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Abstract— In this paper, we consider the problem of estimat-
ing a constant (or piecewise constant) parameter of a linear
regression model. Using a hybrid systems framework, a hybrid
algorithm is proposed allowing the estimate to converge to the
exact value of the unknown parameter in predetermined finite
time. Interestingly, we show that for the case of a constant
parameter, the convergence property of the hybrid algorithm
holds while only requiring the regressor to be exciting on a
finite interval. For the case of a piecewise constant parameter,
the classical persistency of excitation condition is required
to guarantee the convergence. Robustness of the proposed
algorithm with respect to measurements noise is analysed.
Finally, illustrative examples are provided showing the merits
of the proposed approach.

I. INTRODUCTION

Accurate estimation of model parameters of a system is
critical in most applications. Different algorithms have been
proposed in the adaptive control community to tackle this
problem [1], [2]. A common approach consists of exploiting
information about the structure of the system and a collection
of available system signals (called regressors) to compute
online estimates of the systems parameters. An optimality
criterion is defined and the behaviour of the parameters
estimates can be rigorously analysed through the use of
Lyapunov theory.

In static linear regression models [2], the relationship
between the regressors and the output is linear. For such
models, the estimation of parameters is based on the classical
gradient descent algorithm [1], [2], which requires a persis-
tence of excitation condition [1], [2]. Different approaches
have been proposed in the literature to relax the excitation
requirement while ensuring asymptotic convergence of the
estimator to the exact value [3], [4], [5]. Regarding conver-
gence within finite time intervals, the authors in [6] (respec-
tively [7]) proposed algorithms for finite time (respectively,
fixed time) estimation of parameters, while the regressor can
converge to zero asymptotically or in finite time.

Motivated by the results on finite time observers [8],
this paper presents a hybrid estimator with predetermined
time for convergence of the estimates to piecewise constant
unknown parameters. We first study the stability and finite
time convergence properties of our hybrid estimator for the
case of a constant unknown parameter. Interestingly, we
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show that the regressor needs to be exciting only over a
bounded interval (given here as the time interval before the
first jump). Then we show how this result can be generalized
to piecewise constant unknown parameters, while precisely
specifying the intervals on which the regressor needs to be
exciting. Finally, we use tools developed in hybrid systems
theory to provide robustness of the proposed estimator.

In spirit, our approach is closely related to the one in [9].
Both results provide finite time estimators using a hybrid
framework. In comparison to our work, the approach in [9]
differs in three directions. First, they are dealing with dynam-
ical systems, while our work deals with an algebraic input-
output model. Second, we are using a different estimation
algorithm, based on the use of two coupled estimators.
Finally, while the results in [9] rely on a persistency of
excitation condition to ensure that their hybrid system is
well defined and to guarantee completeness of solutions,
we only need the regressor to be exciting on a finite time
interval. Another related work is [10] which proposes an
interval excitation condition to ensure the convergence of
an MRAC system. Their result is based on dynamic re-
gressor extension and mixing (DREM), which consists of
decomposing the global estimation problem into a series of
scalar problems using dynamic operators. In this paper, we
are dealing with the original parameter estimation problem
without any prior transformation. Moreover, we provide
robustness results using tools from the hybrid systems theory.
Other finite-time approaches have been proposed for the
design of observers [11], [12] where the system is given by
a dynamical model. The main difference between our work
and these results is that rather than bounding the evolution
of the estimation error using the norm of the dynamics, we
leverage persistency of excitation type conditions which are
less conservative.

The remainder of this paper is organized as follows.
Section II introduces the classical linear regression system
and the hybrid systems framework. Section III illustrates the
construction of the hybrid estimator for a simple scalar case.
In Section IV, we show the finite time convergence of the
proposed estimator with respect to constant and piecewise
constant unknown parameters. In Section V, robustness of the
proposed hybrid estimator to generic noise is investigated.
Finally, Section VI presents numerical results highlighting
the robustness properties of the proposed estimator. Due
to space constraints, the proofs are omitted and will be
published elsewhere.



II. PRELIMINARIES

A. Notations

The symbols N, R, and R≥0 denote the set of positive
integers, real and non negative real numbers, respectively.
The identity matrix of appropriate dimension is denoted by I .
The Euclidean norm of vectors is denoted |.|. For a function
f : Rn → Rm, dom f denotes the domain of definition of f .
A continuous function α is said to belong to class K∞ if it is
strictly increasing, α(0) = 0, and α(r) goes to infinity as r
tends to infinity. Given a point y ∈ Rn and a non-empty set
A ⊆ Rn, |y|A := inf

x∈Rn
|x−y|. For two functions f : X → Y

and g : Y → Z, and a point x ∈ X , f ◦ g(x) = f(g(x)).

