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Abstract—In this paper, we propose a self-triggered control
strategy to guarantee forward pre-invariance of a closed set for
a control system modeled by a constrained differential inclusion.
Using a (not necessarily periodic) zero-order hold control scheme,
this paper addresses two key issues: i) computing the time of the
next sampling event, and ii) the assurance of a uniform lower
bound on the inter-event times, both while guaranteeing forward
invariance. Our results guarantee forward pre-invariance on
unbounded sets. Critically, the results impose mild regularity on
the right-hand side of the system and on the barrier certificates.
Simulations showcase the proposed algorithms and provide
comparisons with the literature.

I. INTRODUCTION

Given a continuous-time control system and a control law
designed such that the resulting closed-loop system satisfies
a prescribed control objective, it is not necessarily the case
that a digital implementation, where the input is updated
only after some fixed period, will still guarantee that control
objective, even if the period is small [1], [2]. Generalizations
of such digital implementations, when the control input is not
necessarily periodically updated, find motivation in the context
of computer-controlled systems [3]. These methods can be
decomposed into event-triggered (ET) and self-triggered (ST)
control approaches, as described in [4] and [5], respectively;
see also [6] for an overview. In ET control, continuous avail-
ability of the measurements is typically assumed. Hence, the
control input is usually updated whenever the measurements
reach a critical region that compromises the control objective.
However, continuous availability of the measurements is not
possible in some applications. Hence, in ST control strategies
[7], the measurements are assumed to be available only when
the input needs to be updated. The key questions to answer
for ET and ST control systems are as follows: 1) What are
the inter-event times that make the control objective satisfied
for the resulting closed-loop system? 2) Under what conditions
are the resulting inter-event times always larger than a positive
constant?

Early results on ST and ET control focus mainly on stability
and convergence. These works usually assume the existence
of a feedback law that renders the (non-triggered) closed-loop
system input to state stable with respect to input perturbations.
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For example, in [8] and [9], ET and ST control algorithms are
proposed. In both works, the inter-event times are shown to
be larger than a positive constant when the state is not at
the origin. In [10], a hybrid system framework is proposed
to analyze and design ET control algorithms guaranteeing
asymptotic stability of a compact set. More recently, in [11],
sufficient conditions to guarantee a uniform lower bound on
inter-event times for ET controllers are given; see also [12].

In addition to stability and convergence, safety is one of the
common control objectives encountered in applications [13],
[14], [15]. Safety is the property that requires the solutions
to a system starting from a given set of initial conditions to
remain in a desired safe region [16], [17]. Existing results
guaranteeing forward invariance using ST and ET control
algorithms often assume strong regularity properties on the
right-hand side or boundedness of the set to be rendered
forward invariant. In [18], a ST control algorithm is proposed
while assuming the considered set to be compact. In [19],
a ST control algorithm is proposed for linear systems while
assuming the considered set to be convex and compact; see
also [20], where nonlinear systems with a globally Lipschitz
right-hand side are considered. Finally, in [21], an ET control
algorithm is proposed for nonlinear systems with a globally
bounded right-hand side.

In this paper, we consider a control system modeled by a
differential inclusion with an input and a continuous feedback
law that renders a given closed set forward invariant for the
(non-triggered) closed-loop system. We assume the existence
of a barrier function that certifies this invariance property is
robust with respect to input perturbations. First, we propose
an approach that efficiently determines the next sampling time
from a given initial condition. This yields to a sampling se-
quence that guarantees the invariance property for the resulting
ST closed-loop system. Afterwards, we investigate sufficient
conditions to guarantee that the inter-event times admit a
positive lower bound. Finally, the two results are combined
to provide a ST control algorithm that guarantees both the
invariance task for the resulting ST closed-loop system and
the existence of a strictly positive lower bound on the inter-
event times. As opposed to the existing literature, the right-
hand side of the system and the chosen barrier function are not
assumed to be smooth. Finally, via simulation, we highlight
the effectiveness of our approach and compare it to existing
works.

