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Abstract—This paper presents an approach to guarantee
safety for control systems with uncertain nonlinear dynamics.
Constraints on the control input induced by multiple barrier
function candidates are developed to ensure forward pre-
invariance of a safe set of states despite the uncertainty. Using
the adaptive control technique of integral concurrent learning,
conservativeness in the input constraints is reduced over time as
estimates of the uncertain parameters exponentially converge.
The constraints are implemented in a quadratic program that
modifies a nominal controller for guaranteed safety. An example
is presented showing that the operating region of the system is
expanded significantly from the initial size due to the converging
estimation error.

I. INTRODUCTION

Safety-critical control based on forward invariance of sets
is a useful tool for the synthesis of complex control tasks [1]—
[3]. Barrier functions (BF) are a popular technique that allow
sets of safe states, encoded by continuously differentiable
functions, to be rendered invariant by inducing constraints
involving the control input. However, such constraints are
generally conservative for uncertain systems as a means to
ensure robustness [4], [5]. In invariance-based control, con-
servativeness takes the form of restricting the state to some
subset of the true safe set. This paper explores the idea of
leveraging recent advances in data-based adaptive control to
reduce the conservativeness that is otherwise present, thereby
expanding the operating region of the dynamic system.

A benefit of BF-induced input constraints is that the
resulting affine conditions can be implemented in a quadratic
program (QP) that modifies the original controller only when
necessary to maintain safety (i.e., forward invariance of
the safe set) [6]. The problem of ensuring safety while
compensating for uncertainty using estimates of the unknown
parameters was investigated in [7] and [9]. In [7], an adaptive
input constraint was developed based on a strong barrier
inequality that required forward invariance of level sets of
the BFE. The authors in [9] relaxed the input constraint
to a zeroing BF-type inequality (cf., [10]), which allowed
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the state to approach the boundary of the safe set while
maintaining invariance. However, both of the aforementioned
works defined a composite BF that included the parameter es-
timation error, which lead to a parameter update law featuring
the gradient of the BF. The composite BF restricts the state to
a new safe set, a subset of the original set, that is dependent
on the estimation error. Because the adaptive safety problem
does not require the state to be driven to a point where the
gradient of the BF is zero, the estimation error generally does
not converge. Therefore, as demonstrated in an example in
[8], combining the gradient update law with relaxed zeroing
BF conditions can cause large estimation error and introduce
limit cycles into the closed-loop dynamics. Moreover, the
dependency of the update law in the aforementioned works
on the gradient of a particular BF makes the techniques
challenging to extend to applications where safe sets are
expressed using multiple BF candidates. Expressing safe sets
using multiple continuously differentiable functions leads to
input constraints that are continuous functions of the state,
which is generally not the case for approaches that compose
multiple BFs into a single locally Lipschitz function [2].
Using results from [11] and [12], we show that the approach
developed in this paper is amenable to problems involving
multiple BFs.

To compensate for uncertainty without introducing de-
pendencies on any particular BF, a natural approach is to
identify the unknown dynamics. Concurrent learning (CL)
techniques are a class of data-driven estimators for systems
with linearly parameterized uncertainty [13]-[15]. Integral
CL (CL) is a development that eliminates the need to
measure the time derivative of the state trajectory [16]. ICL
yields a condition based on stored data that can be used
to determine the worst-case estimation error online. Subject
to a finite-time excitation condition, the estimation error is
exponentially regulated to zero. The idea of using an estimate
of the unknown dynamics to reduce conservativeness in
a BF-induced input constraint was also explored in [17]
and [18], where the authors used Gaussian processes (GP).
Although GPs apply to broader classes of systems, they
cannot guarantee convergence to the true dynamics, and
require measurements of the state derivative. Moreover, GPs
are computationally expensive, which the aforementioned
works addressed by discretizing either the state space or the
dynamics. Finally, the GP technique has not been extended
to the case of multiple BFs.

