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Abstract—Given a linear input/output relationship involving
unknown parameters, we propose a hybrid gradient descent
algorithm to estimate the unknown parameters when the inputs
and the outputs are hybrid signals. These signals are allowed
to change continuously during ordinary time – or flow – and
to change discretely – or jump – at isolated time instances. To
estimate the unknown parameters, we develop a gradient descent
algorithm that updates the estimates continuously during flows
and instantaneously at jumps. The proposed hybrid gradient
algorithm generalizes the existing gradient descent algorithms
in the continuous-time and the discrete-time settings. Under
a relaxed (hybrid) version of the well-known persistence of
excitation condition, the proposed hybrid gradient descent algo-
rithm estimates the parameters exponentially fast. An illustrative
example is presented, showing the capabilities of our approach
while classical algorithms fails to ensure the convergence.

I. INTRODUCTION

Estimating the parameters of a system is critical in many
applications [1]. One of the most popular related problems is
linear regression [2], where the relation between the input and
the output is linear. For such models, the estimation problem
is generally based on the gradient descent algorithm [3], [2].
This algorithm exploits the structure of the system and the
available input-output data to online update the estimate of
the parameters. An optimality criterion is used to deduce the
dynamics of the estimate and to analyze convergence rigor-
ously using Lyapunov techniques [4]. Providing an estimate
of the convergence-rate of the gradient algorithm translates
into showing exponential stability of the origin for a linear
time-varying system, whose state is the estimation error. In
the continuous-time setting [5], [6], [7], [8], [9], it is well
established that a persistency of excitation condition is neces-
sary and sufficient for uniform exponential stability of the error
system. A lower bound on the convergence rate is provided in
[6], [5], and [8]. Note that all the aforementioned approaches
translate naturally to the discrete-time case [2].

In this paper, the input and the output signals of the
linear regression model are hybrid signals; namely, they are
allowed to exhibit both continuous and discrete evolution.
Note that the classical continuous-time gradient algorithm
exploits only the time intervals on which the input signal is
continuous. Similarly, the classical discrete-time gradient algo-
rithm exploits only the time instants where the input signal is
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discontinuous. However, combining both algorithms into one
(hybrid) algorithm offers the potential of gathering the benefit
of both algorithms. Motivated by this fact, we propose a hybrid
gradient algorithm, where the input-output signals are viewed
as hybrid arcs. As a result, after passing the error coordinates,
we show that the error system is uniformly exponentially
stable provided that an appropriate (hybrid) persistence of
excitation condition holds. The obtained (hybrid) persistence
of excitation condition relaxes the existing (continuous and
discrete) ones, where only one behavior of the input-output
signal is considered. Interestingly, we are able to give an
explicit bound on the convergence rate. We also observe
that not all of the mentioned continuous-time and discrete-
time approaches can be extended to analyze the proposed
hybrid gradient algorithm. In this paper, we are inspired by
the approach proposed in [8]. Moreover, we point out the
difficulties encountered when trying to extend the results in
[6], [5], [9] to the hybrid case.

The remainder of this paper is organized as follows. Prelim-
inaries are in Section II. A general context is in Section III.
The motivation is in Section IV. The main result is in Section
V. The proof of the main result is in Section VI. A discussion
is in Section VII. Due to space constraints, some proofs are
omitted and will be published elsewhere.

Notations. Let R≥0 := [0,∞) and N := {0, 1, . . . ,∞}.
Given two vectors x and y of the same dimension, mx denotes
the dimension of x, x> denotes the transpose of x, |x| denotes
the Euclidean norm of x, and 〈x, y〉 := x>y denotes the
scalar product of x and y. Given a nonempty set K ⊂ Rmx ,
|x|K := infy∈K |x−y| defines the distance between x and the
set K, int(K) denotes the interior of K, and cl(K) denotes
its closure. For a nonempty set O ⊂ Rmx , K\O denotes the
subset of elements of K that are not in O. For a symmetric
semi-positive definite matrix Γ ∈ Rn×n, λmin(Γ) and tr(Γ)
denote the smallest eigenvalue of Γ, and the trace of Γ,
respectively. Finally, for a function φ : Rn → Rm, domφ
denotes the domain of definition of φ.