The remainder of the paper is organized as follows. Pre-
liminaries are presented in Section II. Problem formulations
are given in Section III. The main results are in Section IV.
Finally, examples and simulations are in Section V.
Notation Let R≥0 := [0,∞), N := {0, 1, 2, . . .}, and N∗ :=



{1, 2, . . .}. For (x, y) ∈ Rn × Rn, x> denotes the transpose
of x, |x| the Euclidean norm of x. For a set K ⊂ Rn, we
use int(K) to denote its interior, ∂K its boundary, cl(K) its
closure, and U(K) to denote an open neighborhood around
K. For a set O ⊂ Rn, K\O denotes the subset of elements of
K that are not in O, K +O := {x+ y : x ∈ K, y ∈ O}, and
KO := {〈x, y〉 : x ∈ K, y ∈ O}. The distance between
x and the set K is given by |x|K := inf{|x − y| : y ∈
K}. By [x, y], we denote the line segment relating x to y,
〈x, y〉 := x>y denotes the scalar product between x and y,
and 〈x,K〉 := {x>z : z ∈ K}. By F : Rn ⇒ Rn, we denote
a set-valued map associating each element x ∈ Rn into a
subset F (x) ⊂ Rn, domF denotes the domain of definition
of F , and F (K) := {η ∈ F (x) : x ∈ K}. For a continuously
differentiable function ρ : Rn → R, ∇ρ(x) denotes the
gradient of ρ evaluated at x. Finally, for a symmetric matrix
A ∈ Rn×n, λmin(A) and λmax(A) stand for the minimum
and maximum eigenvalues of A, respectively.

II. PRELIMINARIES

A. Set-Valued Analysis

A set-valued map F : Rn ⇒ Rm is locally Lipschitz if, for
each compact set K ⊂ Rn, there exists k > 0 such that, for
each x ∈ K and each y ∈ K, F (y) ⊂ F (x) + k|x− y|B.

The set-valued map F is said to be outer semicontinuous at
x ∈ Rm if, for all {xi}∞i=0 ⊂ Rm and for all {yi}∞i=0 ⊂ Rn
with xi → x, yi ∈ F (xi) for each i, and yi → y ∈ Rn, we
have y ∈ F (x); see [22, Definition 5.9].

The set-valued map F is said to be lower semicontinuous
(or, equivalently, inner semicontinuous) at x ∈ Rm if, for each
ε > 0 and for each yx ∈ F (x), there exists U(x) such that, for
each z ∈ U(x), there exists yz ∈ F (z) such that |yz−yx| ≤ ε;
see [23, Proposition 2.1].

The set-valued map F is said to be upper semicontinuous
at x ∈ Rm if, for each ε > 0, there exists U(x) such that, for
each y ∈ U(x), F (y) ⊂ F (x)+ εB; see [24, Definition 1.4.1].

The set-valued map F is said to be outer (lower, and upper,
respectively) semicontinuous if it is outer (lower, and upper,
respectively) for all x ∈ Rm.

The map F is said to be uniformly upper semicontinuous
on K ⊂ Rm if, for each ε > 0, there exists δ > 0 such that,
for each x ∈ K and for each y ∈ x+ δB, F (y) ⊂ F (x) + εB.

Finally, a set-valued map F : Rn ⇒ Rn is said to be locally
bounded if, for each x ∈ Rn, there exist U(x) and K > 0
such that, for each y ∈ U(x), |ζ| ≤ K for all ζ ∈ F (y).

Let B : Rn → R be locally Lipschitz. Let Ω be any subset
of zero measure in Rn, and let ΩB be the set of points in
Rn at which B fails to be differentiable. Then, the Clarke
generalized gradient at x is defined as

∂CB(x) := co
{

lim
i→∞

∇B(xi) : xi → x, xi /∈ ΩB , xi /∈ Ω
}
.

Note that, when the function B is differentiable, the Clarke
generalized gradient ∂CB is equivalent to the gradient ∇B.

Finally, for a set K ⊂ Rn, according to [25], the contingent
cone of K at x is given by

TK(x) :=

{
v ∈ Rn : lim inf

h→0+

|x+ hv|K
h

= 0

}
. (1)

B. Constrained Differential Inclusions

A constrained differential inclusionHf := (C,F ) is defined
as the continuous-time system

Hf : ẋ ∈ F (x) x ∈ C ⊂ Rn, (2)

with the state x ∈ Rn, the flow set C ⊂ Rn, and the set-
valued map F : Rn ⇒ Rn. Note that the set C in (2) is not
necessarily open and does not necessarily correspond to Rn.
Next, we introduce the concept of solution to Hf .

