participant was
then asked to provide volitional inputs to the best of
their ability for approximately 30 seconds. The partici-
pant was then asked to stop all volitional effort for 20
seconds. Finally, the participant was asked to attempt to
pedal faster than the upper cadence limit for 20 seconds.
Throughout the experiment, the participant could view
their cadence and the boundaries of the cadence range
on a screen. The desired range ∆d was set to 8 RPM so
that the ZCBF encodes a range of cadence values given by
z2 ∈ [42, 58] RPM. The control gains for the experiment
were Kb = 3.0, K1 = 0.5, K2 = 1.5, and K3 = 3.5. The
tracking error e was converted from units of RPM to rad/s
before computing the control input using (18).

5.3 Results

The cadence and motor current from all three segments
(not including the ramp-up) of the experimental trial are
displayed in Figure 2. Note that the amperage offset during
the first segment of testing, when the rider was pedaling
volitionally, is due to EMF induced current in the motor
and not due to any motor control command. The control
input was zero for effectively the entire first segment of
testing. The cadence did not exit the user-defined range
for the duration of the experiment. The minimum cadence

Fig. 2. Cadence of an able-bodied rider (top) and delivered
motor current (bottom). The dashed horizontal lines
represent the upper and lower limits of the user-
defined cadence range. The vertical red lines indicate
times at which the rider was asked to change their
objective. The motor current has been filtered with a
0.5 s moving average for clarity. The initial 25 s ramp
up phase has been excluded.

during the trial was 42.7 RPM, and the maximum was
55.9 RPM. The minimum cadence occurred after the rider
abruptly stopped pedaling at the beginning of the second
segment of the trial.

5.4 Discussion

The performance of the controller in (18) can be signifi-
cantly altered by adjusting the tunable parameters. The
size of the motor inactive region can be made smaller by
increasing the terms K1 and K2, as in the second gain set
in Figure 1, so that control action is initiated at smaller
error values. Alternately, the controller can be made stiffer
by increasing the gains Kb and K3. In the third gain set in
Figure 1, the barrier function gain Kb is increased, which
has the effect of reducing control effort within the safe set
and increasing it outside the boundary. However, the slope
of the control signal is greater.

6. CONCLUSION

This paper used a ZCBF to design a nonrestrictive con-
troller for a motorized cycle-rider system that ensures the
rider’s cadence remains within a user-defined set despite
uncertain dynamics and disturbances. It was shown that
a ZCBF induces a constraint on the control input of the
system and an explicit control law was developed to en-
sure constraint satisfaction. Sufficient gain conditions were
given that ensure the safe set is UGAS and the controller
is locally Lipschitz continuous. Experimental results show
that the safe set is forward invariant with a minimum
distance of 0.7 RPM to the boundary of the set.

Future work will conduct a comprehensive experimental
evaluation of the controller as a tool for rehabilitation. We
also intend to integrate functional electrical stimulation
(FES) into the cycling controller to increase its rehabilita-
tive potential. Incorporating FES will require considering
hybrid dynamics due to the switched nature of a combined
motor and FES control system.



APPENDIX

In the following, a controller τe : R2 → R applied to
the dynamic system in (2) defines a closed-loop system.
A maximal solution z : dom z → R2 to the closed-loop
system is complete if its domain of definition dom z ⊆
[0,∞) is unbounded. A function h : R2 → R is radially
unbounded with respect to a set A if h (z) → ∞ as
‖z‖A →∞ 4 .

Definition 2. A set A ⊂ R2 is forward invariant for a
closed-loop system if, for each maximal solution with
initial state z (0) ∈ A, z (t) ∈ A for all t ≥ 0; see
Maghenem and Sanfelice (2018).

Definition 3. A closed and forward invariant set A ⊂ R2

is uniformly globally asymptotically stable (UGAS) for
a closed-loop system if there exists a class KL function
β such that for each maximal solution with initial state
z (0) ∈ R2, ‖z (t)‖A ≤ β (‖z (0)‖A , t) for all t ≥ 0; see Lin
et al. (1996).

In the subsequent corollary, the conditions for forward in-
variance are developed using Theorem 1 in Maghenem and
Sanfelice (2018). The conditions for UGAS are developed
using Proposition 4.2 and then Theorem 2.8 in Lin et al.
(1996).

Corollary 1. Consider the closed-loop system defined by a
locally Lipschitz controller τe : R2 → R applied to the dy-
namic system in (2). Consider a smooth function h : R2 →
R and the safe set S defined as S ,

{
z ∈ R2 : h (z) ≤ 0

}
.

If there exists an extended class K function α and a set D
such that

∂h

∂z
f (z, d (t)) +

∂h

∂z
g (z) τe (z) ≤ −α (h (z)) (22)

for all z ∈ D and t ≥ 0, then h is a ZCBF for (2) on
D. Assume additionally that each maximal solution to the
closed-loop system is complete. If D is open, then the set S
is forward invariant for the closed-loop system. If D = R2

and h is radially unbounded with respect to S, then the
set S is UGAS for the closed-loop system.
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