II. PRELIMINARIES

A. Hybrid Dynamical Systems

Following [10], we view a hybrid dynamical system H as
the combination of a constrained differential and a constrained
difference equations given by

H :

{
ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D, (1)

with the state variable x ∈ X ⊂ Rmx , the flow set C ⊂ X ,
the jump set D ⊂ X , the flow and jump maps F : C → Rmx
and G : D → Rmx , respectively.



A hybrid arc φ is defined on a hybrid time domain denoted
domφ ⊂ R≥0 × N. The hybrid arc φ is parametrized by
an ordinary time variable t ∈ R≥0 and a discrete jump
variable j ∈ N. Its domain of definition domφ is such that
for each (T, J) ∈ domφ, domφ ∩ ([0, T ]× {0, 1, . . . , J}) =
∪Jj=0 ([tj , tj+1]× {j}) for a sequence {tj}J+1

j=0 , such that
tj+1 ≥ tj , t0 = 0, and tj+1 = T .

Definition 1 (Concept of solution to H): A hybrid arc φ :
domφ→ Rmφ is a solution to H if

(S0) φ(0, 0) ∈ cl(C) ∪D;
(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ}

has nonempty interior, t 7→ φ(t, j) is locally absolutely
continuous and

φ(t, j) ∈ C for all t ∈ int(Ij),
φ̇(t, j) = F (φ(t, j)) for almost all t ∈ Ij ;

(2)
(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j + 1) = G(φ(t, j)). (3)

•
A solution φ to H is said to be maximal if there is

no solution ψ to H such that φ(t, j) = ψ(t, j) for all
(t, j) ∈ domφ and domφ is a proper subset of domψ.
It is said to be nontrivial if domφ contains at least two
points. It is said to be continuous if it never jumps. It is
said to be eventually discrete if T := supt domφ < ∞ and
domφ ∩ ({T} × N) contains at least two points. It is said
to be eventually continuous if J := supj domφ < ∞ and
domφ∩ (R≥0×{J}) contains at least two points. It is said to
be Zeno if it is complete and supt domφ <∞. The system H
is said to be forward complete if the domain of each maximal
solution is unbounded. It is said to be pre-forward complete
if the domain of each maximal solution is closed.

B. Hybrid Basic Conditions

Well-posed [10, Definition 6.2] hybrid systems refer to
a class of hybrid systems where the solutions enjoy very
useful structural properties [10, Chapter 6]. A hybrid system
H = (C,F,D,G) is well-posed if the following conditions,
known as the hybrid basic conditions, are satisfied, see [10,
Assumption 6.5] and [10, Theorem. 6.8] for more details.

(A1) The sets C and D are closed.
(A2) The flow map F : C → Rn is continuous.
(A3) The jump map G : D → Rn is continuous.

C. Uniform Exponential Stability in Hybrid Systems

In this section, we recall the notion of uniform exponential
stability of a general closed set for hybrid systems [11]. This
notion will be used later to characterize the convergence rate
of the hybrid gradient algorithm.

Definition 2: Consider the hybrid system H := (C,F,D,G)
and let A ⊂ X be a closed set. The set A is said to be globally
uniformly pre-exponentially stable for H if there exist κ > 0
and λ > 0 such that each solution φ to H satisfies

|φ(t, j)|A ≤ κ exp(−λ(t+ j))|φ(0, 0)|A ∀(t, j) ∈ domφ.
(4)

When, additionally, every maximal solution to H is complete,
we say that A is globally uniformly exponentially stable for
H. •
The constant λ in (4) is called the convergence rate, the decay
rate, or the rate of the descent of the solutions to H towards
A.

III. GENERAL CONTEXT

Consider the linear relationship

y(t) = θ>ψ(t), (5)

where y : dom y → R represents a measured output, ψ :
domψ → Rmψ represents a measured input, called regressor,
and θ ∈ Rmθ is a constant vector of unknown parameters to
be identified. To estimate θ, one can use the linear estimator
of the form

ŷ(t) = θ̂(t)>ψ(t),

where ŷ : dom ŷ → R is the estimated output and θ̂ : dom θ̂ →
Rmθ is the estimate of the unknown parameter θ. The error
between the true and the estimated outputs is given by

e(t) := ŷ(t)− y(t) = θ̃(t)>ψ(t), (6)

where θ̃ := θ̂ − θ.
The gradient descent algorithm assigns discrete-time dy-

namics, when t ∈ N, or continuous-time dynamics, when
t ∈ R≥0, to θ̂ so that it converges to θ, using the knowledge of
e and ψ. To do so, the following cost function is introduced:

J(e) :=
1

2
e2. (7)

A. The Continuous-Time Gradient Algorithm

In the continuous-time setting, namely, when the regres-
sor signal ψ is viewed as a continuous-time function with
domψ = [0,+∞), the gradient algorithm is given by

˙̂
θ = −γ∇θ̂J(e(t)) = γψ(t)(ψ(t)>θ̂ − y(t)), (8)

where γ > 0 is a positive constant representing the adaptation
rate [3]. As a result, the dynamics of the estimation error is
given by

˙̃
θ = −γψ(t)ψ(t)>θ̃. (9)

Analyzing the convergence of the gradient algorithm can
be translated into showing uniform exponential stability of the
origin for the time-varying system in (9). It is well known that
the following persistency of excitation condition is necessary
and sufficient for uniform exponential stability for the origin
of (9); see [4].

C1 For the regressor signal t 7→ ψ(t) ∈ Rn, there exist T > 0,
µ1 > 0, and µ2 > 0 such that, for each to ≥ 0,

µ2I ≥
∫ to+T

to

ψ(s)ψ(s)>ds ≥ µ1I.

Furthermore, under C1, a lower bound on the convergence rate
is provided in [6] and [5].

In [8] and [9], condition C1 is replaced by the following
slightly more restrictive condition:



C2 For the regressor signal t 7→ ψ(t) ∈ Rn, there exist T > 0,
µ > 0, and ψ̄ > 0 such that, for each to ≥ 0,∫ to+T

to

ψ(s)ψ(s)>ds ≥ µI, ess sup{|ψ(s)| : s ≥ 0} ≤ ψ̄.

Under C2, a lower bound on the convergence rate is provided
in [8] and a strict Lyapunov function is constructed for (9) in
[9].
B. The Discrete-Time Gradient Algorithm

In the discrete-time setting, namely, when the regressor sig-
nal ψ is viewed as a discrete-time function with domψ = N,
the gradient algorithm is given by

θ̂(t+ 1) = θ̂(t)− σ(t)∇θ̂J(e), (10)

where σ : N → [0, 1] is given by σ(t) := γ
1+γ|ψ(t)|2 , and

γ > 0 is the adaptation rate [2]. As a result, the dynamics of
the estimation error is given by

θ̃+ =

(
I − γψ(t)ψ(t)>

1 + γ|ψ(t)|2

)
θ̃. (11)

The existing approaches to study (9) translate naturally to
the study of (11). In the later case, conditions C1 and C2
reduce to the following condition:

C3 For the regressor signal t 7→ ψ(t) ∈ Rn, there exist T > 0,
µ > 0, and ψ̄ > 0 such that, for each to ≥ 0,

to+T∑
t=to

ψ(t)ψ(t)> ≥ µI, sup{|ψ(t)| : t ∈ N} ≤ ψ̄.

IV. MOTIVATION

In this section, we motivate the benefit of viewing the
regressor function ψ in (5) as a hybrid arc via a simple
example.

Example 1: Consider the linear relationship in (5), where
the regressor function ψ is given by

ψ(t) :=

{
[sin(t) 0]> if t ∈ (2jπ, 2(j + 1)π), j ∈ N
[0.5 1]> otherwise.

When viewing ψ as a discrete-time function defined on
{0, 2π, ...}, we can see that the matrix

ψ(t)ψ(t)> :=

[
0.25 0.5
0.5 1

]
∀t ∈ {0, 2π, 4π, ...}

is constant and not full rank. Hence, it does not satisfy the
persistence of excitation condition in C3.

Similarly, when viewing ψ as a continuous-time function
defined on [0,+∞), we can see that

ψ(t)ψ(t)> :=


[
sin(t)2 0

0 0

]
if t ∈ (2jπ, 2(j + 1)π), j ∈ N[

0.25 0.5
0.5 1

]
otherwise.

Note that, for each to > 0 and T > 0, we have∫ to+T

to

ψ(s)ψ(s)>ds =

∫ to+T

to

[
sin(s)2 0

0 0

]
ds

=

[∫ to+T
to

sin(s)2ds 0

0 0

]
.
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Fig. 1. Evolution of the norm of the parameter error using continuous, discrete
and hybrid gradient algorithms.