Definition 1: (Solution to Hf ) A function x : domx→ Rn
with domx ⊂ R≥0 and t 7→ x(t) locally absolutely continu-
ous is a solution to Hf if

(S1) x(0) ∈ cl(C),
(S2) x(t) ∈ C for all t ∈ int(domx),
(S3) dx

dt (t) ∈ F (x(t)) for almost all t ∈ domx.

•
A solution x is complete if domx is unbounded. It is

maximal if there does not exist another solution y such that
domx is a proper subset of dom y and x(t) = y(t) for all
t ∈ domx.1

Finally, given xo ∈ cl(C) and T > 0, the reachability map
R : R≥0 × cl(C) ⇒ cl(C) for Hf is given by

R(T, xo) := {x(t) : x ∈ SHf
(xo), t ∈ domx ∩ [0, T ]}, (3)

where SHf
(xo) is the set of maximal solutions to Hf starting

from xo.

C. Forward Invariance and Barrier Functions

Consider a system Hf := (C,F ) and a set X ⊂ cl(C).
Definition 2 (Forward pre-Invariance): The set X is forward

pre-invariant for Hf if, for each initial condition xo ∈ X and
for each solution x ∈ SHf

(xo), x(t) ∈ X for all t ∈ domx.
•
The “pre” in forward pre-invariance is used to accommodate
non-complete maximal solutions.

Next, we introduce the notion of barrier function candidate
defining a set X ⊂ cl(C).

Definition 3 (Barrier Function Candidate): Given C ⊂ Rn,
the function ρ : C → R is a barrier function candidate
defining the set X ⊂ cl(C)2 if

X = {x ∈ cl(C) : ρ(x) ≥ 0}. (4)

•
For a set X given as in (4), we define

Xe := {x ∈ Rn : ρ(x) ≥ 0} . (5)
1Note that each complete solution is maximal, but not all maximal solutions

are complete.
2In some safety related works [26], a barrier function candidate defines the

set X according to X = {x ∈ cl(C) : ρ(x) ≤ 0}.



III. PROBLEM FORMULATION

Consider a constrained control system Huf given by

Huf : ẋ ∈ F (x, u) x ∈ C ⊂ Rn, u ∈ Rm. (6)

Assumption 1: The set-valued map F : C × Rm ⇒ Rn
is outer semicontinuous and locally bounded with convex
images. Additionally, the set C is closed. •

Remark 1: We assume the set C to be closed without loss
of generality. Indeed, when C is not closed, we can consider
its closure, which can add solutions to the system, but the
conditions we propose still apply. •

Given a feedback law κ : C 7→ Rm, the resulting closed-
loop system is given by

Hclf : ẋ ∈ F cl(x) := F (x, κ(x)) x ∈ C. (7)

In a ST control setting, measurements of the state x are
available only at sampling instants defined by a sequence
{ti}∞i=0 ⊂ R≥0 such that t0 = 0 and ti+1 > ti. When the
control law κ remains constant between each two samples ti
and ti+1, that is, κ is subject to a zero-order sample and hold,
the actual control signal that is applied to the system is given
by

u(t) = κ(x(ti)) ∀t ∈ [ti, ti+1) ∀i ∈ N. (8)

Next, we define the concept of solutions to Huf in closed loop
with (8).

Definition 4 (Solution to ST closed-loop systems): A locally
absolutely continuous function x : domx → C, domx ⊂
R≥0, starting from xo ∈ C, is a solution to Huf in closed loop
with (8) if, in addition to (S2), for all i ∈ N,

ẋ(t) ∈ F (x(t), κ(x(ti))) for a.a t ∈ [ti, ti+1] ∩ domx. (9)

•
The objective in ST control is to use the state measurements

available at the ti’s to deduce the largest possible ti+1 such that
ti+1 > ti and that the closed loop resulting from controlling
Huf using (8) still achieves forward pre-invariance of X .

Problem 1 (Finding the next sampling time): Given the
control system Huf , a closed set X ⊂ C, and a continuous
feedback law κ : C → Rm such that X is forward pre-
invariant for Hclf , find a function Ts : C 7→ R≥0 ∪ {∞} such
that, for each xo ∈ X and for each t 7→ x(t) solution to

ẋ ∈ F (x, κ(xo)) x ∈ C (10)

starting from xo ∈ X , we have

x(t) ∈ X ∀t ∈ [0, Ts(xo)] ∩ domx. (11)

•
One solution to Problem 1 is provided in [20], where Ts

is proportional to the inverse of the Lipschitz constant of F ;
see also [18], where X is compact, F is smooth, and Ts is
proportional to the inverse of a function upper bounding the
decrease rate of a Lyapunov-like function. Our approach is
compared to the one in [18] in Section V.