B. Linear regression

A general linear regression model is given by

y(t) = θ∗>φ(t) (1)

where t 7→ y(t) ∈ R represents the known scalar output,
θ∗ ∈ Rn is the unknown constant parameter to identify,
and t 7→ φ(t) ∈ Rn is the known regressor. Since θ∗ is
unknown, an estimator of the form ŷ(t) = θ>(t)φ(t) can be
constructed, where t 7→ ŷ(t) ∈ R is the estimated output and
t 7→ θ(t) ∈ Rn is the estimate of the unknown parameter θ∗.
The error between the true and estimated outputs is defined
as

e(t) := ŷ(t)− y(t) = θ̃>(t)φ(t) (2)

where t 7→ θ̃(t) := θ(t) − θ∗ is the parameter estimation
error. The typical objective is to design a law that adjusts the
parameter estimate θ, based on the knowledge of e and φ, in
order to ensure that θ̃ and e converge towards zero. For this
purpose, a continuous gradient descent-like algorithm can be
designed with the following cost function:

J(e) :=
1

2
e2 (3)

Using this cost function, the classical continuous-time gra-
dient like algorithm [1], [2] is defined as follows:

θ̇ = −γ∇θJ(e(t)) = −γφ(t)(φ>(t)θ − y(t)) (4)

where γ > 0 is the constant adaptation rate. It can be shown
using Barbalat Lemma [2] that this algorithm makes the
estimation error t 7→ e(t) goes to zero as time t goes to
infinity. To show the convergence of θ to θ∗, a persistency
of excitation condition [1], [2] is required in general (see
Definition 3 for a formal definition of persistency of excita-
tion).

Our objective is to construct a hybrid parameter estimator
allowing for θ to converge to θ∗ in finite time with a relaxed
persistence of excitation condition. For this reason, some
preliminary tools on hybrid systems [13] are introduced in
the next section.

C. Preliminaries on hybrid systems
In this paper, a hybrid system H has data (C, f,D, g) and

is defined by
ż = f(z, u) z ∈ C,

z+ = g(z, u) z ∈ D,
(5)

where z ∈ Rn is the state, u ∈ Rp is the input, f is the
flow map capturing the continuous dynamics, and C defines
the flow set on which f is effective. The map g is called
the jump map and models the discrete change of z, while D
defines the jump set, from which jumps are allowed. Given
an input u, a solution to H is given by the pair (z, u), which
is parametrized by (t, j) ∈ R≥0 × N, where z is a hybrid
arc, t is the ordinary time keeping track of the flows, and
j is the jump index counting the number of jumps. When
the system has no input or its input is identically zero, its
solution is given by z. The domain dom(z, u) = dom z =
domu ⊆ R≥0×N of a solution pair (z, u) to H is a hybrid
time domain, in the sense that for every (T, J) ∈ dom z,
there exists a nondecreasing sequence {tj}J+1

j=0 with t0 = 0
such that

dom z ∩ ([0, T ]× {0, 1, . . . , J}) =

J⋃
j=0

([tj , tj+1]× j).

Two hybrid arcs are said to be (τ, ε)-close if they satisfy the
following property

Definition 1: Given τ, ε > 0, two hybrid arcs z1 and z2
to H are (τ, ε)-close if
• for all (t, j) ∈ dom z1 with t + j ≤ τ there exists s

such that (s, j) ∈ dom z2, |t − s| ≤ ε, and |z1(t, j) −
z2(s, j)| ≤ ε;

• for all (t, j) ∈ dom z2 with t + j ≤ τ there exists s
such that (s, j) ∈ dom z1, |t − s| ≤ ε, and |z2(t, j) −
z1(s, j)| ≤ ε

III. MOTIVATIONAL EXAMPLE: SCALAR CASE

In this section, we explain the construction of the proposed
hybrid parameter estimator on a scalar example. Consider
the linear regression model defined in (1) with n = 1. The
objective is to design an algorithm ensuring the convergence
of the parameter θ to θ∗ in finite time with a relaxed
persistence of excitation. The proposed algorithm consists
of two update laws with positive parameters, γ1 and γ2,
and a jump time δ and is captured by the following hybrid
system H. Given the known signals φ, y ∈ R. When the
timer τa ∈ [0, δ), the system flows according to