As a result, the persistence of excitation condition in C2 is
not satisfied. �

One of the scenarios where discontinuous regressors, like
the one in Example 1, can be encountered is when ψ is
function of a solution φ to a hybrid system H = (C,F,D,G)
as in (1). In this case, the regressor ψ is a hybrid arc; namely,
for some h : Rmφ → Rmy , we have

ψ(t, j) := h(φ(t, j)) ∀(t, j) ∈ domφ.

Furthermore, the algebraic equation in (5) becomes

y(t, j) = θ>ψ(t, j) ∀(t, j) ∈ domψ.

When viewing the regressor ψ as a hybrid arc exhibiting
both flows and jumps, we propose the following hybrid
gradient algorithm to update the estimate θ̂ of the unknown
parameter θ:

(HG1) Whenever ψ jumps, namely, when (t, j) ∈ domψ such
that (t, j + 1) ∈ domψ, we update θ̂ via

θ̂(t, j+1) = θ̂(t, j)−γψ(t, j)(ψ(t, j)>θ̂(t, j)− y(t, j))

1 + γ|ψ(t, j)|2
.

(12)
(HG2) Whenever ψ flows, namely, when (t, j) ∈ domψ such

that (t, j + 1) /∈ domψ, we update θ̂ via

˙̂
θ = −γψ(t, j)(ψ(t, j)>θ̂(t, j)− y(t, j)). (13)

Example 2: Consider the regressor ψ used in Example 1.
Figure 1 compares the different gradient algorithms in terms
of convergence of the estimation errors. The initial condition
for the simulation1 is θ̃o := [4 − 5]. The green, the red,
and the blue lines represent the evolution of the Eucliden
norm of θ̃ using the continuous-time gradient algorithm in (9),
the discrete-time gradient algorithm in (11), and the proposed
hybrid gradient algorithm in (12)-(13), respectively. It can be
seen that while the continuous and discrete-time algorithms
do not allow the convergence of θ̃ to the origin, our proposed
hybrid algorithm ensures this property. �

1Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/HybridGradientDescent



V. PROBLEM FORMULATION

According to the hybrid gradient algorithm in (HG1)-(HG2),
the dynamics of the parameter estimation error θ̃ = θ̂ − θ is
governed by the hybrid system

Hg :



 ˙̃
θ
ṫ

j̇

 =

−γψ(t, j)ψ(t, j)>θ̃
1
0

 (θ̃, t, j) ∈ Cg

θ̃+t+
j+

 =

θ̃ − γψ(t,j)ψ(t,j)>

1+γ|ψ(t,j)|2 θ̃

t
j + 1

 (θ̃, t, j) ∈ Dg,

(14)

where

Dg := {(θ̃, t, j) ∈ Rmθ × domψ : (t, j + 1) ∈ domψ}

and
Cg := cl((Rmθ × domψ)\Dg).

With the hybrid arc ψ given, including t and j as state
variables2, leading to x = (θ̃, t, j), makes it possible to write
a hybrid system model that is time invariant.

In the rest of the paper, we provide conditions on the
regressor ψ to guarantee global uniform exponential stability
of the closed set A := {(θ̃, t, j) ∈ Rmθ × domψ : θ̃ = 0}
for Hg . Moreover, our main result provides an estimate of the
convergence rate of the hybrid gradient algorithm.

VI. MAIN RESULT

To analyze uniform exponential stability of the closed set
A for Hg , we note that Hg belongs to the following class of
hybrid systems with flow and jump maps that are linear in θ̃:

H :



ẋ =

 ˙̃
θ
ṫ

j̇

 = F (x) :=

−A(t, j)θ̃
1
0

 x ∈ C

x+ =

θ̃+t+
j+

 =: G(x) =

θ̃ −B(t, j)θ̃
t

j + 1

 x ∈ D,

(15)

where A,B : domA = domB → Rmx×mx are matrices and
domA = domB is a hybrid time domain, x := (θ̃, t, j) ∈
X := Rmθ × domA, C := cl(X\D), and

D := {(θ̃, t, j) ∈ X : (t, j + 1) ∈ domA}.

Next, to verify the hybrid basic conditions (A1)-(A3), we
consider the following assumption.

Assumption 1 (Regularity properties): For each j ∈ N, the
map t 7→ A(t, j) is continuous on Ij := {t : (t, j) ∈ domA}.
•
Furthermore, we assume the following structural properties for
the matrices A and B to match the properties of the flow and
the jump maps in Hg .