Solving Problem 1 allows us to recursively construct a
feasible sampling sequence given by ti+1 = ti + Ts(x(ti)).
However, such a sequence is not guaranteed to have the inter-
event times ti+1− ti uniformly larger than a positive constant.
The absence of such a guarantee could lead to Zeno behavior.
Hence, we formulate the following problem.

Problem 2 (Uniformly nonvanishing inter-event times): Con-
sider the control system Huf in (6) and a continuous feedback
law κ : C → Rm such that X is forward pre-invariant for Hclf .
Determine conditions guaranteeing the existence of T ∗s > 0
and a sampling sequence {ti}∞i=0 solving Problem 1 such that
ti+1 − ti ≥ T ∗s for all i ∈ N. •

Existing solutions to Problem 2 require smoothness of the
barrier candidate ρ and either boundedness of X [18] or
bounded variation of F [20], [21].

IV. MAIN RESULTS

A. Solutions to Problem 1

In the following result, we propose an answer to Problem 1.
The construction of the function Ts at each xo ∈ X , proposed
below, involves an approximation of how fast a solution x
starting from xo can move towards ∂X during a forward
propagation interval [0, T̄ ]. This speed is upper bounded by
the supremum of the scalar product between the gradient of
the barrier function candidate ρ(·) and F (·, κ(xo)) on the set
that can be reached by the solution x to (10) over the interval
[0, T̄ ]. This set is denoted by R̂(T̄ , xo), which is an over-
approximation of the reachable set R(T̄ , xo) along the solution
to (10).

Theorem 1: Given the control system Huf , suppose Assump-
tion 1 holds. Suppose there exist a locally Lipschitz barrier
function candidate ρ defining a closed set X as in (4) and a
continuous feedback law κ : C → Rm such that X is forward
pre-invariant for Hclf . Then, for any xo ∈ C ∩X and for any
T̄ > 0, Problem 1 is solved with

Ts(xo) :=

{
T̄ if Ms(T̄ , xo) ≤ 0

min
{
T̄ , ρ(xo)

Ms(T̄ ,xo)

}
otherwise, (12)

where

Ms(T̄ , xo) := sup{〈−γ, η〉 :

γ ∈ ∂Cρ(y), η ∈ F (y, κ(xo)) ∩ TC(y),

y ∈ R̂(T̄ , xo)},
(13)

and R̂ : R≥0 × C ⇒ C is an over-approximation of the
reachable set R(T̄ , xo) along the solutions to (10), namely
R(T̄ , xo) ⊆ R̂(T̄ , xo). �

Remark 2: The over-estimation R̂ of the reachability map
R can be always computed because under Assumption 1 and
the continuity of κ, (x, xo) 7→ F (x, κ(xo)) is locally bounded
on C×C. However, the tighter this over approximation is, the
larger the sampling function Ts will be. Methods to compute
R̂ are available in [27], [28], [29]. •



B. Solutions to Problem 2

Consider a constrained control system Huf and let κ : C →
Rm be a continuous feedback law rendering the set X , defined
using a barrier function candidate ρ as in (4), forward pre-
invariant for Hclf .

Assumption 2: The barrier function candidate ρ is locally
Lipschitz. Additionally, given κ : C → Rm, there exist locally
Lipschitz functions α : Rn → R and γ : Rn × Rn → R
satisfying α(x) > 0 for all x ∈ ∂Xe and γ(x, x) = 0 such
that

〈ζ, f〉 ≥ α(x)− γ(x, η) ∀(x, η) ∈ X ×X,
∀(ζ, f) ∈ ∂Cρ(x)× (F (x, κ(η)) ∩ TC(x)) .

(14)

•
We also consider the following additional assumption.
Assumption 3: There exist T1 > 0 and β > 0 such that, for

each solution x to (10) starting from

K := {x ∈ X : |x|∂Xe
≥ β}, (15)

we have x(t) ∈ X for all t ∈ [0, T1]. •
Note that Assumption 3 holds for free when the set K is
compact.

In the following result, we provide sufficient conditions for
the existence of T ∗s > 0 that solves Problem 2.