θ̇1
θ̇2
τ̇a
τ̇b
q̇

 =


−γ1φ(τb)(φ

>(τb)θ1 − y(τb))
−γ2φ(τb)(φ

>(τb)θ2 − y(τb))
1
1
0

 (6)

and when τa = δ and q = 0, we reset the state according to
θ+1
θ+2
τ+a
τ+b
q+

 =


R(θ1, θ2)
R(θ1, θ2)

0
τb

q + 1

 (7)



The state of the hybrid system H is z = (θ1, θ2, τa, τb, q) ∈
X := R2× [0, δ]×R≥0×N. The signals φ, y ∈ R are known
and used as inputs of the hybrid model. The state components
θ1 and θ2 represent the estimates with update laws based on
the positive adaptation rates γ1 and γ2, respectively. The state
component τa is a timer used to trigger the jump at δ > 0.
The state components τb and q make it possible to convert
the time-varying system into a time-invariant one.

The functional R is defined as R(θ1, θ2) = K1θ1 +K2θ2
where the gains K1 and K2 are given as

K1 =

(
− exp

(
−γ2

∫ δ

0

φ2(t)dt

))
×(

exp

(
−γ1

∫ δ

0

φ2(t)dt

)
− exp

(
−γ2

∫ δ

0

φ2(t)dt

))−1
K2 = 1−K1

From (6)-(7), the resulting flow set is C := X and the jump
set is D := {z ∈ X : τa = δ, q = 0}. With this construction,
the idea is to trigger the jump at τa = δ. The logic variable q
ensure that the jump, defined by the reset map in (7), occurs
only one time, when q = 0.

Let us mention that if γ1 6= γ2 and
∫ δ
0
φ2(t)dt 6= 0, then(

exp
(
−γ1

∫ δ
0
φ2(t)dt

)
− exp

(
−γ2

∫ δ
0
φ2(t)dt

))−1
is in-

vertible, and the gains K1 and K2 are well defined. The
following result shows how the proposed hybrid parameter
estimator allows to identify θ∗ in finite time.

Proposition 1: Given δ, γ1, γ2 > 0 such that γ1 6= γ2, if
the regressor φ is such that

∫ δ
0
φ2(t)dt 6= 0, then for any

solution z to the hybrid system H in (6)-(7) with initial
condition z(0, 0) ∈ X0 = {z ∈ X : θ1 = θ2, τa = τb = q =
0}, the states θ1 and θ2 converge to θ∗ in finite time δ and
one jump, i.e, θ1(t, j) = θ2(t, j) = θ∗ for all (t, j) ∈ dom z
and t+ j ≥ δ + 1.

The basic idea of the hybrid estimator (6)-(7) is as follows:
the estimates θ1 and θ2 at the time instant (δ, 0) are given
by

θ1(δ, 0) = exp

(
−γ1

∫ δ

0

φ2(s)ds

)
θ1(0, 0) + θ∗

θ2(δ, 0) = exp

(
−γ2

∫ δ

0

φ2(s)ds

)
θ2(0, 0) + θ∗.

The idea is to select the same initial values θ1(0, 0) and
θ2(0, 0) and design K1 and K2 such that θi(δ, 1) =
R(θ1, θ2) = K1θ1(δ, 0) + K2θ2(δ, 0) = θ∗ for each i ∈
{1, 2}.

Remark 1: It is noteworthy that for the scalar case we are
able to ensure the finite time convergence of the parameter
estimates θ1 and θ2 to the true value θ∗ in finite time without
requiring the regressor to be persistently exciting. Indeed, the
regressor signal needs only to satisfy

∫ δ
0
φ2(t)dt 6= 0. The

result of Proposition 1 motivates the use of the concept of
excitation over a finite interval introduced in the following
section for the non-scalar case.

IV. HYBRID FINITE TIME CONVERGENT ALGORITHM

Following the scalar case presented in Section III, this
section presents a hybrid parameter estimator for finite-time
convergence with respect to constant and piecewise constant
unknown parameter θ∗ for the general case of (1).

A. Excitation conditions

We start by recalling from [2] the notion of excitation for
the regressor signal.