In this paper, we leverage a computable upper bound of
the estimation error for ICL to develop an implementable
set of input constraints based on multiple BFs. After the



finite-time excitation condition is reached, conservativeness
in the constraints is significantly reduced because both the
estimation error and its upper bound are exponentially con-
vergent to zero. To aid the design, we show that ICL can
be implemented in a standalone data-driven estimator where
the typical state feedback gradient component is eliminated.
A key advantage is that we certify safety based on the
original BF candidate, rather than forming a composite BF
with the estimation error. The resulting safe set from using
a composite BF may be empty. We show that the new
technique can be implemented in a QP involving multiple
constraints to guarantee forward pre-invariance of the set
where all BF candidates are nonpositive. Conditions that
a priori guarantee feasibility of the QP are presented for
a single BF. The developed technique is demonstrated in
an example showing that the trajectory remains within the
safe set, while the operating region of the system grows
significantly relative to its initial size, which is quantified
by a two order of magnitude increase in the value of the BF.

Notation: Let R>p £ [0,00), Rsg = (0,00), Z*
denote the set of positive integers, R™*™ be the space of
n X m dimensional matrices, 0,,x,, be an n X m matrix of
zeros, and I, x, be an n X n identity matrix. The notation
i € [k] is shorthand for ¢ € {1,2,---,k}. For a vector
function B : R® — R? each component is indexed so
that B (z) £ [By (z),Bs (), ..., By (2)]". The inequality
B(z) < 0 means that B; (z) < 0 for all i« € [d]. The
Euclidean norm is denoted by ||-||. For a set A C R", A
denotes the boundary of A and U (A) denotes some open
neighborhood around A.

II. DYNAMIC MODEL AND PROBLEM FORMULATION
A. Dynamic Model

Consider the nonlinear dynamic system
=Y (z,t)0+ g (x)u, (1)

with the state x € R", control input v € R™, control
effectiveness matrix g : R” — R"*™, a known regression
matrix ¥ : R® X R>o — R™*P, and a vector of constant,
unknown system parameters 6 € RP. It is assumed that g is
locally Lipschitz, and Y (x,t) is locally Lipschitz in x and
continuous in t. The following assumption is imposed on
the unknown parameter vector to ensure compensation for
the initial estimation error.

Assumption 1. The parameter vector 6 takes values from a
compact set © C RP. There exist real numbers ¢ and ¥ such
that, for every 61,602 € O, ||61|| < 6 and |0, — 02| < ¥.

Given a controller £ : R™ x R>g — R™, the closed-loop
dynamic system defined by x is given by

t=Y (x,t)0 +g(x)k(x,1). 2)

A solution ¢ : dom¢ — R™ to the closed-loop system,
starting from ¢9 € R™ at ¢ = 0, is a locally absolutely
continuous function ¢ — ¢ (t) that satisfies (2) for almost all

t € dom ¢, where dom¢ C R>. A solution is said to be
complete if dom ¢ is unbounded, and it is maximal if there
is no solution ¢ such that ¢ (t) = ¢’ (¢) for all ¢ € dom ¢
with dom ¢ a proper subset of dom ¢’ [12].

B. Problem Formulation

We consider the problem of designing a controller that
ensures forward invariance of a set of safe states. We assume
that the safe set S C R™ can be defined by the zero-sublevel
set of multiple, scalar-valued, continuously differentiable
functions, which form a vector function B : R™ — R®. The
function B is called a BF candidate [12] if it defines S as

S&2{reR":B(z) <0}, 3)

where B(z) 2 [By(z),Bs(x),...,Bq(2)]". We also
define S; = {z € R" : B; (x) < 0} for each i € [d]. Note
that S is necessarily closed if B is continuous. The following
notions of forward invariance are defined for a set S C R"
according to [12].

Definition 1. The set S is forward pre-invariant for a closed-
loop dynamic system if, for each ¢y € S and each maximal
solution ¢ starting from ¢, ¢ (t) € S for all ¢ € dom ¢.

Definition 2. The set S is forward invariant for a closed-
loop dynamic system if it is forward pre-invariant and for
each ¢y € S, each maximal solution ¢ starting from ¢q is
complete.

Due to parametric uncertainty in (1), guaranteeing forward
invariance of the safe set typically requires restricting the
system to operate in some subset of S. When the true
dynamics are known, the state trajectory can be permitted to
explore the entire safe set. Consequently, there is motivation
to expand the operating region of the system by developing
an estimate of the unknown parameter vector 6. Because
the estimation error is unknown, an estimator alone cannot
guarantee forward invariance. As an alternative to adaptive
update laws featuring the gradient of the BF, we seek an
estimator that provides some computable indication of the
estimation error.