Theorem 2: Given the control system Huf , suppose As-
sumption 1 holds. Suppose there exists a barrier function
candidate ρ and a continuous feedback law κ : C → Rm
such that Assumption 2 holds. Furthermore, with X ⊂ C as
in Definition 3, suppose there exist β > 0 and T1 > 0 such
that Assumption 3 holds. Then, Problem 2 is solved with

T ∗s := min{T1, T2} (16)

provided that

T2 := min {Tr(x) : x ∈ X, |x|∂Xe ≤ β} > 0, (17)

where, for any T̄ > 0,

Tr(x) :=

{
T̄ if Mr(T̄ , x) ≤ 0

min
{
T̄ , 2α(x)

Mr(T̄ ,x)

}
otherwise, (18)

Mr(T̄ , x) := Mα(T̄ , x) +Mγ(T̄ , x), (19)

Mγ(T̄ , x) := sup{〈γ1, η〉 : γ1 ∈ ∂Cγ(y, x),

η ∈ F (y, κ(x)) ∩ TC(y), y ∈ R̂(T̄ , x)},
(20)

Mα(T̄ , x) := sup{〈−γ2, η〉 : γ2 ∈ ∂Cα(y),

η ∈ F (y, κ(x)) ∩ TC(y), y ∈ R̂(T̄ , x)},
(21)

and R̂ is an over-approximation of the reachable set. �

Note that the sampling function Tr takes advantage of the
robustness gained through Assumption 2.

In Lemma 1 below, we provide sufficient conditions to
verify Assumption 3 when the set K in (15) is not compact.
To do so, we assume the following, for a given ρ and κ.

Assumption 4: Given β > 0 and T1 > 0 there exists a
locally Lipschitz function V : Rn → R and ε1 > 0 such that

V (x) ≤ 0 ∀x ∈ {y ∈ X : ρ(y) = 0} (22)

and, for each x ∈ X , |x|∂X ≥ β implies V (x) ≥ ε1. Further-
more, there exists a locally Lipschitz function σ : R×R→ R,
such that

〈ζ, η〉 ≥ σ(V (x), V (xo)) ∀(x, xo) ∈ C × C,
∀(ζ, η) ∈ ∂CV (x)× (F (x, κ(xo)) ∩ TC(x)), (23)

−
∫ νo

0

dν

σ(ν, νo)
∈ (−∞, 0] ∪ [T1,+∞) ∀νo ≥ ε1. (24)

•
Remark 3: Note that (24) holds for free when the function

σ is linear on its arguments. •
Lemma 1: Given the control system Huf , suppose Assump-

tion 1 holds. Suppose there exists a continuous barrier function
candidate ρ and a continuous feedback law κ : C → Rm.
Furthermore, with X ⊂ C as in Definition 3, suppose there
exists β > 0 and T1 > 0 such that Assumption 4 holds. Then,
Assumption 3 holds with such T1 and β. �

C. Combining the Solutions to Problems 1 and 2

In the following result, we combine the solutions to Prob-
lems 1 and 2, leading to a ST control strategy for the system
Huf in (6) that guarantees a strictly positive lower bound on the
sampling period. Roughly speaking, when the system’s states
are deep inside the set X , the next sampling time is computed
using Theorem 1. Since this result does not guarantee the
existence of a uniform lower bound on inter-event times as
the solutions approach ∂Xe, Theorem 2 is used to determine
the next sampling time when x is close to ∂Xe.

Theorem 3: Given the control system Huf in (6), suppose
Assumption 1 holds. Assume that the solutions to Huf are
unique for any piecewise constant input signal u : R≥0 → Rm.
Suppose there exist a barrier function candidate ρ and a
continuous feedback law κ : C → Rm such that Assumption
2 holds. Furthermore, with X ⊂ C as in Definition 3, suppose
there exist β > 0 and T1 > 0 such that Assumption 3 holds.
Then, given T̄ > 0, the sampling sequence {ti}∞i=0 designed
recursively as

ti+1 = ti + max {T ∗s , Tr(x(ti)), Ts(x(ti))} ∀i ∈ N, (25)

where T ∗s , Tr, and Ts are computed according to (16), (18),
and (12), respectively, guarantees forward pre-invariance of
the set X for the ST closed-loop system in (9). Moreover,
the inter-event times are always larger than a positive constant
provided that (17) holds. �

Next, we relax Assumption 3 when, for some β > 0, the
following assumption holds.