Definition 2: Given σ ≥ 0 and µ > 0, a signal t 7→ φ(t) ∈
Rn is exciting over the finite interval [σ, σ+µ] if there exists
η > 0 such that ∫ σ+µ

σ

φ(t)φ>(t)dt ≥ ηI. (8)

Definition 3: A signal t 7→ φ(t) ∈ Rn is µ-persistently
exciting if there exist µ > 0 and η > 0 such that for all
σ ≥ 0 ∫ σ+µ

σ

φ(t)φ>(t)dt ≥ ηI. (9)

In addition, a signal t 7→ φ(t) ∈ Rn is said to be persistently
exciting if there exists µ > 0 such that t 7→ φ(t) ∈ Rn is
µ-persistently exciting.

B. Constant unknown parameter

The finite time adaptation law to estimate θ∗ is formalized
as a hybrid system and defined as follows:

ż = f(z, u) z ∈ C,
z+ = g(z, u) z ∈ D,

(10)

Its state is z = (θ1, θ2, τa, τb, q) ∈ X = Rn × Rn ×
[0, δ] × R≥0 × N. The input of the hybrid model is given
by u = (φ, y) where φ and y are known signals. The state
components θ1 and θ2 represent the estimates with update
laws based on the adaptation rates γ1 and γ2, respectively.
The state component τa is a timer used to trigger the jump at
δ > 0. The state components τb and q are included to make
it possible to convert the time-varying system for constant
parameter θ∗, as well as the forthcoming system for the
case when the parameter θ∗ changes over time, into a time-
invariant one. The flow and jump maps are given by

f(z, u) =


−γ1φ(τb)(φ

>(τb)θ1 − y(τb))
−γ2φ(τb)(φ

>(τb)θ2 − y(τb))
1
1
0

 ∀z ∈ C := X

g(z, u) =


R(θ1, θ2)
R(θ1, θ2)

0
τb

1 + q

∀z ∈ D := {z ∈ X : τa = δ, q = 0}

where R(θ1, θ2) = K1θ1 +K2θ2 and the gains K1 and K2

are given by the functionals

K1 = −Φ2(δ, 0) (Φ1(δ, 0)− Φ2(δ, 0))
−1

K2 = I −K1 (11)



where for each i ∈ {1, 2}, Φi is the state transition matrix
of the time-varying system

˙̃
θi = −γiφ(t)φ>(t)θ̃i.

The logic variable q ensures that the jump occurs only one
time, when q = 0.

Let us first provide conditions for the functionals K1 and
K2 to be well defined.

Proposition 2: Given δ, γ1, γ2 > 0 such that γ1 6= γ2, if
the regressor t 7→ φ(t) is exciting over the finite interval
[0, δ], with

∫ δ
0
φ(u)φ>(u)du ≥ ηI for some η > 0, there

exists φM ≥ 0 such that |φ(s)| ≤ φM for all s ∈ [0, δ] and
if the constants δ, γ1, γ2 satisfy

φ2Mγ2δ ∈ (0, 1) (12)(
1− 2ηγ1

(1 + φ2Mγ1δ)
2

)(
1 +

2γ2φ
2
Mδ

(1− φ2Mγ2δ)2

)
∈ (0, 1)

(13)

then the functionals K1 and K2 in (11) are well defined, in
particular, Φ1(δ, 0)− Φ2(δ, 0) is invertible.

Remark 2: The function defined by

δ 7→
(

1− 2ηγ1
(1 + φ2Mγ1δ)

2

)(
1 +

2γ2φ
2
Mδ

(1− φ2Mγ2δ)2

)
evaluated at δ = 0 gives 1 − 2ηγ1. Hence, conditions
(12)-(13) are always satisfied by appropriately choosing the
parameters δ, γ1, and γ2 for a given η and φM .