III. ESTIMATOR DESIGN

ICL is an adaptive control technique that yields a finite-
time excitation condition to verify exponential convergence
to the true parameter vector 6 [16]. The computable eigenval-
ues of a regression matrix based on stored data determine the
rate of exponential convergence and provide an indication of
the worst-case estimation error. Moreover, the ICL strategy
does not depend on the gradient of a specific BF candidate.
ICL is therefore well suited as an estimator in the problem
described in Section II-B.

Let the controller (z,t) — k(x,t) be continuous in z
and ¢. Integrating (2) along a solution ¢ to the closed-loop
dynamic system in (2) yields

p(t)—eo(t—A) =Y ([H)0+K(t), )



for all t € dom ¢ such that ¢t > At, where At € Ryq is a
user-defined constant determining the size of the window of
integration. In (4),
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Data in ICL is gathered by sampling ) and K at discrete time
instants. Consider a sequence of sampling times {tj};\f:(?
such that At <t; < --- <tynq) <t, where N (t) indicates
the time-dependent number of samples. Using the notation
Y; £V (t;) and K; = K (t;), an ICL update law is defined
as

N(t)

02 ke Z VI (¢(tj) —¢(t; — At) - K; *yjé> ;
j=1
(7

starting from éo € O, where ko € Ryq is the adaptation
gain. From (4) and (7), the estimation error evolves according

to
N()

6=—kor S YIVi0, @®)
j=1

where 6 £ 6 — 4.

Provided the collected data is sufficiently rich, the update
law in (7) leads to exponential convergence of the estima-
tion error. Given a solution ¢ to (2), define the function
Amin : dom ¢ — R such that A,,;,, (¢) denotes the minimum
eigenvalue of the matrix Z;V:(? ijyj at time ¢. The function
Amin 18 piecewise constant between the sampling times ?;
and ¢;,1, and non-negative, where the latter fact is because a
matrix product of the form ijyj is symmetric and at least
positive semi-definite [19]. The following lemma provides
an upper bound of the estimation error that depends on
Amin. The minimum eigenvalue can be monitored online by
numerically computing ) (¢) using measurements of ¢ (t).
See [15], [16], [20] for implementations of ICL that ensure
Amin 18 non-decreasing.

Assumption 2. The closed-loop dynamic system is suffi-
ciently excited over a finite duration of time, namely, there
exist A € Ryo and T > At such that, for any complete
solution to (2), A\pin (t) > A for all ¢ > T [16], [21].

Lemma 1. Let the controller (x,t) — & (x,t) be continuous,
and consider a solution ¢ to the closed-loop system in (2).
Suppose that Assumption 1 holds, and let 6 be updated
according to (7) with éo € O. Then

o] =

for all t € dom ¢, where

€))

t
Oup (t) 2 Jexp (— / kcLAmin (T) dT). (10)
0

Additionally, ||0 (t)|| < [|6(0)|| for all t € dom¢. Fur-
thermore, if Assumption 2 holds and ¢ is complete, then
0 is exponentially regulated in the sense that Hé(t)” <
||0~(0)Hexp (=A({—T)) for all t € dom ¢.

IV. DESIGN OF SAFETY CONSTRAINTS

We now consider the problem of designing a controller to
ensure forward invariance of S in (3). The goal is to use the
bound in (9) to expand the operating region of the system as
uncertainty is reduced. To guide the control design, consider
the following corollary, which is obtained by specializing
Theorem 1 in [12] to the non-hybrid dynamics in (1), and
treating time as a state. The corollary provides infinitesimal

conditions for forward pre-invariance'.

Corollary 1. Consider a continuously differentiable BF can-
didate B : R"™ — RY, and let the controller (z,t) — k (x,t)
be continuous. The closed set S in (3) is forward pre-
invariant for the closed-loop dynamic system in (2) if, for
all i € [d],

VB] (z) (Y (,1)0+ g (z) k (z,1)) <0 (1D

for all v € U (M;)\S; and t € Rxq, where U (M;) is any
neighborhood around the set M; = {x € 0S : B; (z) = 0}.

We will enforce (11) by designing a constraint on the
control input. Such constraints are commonly enforced using
QPs. The constraint is developed with a continuous function
that satisfies the following condition.

(C1) The open set D C R™ and continuous function y :
R™ — R? are such that S C D and, for each i € [d],
~i (x) > 0 for all x € U (M;)\S;.