Assumption 5: The set K in (15) is compact. •
We will also need the following Assumption.
Assumption 6: The set-valued map xo 7→ R̂(T̄ , xo), over

estimating xo 7→ R(T̄ , xo) along the solutions to (10), is outer
semicontinuous and locally bounded on X . •



Remark 4: When the map (x, xo) 7→ F (x, κ(xo)) is outer
semicontinuous and locally bounded, we conclude, using [30,
Proposition 1], that the map xo 7→ R(T̄ , xo) is also outer
semicontinuous and locally bounded. Hence, assuming the
same regularity properties to hold for xo 7→ R̂(T̄ , xo) is not
very restrictive. •

Theorem 4: Given the control system Huf , suppose that
Assumption 1 holds. Assume that the solutions to Huf are
unique for any piecewise constant input signal u : R≥0 → Rm.
Suppose there exist a barrier function candidate ρ and a
continuous feedback law κ : C → Rm, with X ⊂ C as in
Definition 3, such that Assumption 2 holds. Finally, suppose
there exists an over-approximation of the reachable set R̂ such
that Assumption 6 holds. Then, given T̄ > 0, the sampling
sequence {ti}∞i=0 designed recursively as:

ti+1 = ti + max {Tr(x(ti)), Ts(x(ti))} ∀i ∈ N, (26)

where Tr and Ts are computed according to (18) and (12),
respectively, guarantees forward pre-invariance of the set X
for the ST closed-loop system in (9). Moreover, the sampling
period is always larger than a positive constant provided that
there exists β > 0 such that Assumption 5 holds and provided
that (17) holds. �

Next, we would like to check an inequality similar to (17)
only at points in the set ∂Xe ∩ X . To do so, in addition to
Assumptions 2, 5, and 6, for some β∗ > 0 and for G∗ := {x ∈
X : |x|∂Xe

≤ β∗}, we consider the following assumption.
Assumption 7: One of the following is true:

1) The set G∗ is compact.
2) The set-valued maps

xo 7→ ∂Cγ(R̂(T̄ , xo), xo), xo 7→ ∂Cα(R̂(T̄ , xo)),

xo 7→ F (R̂(T̄ , xo), κ(xo)), xo 7→ α(xo)
(27)

are uniformly upper semicontinuous on G∗ and bounded on
∂Xe ∩X . Furthermore,

T3 := inf{T̂r(z) : z ∈ ∂Xe ∩X, M̂r(T̄ , z) > 0} > 0, (28)
inf{α(z) : z ∈ ∂Xe ∩X} > 0, (29)

where M̂r(T̄ , z) := sup{〈γ1, η〉 : γ1 ∈ ∂Cγ(y, z), η ∈
F (y, κ(z)), y ∈ R̂(T̄ , z)}+ sup{〈−γ2, η〉 : γ2 ∈ ∂Cα(y), η ∈
F (y, κ(z)), y ∈ R̂(T̄ , z)}, T̂r(z) := min

{
T̄ , 2α(z)

M̂r(T̄ ,z)

}
. •

Theorem 5: Given the control system Huf , suppose that
Assumption 1 holds. Assume that the solutions to Huf are
unique for any piece-wise constant input u : R≥0 → Rm.
Suppose there exist a barrier function candidate ρ and a
continuous feedback law κ : C → Rm such that, with X ⊂ C
as in Definition 3, Assumption 2 holds. Suppose there exists a
set-valued map xo 7→ R̂(T̄ , xo) such that Assumption 6 holds.
Finally, suppose there exists β∗ > 0 such that Assumption 7
holds. Then, the sampling sequence {ti}∞i=0 designed in (26)
guarantees forward pre-invariance of X for the ST closed-loop
system. Moreover, the inter-event times are always larger than
a positive constant provided that Assumption 5 holds for some
β ∈ (0, β∗]. �

V. EXAMPLE

The objective in this example3 is to compare the inter-event
times obtained using Theorem 5 to two other methods. The
first one is an event-triggered strategy while the other one
is based on the ST strategy proposed in [18, Theorem 4.3].
Consider the control system Huf = (F,R2), where

F (x, u) :=

[
0 1
−2 3

]
x+

[
0
1

]
u, (30)

x := (x1, x2) ∈ R2, and u ∈ R. Furthermore, consider
the feedback law κ(x) := Kx := [1 − 4]x. The origin
of the closed-loop of Huf using u = κ(x), denoted Hclf , is
asymptotically stable. Indeed, using the Lyanpunov function

V (x) := x>Px, with P :=

[
1 0.25

0.25 1

]
, we conclude that

〈∇V (x), Ax + BKx〉 = −x>Qx and Q :=

[
0.5 0.25
0.25 1.5

]
.