2Note that the components t an j of the solution x coincide with the hybrid
time (t, j) of x.

Assumption 2 (Structural Properties): The matrices A and
B satisfy the following properties:

1) For each (t, j) ∈ domA = domB,

A(t, j) = A(t, j)> ≥ 0 B(t, j) = B(t, j)> ≥ 0;

2) For each (t, j) ∈ domA = domB, |B(t, j)| ≤ 1;
3) There exists Ā > 0 such that

ess sup{|A(t, j)| : (t, j) ∈ domA} ≤ Ā.

•
Finally, we assume the following hybrid persistency of excita-
tion condition that will enable us to guarantee global uniform
exponential stability of the set A while providing an estimate
the hybrid convergence rate.

Assumption 3 (Hybrid Persistence of Excitation): There
exist k̄ > 0 and µ > 0 such that, for each (to, jo) ∈ domA =
domB and for each hybrid time domain

E :=

J⋃
j=jo

([tj , tj+1]× {j}) ⊂ domA = domB (16)

with tjo := to and (tJ+1 − to) + (J − jo) ≥ k̄, the following
holds:

J∑
j=jo

∫ tj+1

tj

A(s, j)ds+
1

2

J∑
j=jo

B(tj+1, j) ≥ µI. (17)

•
Remark 1: Note that the hybrid system H in (15) reduces

to Hg in (14) when A ≡ γψψ> and B ≡ γψψ>

1+γ|ψ|2 . Further-
more, when the hybrid arc ψ in Hg is eventually continuous
(respectively, eventually discrete or Zeno), Assumptions 2 and
3 reduce to C2 (respectively, C3). •

Remark 2: When the regressor ψ is scalar (i.e, mψ = 1),
then Assumptions 2 and 3 imply that either C2 or C3 holds.
However, in the general case when mψ > 1, it is possible that
Assumptions 2 and 3 hold but none of the conditions in C2
and C3 is satisfied as shown in the following example. •

Example 3: For the regressor in Example 1, we note that
when γ = 1 the corresponding maps A and B are given by

A(t, j) =



[
sin2(t) 0

0 0

]
if t ∈ (2jπ, 2(j + 1)π)

[
0 0
0 0

]
if t = 2jπ,

B(t, j) =



[
0 0
0 0

]
if t ∈ (2jπ, 2(j + 1)π)

[
0.1111 0.2222
0.2222 0.4444

]
if t = 2jπ.

Now, one can check that the hybrid persistence of excitation
in Assumption 3 holds with k̄ = 2π + 1 and µ = 0.21. �

We have now all the ingredients to state the main result of
the paper.



Theorem 1: Given the hybrid system H in (15), suppose
that Assumptions 1, 2, and 3 hold. Then, the closed set A :=
{(θ̃, t, j) ∈ X : θ̃ = 0} is uniformly exponentially stable for
H. In particular, for any solution φ to H, (4) holds with

λ := − log(1− α)/k̄, (18)

and
α :=

2µ(
1 + (k̄ + 2)

√
(Ā+ 2)(1/2 + Ā(k̄ + 1)2)

)2 . (19)

where Ā is given by Assumption 2 and k̄ is given by
Assumption 3. �

VII. PROOF OF THEOREM 1

A. Proof of Uniform Stability

To prove uniform stability of the closed set A, we consider
the Lyapunov function candidate

V (x) :=
1

2
θ̃>θ̃ =

1

2
|x|2A. (20)

Now, for each x = (θ̃, t, j) ∈ C, we have from Assumption 2

〈∇V (x), F (x)〉 = −θ̃>A(t, j)θ̃ ≤ 0.

Let us now analyze the variation of V at the jump instants.
For each x with (t, j) ∈ domA and (t, j + 1) ∈ domA, it
follows from Assumption 2 that

V (G(x))− V (x) = −1

2
θ̃>B(t, j)θ̃ ≤ 0.

Hence, for each maximal solution x to H, we conclude that

|x(t, j)|A ≤ |x(0, 0)|A ∀(t, j) ∈ domx,

which concludes uniform stability of the set A for H.