Note that choosing v; (x) > 0 for all z € D\S; is
sufficient for the condition on  in (C1) to hold. Given ~ and
D satisfying (C1), the inequality in (11) can be enforced by
constraining the control input. For any x € D and t € R>,,
a safe input v € R™ must satisfy

VBl (z) (Y (z,t) 0+ g(z)u) < =i (z),  (12)

for all ¢ € [d].

Remark 1. A common choice for the function -y that satisfies
(C1) on any open set D D S is ; (¥) £ a(B; (z)), where
« is an extended class K function [10]. The aforementioned
zeroing BF selection was shown in [10] to yield asymptotic
stability of the set S for the case of a scalar BF, but is in some
cases stronger than required for forward invariance [12].

Since 6 is unknown, (12) cannot be implemented directly
in a QP. To account for uncertainty, an upper bound for
the unknown term VB! (z)Y (z,t) 6 will be used to ensure
that (12) holds. As an illustrative example, we first consider
a robust control approach to the problem. Using Holder’s

ISee Proposition 2 in [12] for conditions under which a forward pre-
invariant set is forward invariant.



inequality, satisfaction of the following constraint implies
that (12) is also satisfied:

VB (2)Y (2,1)]| 6+ VB (z) g (x) u < —v; (z), (13)

where 6 was defined in Assumption 1. Constraint (13)
depends on known information and can therefore be imple-
mented in a QP. However, the robust approach introduces
conservativeness in the sense that the set of control inputs
that satisfy (13) is generally a subset of those that satisfy
(12).

Using ICL, conservativeness can be reduced as data about
the system is collected. An adaptive control approach is
developed by first noticing that, using the definition of 6,

VBT (2)Y (,t)0 = VBT (2) (Y (2,8) 0 +Y (x,1) é) .
(14
Again using Holder’s inequality with the bound from Lemma
1, the following holds whenever Oup is defined along a
solution ¢ to (2),

VB! (z)Y (z,1)0 (t) < |[VB (2) Y (z,t)||0up (t),

15)

for all x € R™ and ¢ € dom¢. Based on (14) and (15),
and recalling that 0y 5 can be computed online from known
information, an implementable safety constraint is designed
for each i € [d] as

econ,i ('Tvt) + VB;T (.f) g (33) u < —i (33) ) (16)

where

Oconi (2,8) 2 min{ | VBT (2) Y (2,)] 0, (7)

VBT( )Y (2,6)0 (t) + |[VBE (2) Y (x,1)|| 0u s (t)}.
Because VB! (2)Y (2,t)0 < Opon.i (z,t) for all z € R®
and ¢ € dom¢, any input v € R™ that satisfies (16)
also satisfies (12). As we show in Section V, enforcing the
constraints defined in (16) ensures that S is forward pre-
invariant. Moreover, under the assumptions of Lemma 1,
the upper bound 0y (t) converges to zero exponentially,
and () converges to 6 as ¢ — oo. The result is that,
in contrast to the robust control approach, the upper bound
Ocon,i (x,t) becomes a close approximation of the unknown
term VB! (z)Y (z,t) 0 over time. Therefore, the conserva-
tiveness that is introduced into 8.0y, ; (z,t) to ensure safety
is significantly reduced and the control input can be selected
from a less restrictive set.

Remark 2. The robust upper bound from (13) is used in
(17) since that bound may be smaller at the initial time,
until sufficient data has been collected to reduce the upper
bound Oy 5 (t). As noted in ([7], Remark 4), a semi-robust
approach, in addition to assuming that the parameter vector
f is bounded (Assumption 1), appears to be necessary in
the context of invariance control since invariance must be
guaranteed for a specific set.

A. Feasibility

The constraint-based approach described above is contin-
gent on the constraints being feasible. Guaranteeing feasibil-
ity a priori for problems involving multiple BF candidates
is challenging in general and beyond the scope of this
work. The authors in [22] explored continuity of nonlinear
programs, but required the assumption that a certain set-
valued mapping describing the feasible set of control inputs
was nonempty. In other works, feasibility is ensured by
assuming the existence of a control BF [3]. The following
condition will ensure that the developed controller is feasible
regardless of the initial state.

(C2) (Feasibility) For each x € D and t € R, there exists
u € R™ such that, for all ¢ € [d],
VB () g (x)u < =i (

— |[VB] (2)Y (z,1)]| 6.