Next, we show convergence of the estimates θ1 and θ2 to
θ∗. To this end, we define the following set:

A = {z ∈ X : θ1 = θ2 = θ∗} (14)

Theorem 1: Given δ, γ1, γ2 > 0 such that γ1 6= γ2, and
assume the unknown parameter θ∗ ∈ Rn is constant. If the
conditions in Proposition 2 hold, then there exist α1, α2 ∈
K∞ such that any solution z to the hybrid system H in (10)
from z(0, 0) ∈ X0 = {z ∈ X : θ1 = θ2, τa = τb = q = 0}
satisfies

|z(t, j)|A ≤ α−11 ◦ α2(|z(0, 0)|A)

for all (t, j) ∈ dom z, and

θ1(t, j) = θ2(t, j) = θ∗

for all (t, j) ∈ dom z satisfying t ≥ δ and j ≥ 1.
Remark 3: It is noteworthy that for the particular case

when the parameter θ∗ is constant, we are able to ensure the
finite time convergence of the parameter error to zero in finite
time, without requiring the regressor φ to be persistently
exciting as in [1]; see Definition 3. Let us also mention that
our result is less conservative than the approach proposed
in [5]. Indeed, in [5] the regressor does not need to be
persistently exciting, but it is required to not be square
integrable1 (φ /∈ L2), while in Theorem 1, we only require
the input signal to be exciting on the interval [0, δ]; see

1A vector signal φ ∈ Rn is said to be square intergrable, denoted φ ∈ L2,
if
∫+∞
0 |φ(t)|2dt <∞.

Definition 2. Finally, let us point out that if there exists a > 0
such that φ is exciting over the interval [0, a], then one can
choose δ ≥ a, which is a less conservative condition than
the conditions on the regressor φ proposed in [6].

C. Piecewise constant unknown parameter

When the unknown parameter θ∗ is a piecewise constant
function, it is also possible to estimate it in finite time.
However, one jump is not enough. Therefore, recursive
jumps are embedded in our hybrid parameter estimator. For
this purpose, we propose a hybrid finite time convergent
adaptation law as in (10)

ż = f(z, u) z ∈ C,
z+ = g(z, u) z ∈ D,

(15)

with state z = (θ1, θ2, τa, τb, q) ∈ X = Rn × Rn × [0, δ] ×
R≥0 × N and data (C, f,D, g) as in (10), but with D :=
{z ∈ X : τa = δ} and with a map R given by R(θ1, θ2, q) =
K1(q)θ1 +K2(q)θ2 where

K1(q) = −Φ2((q + 1)δ, qδ)×
(Φ1((q + 1)δ, qδ)− Φ2((q + 1)δ, qδ))

−1

K2(q) = I −K1(q) (16)

In the case of piecewise constant unknown parameter, the
jump set D and the functionals K1 and K2 differ from the
ones in (10) to account for successive jumps. As in the
previous section, for K1 and K2 to be well defined, we have
the following result

Proposition 3: Given δ, γ1, γ2 > 0 such that γ1 6= γ2, if
there exists µ > 0 such that µ ≤ δ and the regressor t 7→ φ(t)

is µ-persistently exciting, with
∫ σ+δ
σ

φ(u)φ>(u)du ≥ ηI for
some η > 0 and for all σ ≥ 0, there exists φM ≥ 0 such that
|φ(s)| ≤ φM for all s ∈ R≥0 and if the constants δ, γ1, γ2
satisfy conditions (12)-(13), then the gains K1 and K2 in
(16) are well defined.

The following result establishes the main convergence
property induced by the hybrid system H in (15) when
unknown parameter θ∗ is piecewise constant.

Theorem 2: Given δ, γ1, γ2 > 0 such that γ1 6= γ2, and
assume the unknown parameter θ∗ : [0,+∞) → Rn is
piecewise constant, where the time instants at which the
parameter changes values are defined by a finite or infinite
sequence {d0, d1, d2, . . .} satisfying 0 ≤ dk < dk+1 for all
k ∈ N and ∪+∞k=0[dk, dk+1) = [0,+∞). If the conditions in
Proposition 3 hold and if the parameter δ is chosen such that

0 < 2µ ≤ 2δ < min
k∈N
{dk+1 − dk} (17)

then for any solution z to the hybrid system H in (15) from
z(0, 0) ∈ X0 = {z ∈ X : θ1 = θ2, τa = τb = q = 0}, the
following property is satisfied: for each j ∈ N≥1 there exists
an interval with nonempty interior I ′j ⊆ Ij ∪ Ij+1 such that
θ1(t, j) = θ2(t, j) = θ∗ for all t ∈ I ′j .

The previous result shows that the parameter θ∗ is exactly
estimated, after finite time since the last time it changed.
Indeed, the intervals I ′j imply that whenever the parameter



changes its value, the proposed estimator converges to the
exact value θ∗ no later than 2δ. Let us also mention that
similarly to Theorem 1, the same bounds on the solutions
can be established.