Furthermore, we consider the set X given by X := {x ∈ R2 :
V (x) ≤ 0.1}. Note that the set X admits the barrier function
candidate ρ(x) := 0.1−V (x). Note that condition (14) is sat-
isfied with α(x) := x>Qx and γ(x, η) := 1

2x
>PBK(x− η).

Next, the over-approximation R̂ from xo ∈ X along [to, to+T̄ ]
is computed as R̂(T̄ , xo) := R(T̄ , xo)+rB, where R(T̄ , xa) =
{y ∈ R2 : ∃t ∈ [0, T̄ ], y = x(t)}, and x is the solution to (10)
starting from xo and r = 0.025 captures possible errors in the
modeling. Note that Assumption 1 is trivially satisfied since Fa
is single valued and smooth. Assumption 5 is satisfied since
the set X is compact. Also, Assumption 6 is verified using
Remark 4. Finally, Assumption 7 is satisfied since Assumption
6 is satisfied and X is compact. When computing M(xo, T̄ )
for (25), we propose two strategies for selecting the value of
T̄ as a function of xo. From now on, we use the notation
Ts(xo) := Ts(xo, T̄ ) and Tr(xo) := Tr(xo, T̄ ).

a. Adapting T̄ to the norm of F (xo, κ(xo)): We
tested both linear and non-linear relationships between T̄
and |F (xo, κ(xo))|. Indeed, consider the map T̄ : Rn 7→
[Tmin, Tmax] given by

T̄ (xo) := (Tmax − Tmin)(1− FN (xo))
cs + Tmin, (31)

where cs ∈ (0,∞), Tmax > Tmin > 0, and FN (xo) :=
F (xo, κ(xo))/ sup{F (y, κ(y)) : y ∈ X}.

b. Evaluating multiple values of T̄ over a multiple-
step receding horizon: Given Tmax > Tmin > 0, N ∈
N, and ∆ := (Tmax − Tmin)/N , we are interested in
finding the value of n ∈ {0, 1, ..., N} that maximizes the
following value function Jn := chT

o
n + (1 − ch)T 1

n , where
ch ∈ [0, 1], T on := f(n, xo), T 1

n := max{f(m,x1) :
m ∈ {0, ...N}, x1 = x(Tmin + n∆)}, and f(k, y) :=
max{Tr(Tmin + k∆, y), Ts(Tmin + k∆, y)}. The constant ch
adjusts the trade-off between the current sample time T on and
the best next sample time T 1

n .
Comparison: All the solutions are simulated from the initial
condition xo := (−0.1,−0.3). Figure 1 shows the evolution of
V along a ST closed-loop solution as well as the corresponding
inter-event times. Two strategies based on Theorem 5 are

3Code at https://github.com/HybridSystemsLab/SelfTriggeredSublevelSet.



simulated. In the first one, the value of T̄ is adapted to the
norm of F (xo, κ(xo)) as in (31), where the best performance
is obtained for cs = 150. Then, the value of T̄ is computed
following the two-step receding horizon, where the best per-
formance is obtained for ch = 0.5. For these two methods,
we took Tmax := 2 and Tmin := 0.25. Furthermore, Figure
1 compares the strategies proposed in this paper to an ET
strategy, in which, we update the control input each time the
solution reaches ∂X . We also compare to the ST strategy
proposed in [18, Theorem 4.3]. The inter-event times obtained
using [18, Theorem 4.3] are smaller than those obtained using
Theorem 5. Remarkably, according to Table I, our results are
comparable to the ET strategy although our strategy does not
require continuous availability of the measurements.
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Fig. 1: Closed-loop solutions using various strategies

Theorem 5 Average Period Minimum Period
Scaled

cs = 1 0.19 0.04
cs = 150 0.53 0.25
Receding horizon
ch = 1 0.58 0.425
ch = 0.5 0.92 0.425

[18, Theorem 4.3] 0.26 0.06
Event Triggered 0.59 0.56

TABLE I: Summary of each inter-event properties

VI. CONCLUSION

In this paper, we present a self-triggered control strategy
to guarantee forward pre-invariance of a closed set for a
constrained differential inclusion. Sufficient conditions are
derived such that the inter-event times are guaranteed to be
always larger than a positive constant.
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