(18)

In the simpler case of a scalar BF candidate, it is possible
to guarantee condition (C2) a priori by checking only the
points where the gradient (with respect to u) of the constraint
has rank zero. The following proposition shows this fact
and, that by requiring a strict inequity to hold, one can
guarantee the control input v = 0,,x1 satisfies (18) in
some neighborhood of any rank-zero point, implying that
a continuous and bounded control input can be selected in
that neighborhood.

Proposition 1. Let b : R® — R be a continuously differ-
entiable, scalar BF candidate, and let the function v and
the set D satisfy (Cl). Define the set G = {r € R" :
Vol (z) g (2) = 015m }. Suppose that * € G implies that

v (@) + ||[VbT (%)Y (2*, 1) 6 < 0, (19)
for all t € R>q. Then (C2) is satisfied with b in place of
B;. In particular, for any x* € G and t* € Ry, there
exists a neighborhood U around (x*,t*) such that the vector
u = Oy,x1 satisfies (18) for all (z,t) € U.

V. STABILITY ANALYSIS

The following theorem shows that a closed-loop controller
subjected to the constraints designed in Section IV enforces
forward pre-invariance of the safe set S = {x € R" :
B (z) < 0}, given that the constraints are feasible in a
neighborhood of the safe set. It is notable that the finite
excitation condition of Assumption 2 is not necessary to
prove the theorem. Meeting the finite excitation condition
does, however, lead to reduced conservativeness because the
upper bound 0.,y ; (x,t) becomes a close approximation of
VBT (2)Y (x,t) 0 when 0y (t) is small.

Theorem 1. Let B : R — R? be a continuously differen-
tiable BF candidate, and suppose that Assumption 1 holds.
Let the function ~y and the set D satisfy (C1) and (C2). Along
any solution to (2), let the parameter estimate 0 be updated



according to (7) with éo € 0, define éUB according to (10),

and let k* be a control law generated by the following QP:

K* (z,t) = arg min ||u — Kpom (2, t)H2 (20)
UGR’NL

s.it. VB (2) g (2)u < =3 (2) — Oconi (2,t), Vi € [d],

where Ocon ; is defined for each i € [d] as in (17), and Kpom, :
R™xR>¢ — R™ is a nominal controller. If (z,t) — k* (z,1)
is continuous, then the set S is forward pre-invariant for the
closed-loop dynamics defined by k*.

Proof: Let ¢ be a solution to the closed-loop system
with ¢9 € S. It will be shown that ¢ (t) € S for all
t € dom ¢. Condition (C2) is sufficient to conclude that the
QP in (20) has a solution for all x € D since Ocop i (x,1) <
VBT (2) Y (,t)|| 6. Because the controller x* satisfies the
constraints in (20), it follows that for each i € [d], the
controller ensures that?

Bi () < VBT (9)Y (6,8) 0 — % (¢) — Beoni (6,1) (21)

for all ¢ € dom¢ such that ¢ (¢t) € D. From (13)-(15),
VB ($)Y (¢,)6 < bconi (¢,1). Thus,
Bi(¢) < =i (¢).-

Because D is open and contains the closed set S, D con-
tains a neighborhood of 0S. Therefore, from the definition of
M;, there are neighborhoods such that U (M;) C U (9S) C
D. By condition (C1), it follows that, for any ¢ € [d], if
¢ (t) € U (M;)\S;, then v (¢) > 0, and

B;(¢) <0.

(22)

(23)

The proof of Theorem 1 in [12] shows that a contradiction
with (23) is obtained by assuming that there exists to €
dom ¢ such that ¢ (t2) ¢ S. We conclude that ¢ (t) € S for
all ¢ € dom ¢. Since the aforementioned properties hold for
any solution starting from S, we conclude that S is forward
pre-invariant. u

VI. EXAMPLE

The following example system, taken from [16], will be
used to illustrate the reduced conservativeness provided by
the ICL estimator in (7) and the controller x* in (20).