B. Proof of Exponential Attractivity

To show exponential stability of the closed set A, we will
show that, for each (to, jo) ∈ domA and for each hybrid
domain E := ∪Jj=jo ([tj , tj+1]× {j}) ⊂ domA with (tJ+1−
tjo) + (J − jo) ∈ [k̄, k̄ + 1], the following inequality is true:
For each solution x to H from (t, j) = (t0, j0)

V (x(tJ+1, J))− V (x(to, jo)) ≤ (1− α)V (x(to, jo)), (21)

where α is in (19). As a consequence, (4) holds with λ :=
− log(1− α)/k̄.

To prove (21), we note that

Ṽ := V (x(tJ+1, J))− V (x(to, jo))

=

J∑
j=jo

[VF (tj , tj+1, j) + VG(tj+1, j, j + 1)],
(22)

where VF and VG are given by:

VF (tj , tj+1, j) := V (x(tj+1, j))− V (x(tj , j)) (23)

VG(tj+1, j, j+1) := V (x(tj+1, j+1))−V (x(tj+1, j)). (24)

Next, to complete the proof, we will use the following
technical lemmas.

Lemma 1: For each ρ > 0, the function VF in (23) satisfies
the following inequality for each j ∈ {jo, . . . , J}:

VF (tj , tj+1, j) ≤ −ρĀ(Ā+ 2)(2(j − jo) + 1)(tj+1 − tj)2Ṽ

− ρ

1 + ρ

∫ tj+1

tj

∣∣∣A(s, j)
1
2 θ̃(to, jo)

∣∣∣2 ds,
where Ṽ is defined in (22) and Ā in Assumption 2. �

Lemma 2: For each ρ > 0, the function VG in (24) satisfies
the following inequality for all j ∈ {jo, . . . , J}:

VG(tj+1, j, j + 1) ≤ 1

2
ρ(2(j − jo) + 1)(Ā+ 2)Ṽ

− 1

2

ρ

1 + ρ

∣∣∣B(tj+1, j)
1
2 θ̃(to, jo)

∣∣∣2 ,
where Ṽ is defined in (22) and Ā in Assumption 2. �

Combining Lemmas 1 and 2, we obtain the following upper
bound on Ṽ for each ρ > 0:

Ṽ ≤ − ρ

1 + ρ

J∑
j=jo

∣∣∣B(tj+1, j)
1
2 θ̃(to, jo)

∣∣∣2
− 2ρ

1 + ρ

J∑
j=jo

∫ tj+1

tj

∣∣∣A(s, j)
1
2 θ̃(to, jo)

∣∣∣2 ds
− ρ

2
(Ā+ 2)Ṽ

J∑
j=jo

(2(j − j0) + 1)

− ρĀ(Ā+ 2)Ṽ

J∑
j=jo

(2(j − j0) + 1)(tj+1 − tj)2.

Hence,

Ṽ ≤− 2ρ

1 + ρ
V (x(to, jo))

×

1

2

J∑
j=jo

B(tj+1, j) +

J∑
j=jo

∫ tj+1

tj

A(s, j)ds


− ρ(Ā+ 2)(J − j0 + 1)2(1/2 + Ā(tJ+1 − to)2)Ṽ .

Finally, using Assumption 3, we conclude that

Ṽ ≤ − 2ρµ

1 + ρ
V (x(to, jo))

− ρ(Ā+ 2)(k̄ + 2)2(1/2 + Ā(k̄ + 1)2)Ṽ .

Hence, by choosing

ρ := 1/
√

(Ā+ 2)(k̄ + 2)2(1/2 + Ā(k̄ + 1))

we conclude that

V (x(tJ+1, J))− V (x(to, jo)) ≤ −αV (x(to, jo)),

where α is introduced in (19).

VIII. DISCUSSION

Existing approaches to prove exponential stability of the
gradient system in (9) include those in [5], [6], [8]. In addition,
in [9] an explicit strict Lyapunov function is constructed.
Each of the aforementioned approaches allows an explicit
estimation of the convergence rate and they extend naturally
to the discrete-time version of (9) in (11). However, as we



shall show, not all of the aforementioned approaches can be
extended to analyze the hybrid gradient system Hg in (14). We
first note that the approach used in this paper is inspired by the
result in [8]. Next, we will illustrate the difficulty encountered
when trying to extend the results in [5], [6], [9] to the hybrid
case.