V. ROBUSTNESS TO MEASUREMENT NOISE

In this section, we analyse the robustness of the proposed
hybrid parameter estimator with respect to bounded time-
varying measurement noise. For the sake of readability, we
focus on constant unknown parameters. However, the robust-
ness results can be generalized using the same approach to
deal with piecewise constant unknown parameters.

The linear regression model with measurement noise on y
is expressed as

y(t) = θ∗>φ(t) + w(t) (18)

where θ∗ ∈ Rn is a constant parameter and t 7→ w(t) ∈ R
represents measurement noise. The estimator ŷ of the real
output y is defined as ŷ(t) = θ̂>(t)φ(t) and the error
between the true and estimated outputs is given by e(t) =
ŷ(t) − y(t) = θ̃>(t)φ(t) − w(t). Using the cost function
J(e) = 1

2e
2, the classical continuous-time gradient like

algorithm is defined as follows:

˙̃
θ(t) = −γφ(t)φ>(t)θ̃(t) + γφ(t)w(t). (19)

where γ > 0 is a constant adaptation rate.
Starting from the noise free hybrid estimator defined in

(10), our hybrid parameter estimator under the effect of
t 7→ w(t) is then defined as a hybrid system H̃ with data
(C, f̃ ,D, g̃) and described as follows:

˙̃z = f̃(z̃) z̃ ∈ C,
z̃+ = g̃(z̃) z̃ ∈ D, (20)

the flow and jump maps are given by f̃(z̃) = f(z̃) +
(γ1φ(τb), γ2φ(τb), 0, 0, 0)w(τb) and g̃(z̃) = g(z̃), where f
and g are as in (10). The flow and jump sets are given by
C := X , and D := {z ∈ X : τa = δ, q = 0}. To analyse the
effect of measurement noise, we rely on the robustness tools
developed in the hybrid systems framework [13]. Consider
the noise-free hybrid system H in (15) and the noisy hybrid
system H̃ in (20). We have the following result showing
closeness of the trajectories of the noisy hybrid system H̃
and the noise-free hybrid system H. We rely on the notion
of (τ, ε)-closeness of trajectories.

Proposition 4: Given δ, γ1, γ2 > 0 such that γ1 6= γ2, and
assume the unknown parameter θ∗ ∈ Rn is constant. Let
K ⊆ R2n be a compact set and let τ, ε > 0. If the conditions
in Proposition 2 hold, then we have the existence of w̄ > 0
such that if |w(t)| ≤ w̄, for all t ∈ R≥0, the following
holds: for every solution z̃ to H̃ with an initial condition
z̃(0, 0) ∈ K × [0, δ] × R≥0 × N ∩ X0, with X0 = {z ∈ X :
θ1 = θ2, τa = τb = q = 0}, there exists a solution z to H
with initial condition z(0, 0) ∈ K × [0, δ] × R≥0 × N ∩ X0

such that z̃ and z are (τ, ε) close.
Next we show that under a persistency of excitation

condition the noisy system H̃ is input to state stable (ISS)

for any essentially bounded measurement noise w. The ques-
tion of establishing ISS properties under relaxed excitation
conditions is left as future research.

Proposition 5: Given δ, γ1, γ2 > 0 such that γ1 6= γ2,
and assume the unknown parameter θ∗ ∈ Rn is constant.
If the regressor t 7→ φ(t) is δ-persistently exciting, with∫ σ+δ
σ

φ(u)φ>(u)du ≥ ηI for some η > 0 and for all σ ≥ 0,
there exists φM ≥ 0 such that |φ(s)| ≤ φM for all s ∈ R≥0
and if the constants δ, γ1, γ2 satisfy conditions (12)-(13), then
any solution z̃ to H̃ from z(0, 0) ∈ X0 = {z̃ ∈ X : θ1 =
θ2, τa = τb = q = 0} satisfies

|z̃(t, j)|A ≤ ρ(j)(β(|z̃(0, 0)|A, t) + α1(|w|∞))

+(1− ρ(j))(α2(|w|∞) + α1(|w|∞)) (21)

with ρ(0) = 1 and ρ(j) = 0 for j ∈ N>0,
β(s, t) = exp(δ) exp(−t)s, α1(s) = max{γ1, γ2}φM κ

λs
and α2(s) =

(
(1− κ1κ2)−1(γ1 + γ2) + γ2

)
φM

κ
λs with

κ1 =
√

1− 2ηγ1
(1+φ2

Mγ1δ)2
and κ2 =

√
1 +

2γ2φ2
Mδ

(1−φ2
Mγ2δ)2

.