P { x? sin(xa) O 0

0 aasin(t) x1 z129 0+u,

(24)

where € R? and v € R2?. The unkl%own parameters
were selected as § = [ 5 10 15 20 | . The controller
developed in [16] was used as a nominal tracking controller,

Rnom (I,t) :S.Cd (t) 7Y(1‘,t)97K6, (25)

where ¢ £ 2 — x4 (t). The desired trajectory is x4 (1) =
r(t) [2cos (t),sin (t)]", where r(t) = 0.27¢t. To better
demonstrate how the adaptive safety constraints in the QP
in (20) affect tracking performance, the nominal controller

2When ¢ (t) appears as the argument of a function, we subsequently omit
the dependency on t, for brevity.

t=14.0s
|

Figure 1. Evolution of the state trajectory for the system in (24). The
thin orange line indicates the boundary of the safe set S. The QP in (20)
maintains the state inside the safe set although the desired trajectory leaves
the set. For visual clarity, the figure shows only the first 18 seconds of the
simulation.

is given access to the true parameter values. It is emphasized
that the constraints of the QP, namely the functions 0cop,;,
do not use the true parameter values. The BF is defined as

1+ 29 —C
—r1+T2—c¢c |,

1.2 _
ST] — Ty —C

B(x)= (26)

where ¢ = 5. The safe set S defined by B is displayed in
Figure 1 as a thin orange line. The function v was selected as
i (z) £ Ky (B; (z))*, where K, € Rs. A cubic function is
used to obtain faster growth in the interior of the safe set and
slower growth near the boundary. The maximum magnitude
and estimation error of the parameters were set to § = 43
and ¥ = 22, respectively.

The simulation was implemented in Simulink® using
ode45, while the quadprog function was used to imple-
ment the controller in (20) with objective function uTu —
2k1 (x,t)u. Figure 1 shows a phase portrait of the desired
and actual state trajectory. Specific times of interest are
denoted by symbols in Figure 1 and marked on the horizontal
axes of the plots in Figure 2. The forward pre-invariance
of S under k* guaranteed by Theorem 1 is validated in
Figure 2c by the fact that the BF in (26) remains negative
for the entire simulation. There are many instances when
the desired trajectory lies outside the safe set, yet the QP
maintains the actual trajectory inside the set. Figure 2a shows
that deviations from the nominal controller occur to keep
the trajectory in the safe set. For example, there are large
deviations after ¢ = 14.0s when the desired trajectory leaves
the safe set. As predicted by Lemma 1, the estimation error
in Figure 2b converges using the modified ICL update law in
(7), despite the fact that the tracking error necessarily grows
to ensure safety. In contrast, the update law in [16], which
used the tracking error in a gradient term, would not achieve
parameter convergence for the adaptive safety problem.



a) 500 b) o c)
----- fl
100 o
Oup
g2 o
E St =
€ \
S -100 R
O [—+i b
* L
— Ry AP
200 o Kom,1
“““““ Knom,2
-300
0 4 73 104 14 18 2 25 0 4 73 104 14 18 2 25
Time (s) Time (s)
Figure 2. Evolution of the a) QP-modified control input x* = (ni‘, ng) and nominal control input Knom = (nnom,l,nnomg), b) norm of the

parameter estimation error vector ||9~ (t)|| and its upper bound v (), and c) the BF candidate in (26). Deviations from the nominal control input in a)
are necessary to enforce the safety constraint. In b), the estimation error and its upper bound €y g both decay exponentially. The barrier function in c)

remains negative for the entire simulation, indicating safety.

The example demonstrates how the adaptive safety con-
straint in (20) leads to an expanded operating region for the
system. More concretely, the value of the barrier function B
can be interpreted as a signed distance from the boundary
of the safe set. The increasing trend of the peaks of B in
Figure 2c towards zero indicates that the trajectory is allowed
closer to the boundary of the safe set. Before ¢ = 7.3s,
the maximum value of the BF was B; = —1.18 while the
maximum value for ¢ > 10.4s was By = —0;014. The in-
crease in B is due to the exponential decay of 6y p in Figure
2b. The function 9~U B introduces conservativeness into the
system to ensure that forward pre-invariance is guaranteed
despite uncertainty. Figure 2b shows that conservativeness
has been largely eliminated from the system after ¢ = 10.4s,
and additionally validates that 6 () upper bounds [|6 (¢)]|.

VII. CONCLUSION

A barrier function approach was developed to ensure
safety of an uncertain nonlinear system. An ICL adaptation
law was used to verify exponential convergence to the true
parameter vector. A real-time metric of the estimation perfor-
mance was used in a set of safety-ensuring input constraints
to allow the state to approach the boundary of the safe set.
Since the adaptation law is independent of the BF used to
describe the safe set, the approach is readily applicable to
problems with multiple barrier functions.
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