In [5], the system in (9) is considered under C1. A quadratic
Lyapunov function V is used and it was shown that the fol-
lowing solution-based property is satisfied for all t ≥ t0 ≥ 0:

V (x(t)) = V (x(t0))−

θ̃(t0)>
∫ t

t0

Φ(u, t0)>ψ(u)>ψ(u)Φ(u, t0)duθ̃(t0) (25)

where Φ is the state transition matrix for the system (9). Then
using the fact that the matrices S0 :=

∫ t
t0
ψ(u)>ψ(u)du and

S :=
∫ t
t0

Φ(u, t0)>ψ(u)>ψ(u)Φ(u, t0)du have the same ob-
servability Gramian it can be shown that S is positive definite
if and only if S0 is positive definite. Hence, equation (25)
implies that V (x(t)) ≤ (1− α)V (x(t0)) with α = 2λmin(S).
A similar approach is used to deal with the discrete-time case
using the observability Gramian for discrete-time systems [2].
Extending these results to the hybrid case in Hg is difficult.
Indeed, the main difficulty follows from the fact that to define a
hybrid observability Gramian, the information about the whole
hybrid time domain should be known a priori.

In [6], system (9) is considered under C1. Given to ≥ 0,
the following property is established therein:

|θ̃(t)|2 − |θ̃(to)|2 ≥ |θ̃(to)|2f(t, to), (26)

where

f(t, to) :=
[√

κ1(ε1(t, to), ε2(t, to)) + κ2(ε1(t, to))

−
√
κ1(ε1(t, to), ε2(t, to))

]2
,

ε1(t, to) := λmin(W (t, to)), ε2(t, to) := tr(W (t, to)),

W (t, to) :=
∫ t
to
ψ(s)ψ(s)>ds, and for particular functions κ1 :

R≥0 × R≥0 → R≥0 and κ2 : R≥0 × R≥0 → [0, 1). Note that
under C1, it follows that ε1(to + T, to) ≥ µ1 and ε2(to +
T, to) ≤ µ2. Hence, there exists γ ∈ (0, 1), such that |θ̃(to +
T )|2−|θ̃(to)|2 ≥ γ|θ̃(to)|2. In the hybrid case, we are able to
establish inequalities similar to (26) along the flows and along
the jumps separately. That is, given a solution θ̃ to Hg and
a hybrid domain E := ∪Jj=jo ([tj , tj+1]× {j}) ⊂ domx, we
can show inequalities of the form

|θ̃(tj+1, j)|2 − |θ̃(tj , j)|2 ≥ |θ̃(tj , j)|2f(tj+1, tj),

|θ̃(tj+1, j + 1)|2 − |θ̃(tj+1, j)|2 ≥ |θ̃(tj+1, j)|2g(j + 1, j),

where g is, roughly speaking, a discrete version of f . Note that
we cannot go any further by using the latter two inequalities
due the potential nonlinearities of f and g.

In [9], the system in (9) is considered under C2. The system
is shown to admit a continuously differentiable Lyapunov
function V : R≥0 × Rmθ → R≥0 such that

α|θ̃|2 ≤ V (t, θ̃) ≤ ᾱ|θ̃|2, (27)

for some α > 0 and ᾱ > 0. Furthermore, the time derivative
of V along the solutions to (9) satisfies, for some α > 0,
V̇ (t, θ̃) ≤ −α(µ/T )|θ̃|2, where µ and T come from C2.
Similarly, for the discrete-time system in (11) and under C3,
we can build a Lyapunov function V : N × Rmθ → R≥0
satisfying (27) and such that, along the solutions to (11),

V (j + 1, θ̃(j + 1))− V (j, θ̃(j)) ≤ −αµ
J
|θ̃|2, (28)

where µ and J come from C3. Now, for the hybrid case in
Hg , it is very challenging to find explicitly a scalar Lyapunov
function V satisfying (27) that decreases strictly along the
flows, even when the excitation is coming from the jumps;
and similarly along the jumps, even when the excitation is
coming from the flows.

IX. CONCLUSION

This paper proposed a hybrid gradient algorithm to esti-
mate the unknown parameters of an hybrid linear regression
problem. When the inputs and the outputs are hybrid arcs,
the proposed algorithm updates the estimates continuously
during the continuous evolution of the data and instantaneously
during their jumps. The proposed hybrid gradient algorithm
generalizes the existing continuous and discrete-time gradient
descent algorithms. In the sense where a relaxed (hybrid)
version of the well-known persistence of excitation condition
is shown to be sufficient to guarantee exponential estimation
of the parameters. In future work we will develop hybrid
parameter estimators for hybrid MRAC models.
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