Remark 4: It can be seen from (21) that while the hy-
brid estimator makes it possible to estimate the unknown
parameter at the first jump (t, j) = (δ, 1) in the noise-free
case, the estimation error at the first jump in the noisy case is
bounded by (1−κ1κ2)−1(γ1+γ2)φM |w|∞ κ

λ+γ2φM |w|∞ κ
λ .

Hence, the estimation error in the noisy case is larger when
the term (1−κ1κ2) is smaller. Then, to make the estimation
error smaller at the second jump, the idea is to select the
parameters δ, γ1 and γ2, to make the term κ1κ2 closer to 0
while ensuring the satisfaction of conditions (12)-(13).

VI. EXAMPLES

A. Constant parameter with excitation on finite time interval

Consider the linear regression model in (1) with θ∗ =
(1, 1) and φ(t) = [φ1(t), φ2(t)]>, where φ2(t) =
exp(−0.6t) and φ1 is given by φ1(t) for t ∈ [0, 2] and
φ1(t) = 0 if t > 2. It is clear that the regressor φ is
not persistently exciting, so the classical gradient descent
algorithm presented in (4) cannot be applied. Moreover, we
have that φ is square integrable, so the result presented in [5]
cannot be applied either. Finally, the system does not satisfy
the conditions in algorithms 1 and 2 in [6]. It can also be
seen that φ is only exciting over the time interval [0, 2].
The parameters for the simulations are given by γ1 = 0.05,
γ2 = 0.5 and δ = 1 and the initial conditions are chosen
from X0 with θ1(0, 0) = θ2(0, 0) = (7, 5). One can check
that conditions (12)-(13) are satisfied.

The simulation results2 are shown in Figure 1. The solid
lines represent the estimation error of both parameters in the
noise free case, w(t) = 0, and the dashed lines represent a
noise given by w(t) = 6 sin(10t). We can see that in the
noise free case, the parameter error converges to zero in 1
second. In the noisy case, the proposed hybrid algorithm
generate robust bounded trajectories.

2Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/FinitetimeConstantparameter
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Fig. 1: Evolution of the parameter estimation error with and
without noise for unknown constant parameters

B. Piecewise constant parameter with persistency of excita-
tion

We apply the proposed hybrid algorithm for the case of a
piecewise-constant unknown parameter. Consider the linear
regression model in (1) with θ∗ = 3 on the time interval
[0, 7π], θ∗ = 1 on the time interval (7π, 35π2 ], and θ∗ = −3
on the time interval ( 35π

2 ,+∞). The regressor is given by
φ(t) = sin(t). One can check that φ is 2π-exciting. Then,
in view of Theorem 2, the period δ for the hybrid estimator
needs to satisfy δ ≥ 2π. For the sake of simplicity, we choose
δ = 2π which is consistent with the requirement given in
(17), since mink∈{1,2,3}{dk+1 − dk} = 24π − 35π

2 = 13π
2 .

Following the construction in Theorem 2, the sequence {dk}
is given by d0 = 0, d1 = 7π, d2 = 35π

2 , d3 = +∞. The
parameters for the simulations are given by γ1 = 0.3, and
γ2 = 0.7 and the initial conditions are chosen from X0

with θ1(0, 0) = 9, θ2(0, 0) = 9. The simulation results3

are shown in Figure 2 (we are only showing the trajectory
of θ̃1). The solid blue line represents the noise-free case,
w(t) = 0, and the dashed red line represents a noise given
by w(t) = 2 sin(2t). Let us first describe the evolution of
the trajectory in the noise free case. The first convergence
of the parameter error to zero occurs at δ = 2π = 6.28.
The parameter θ∗ change its value at t = 7π and the
second convergence of the parameter error to zero occurs
at t = 31.42. It can be seen that the difference between
the second convergence to zero and the first change of the
parameter is less than 2δ = 4π, (31.42− 7π = 9.42 ≤ 2δ).
Finally, the parameter θ∗ changes its value at t = 35π

2 and
the third convergence of the parameter error to zero occurs
at t = 62.83, and one can again check that the difference
between the third convergence to zero and the second change
of the parameter is less than 2δ. In the noisy case, the hybrid
algorithm generates robust bounded trajectories.

VII. CONCLUSION

In this paper, a robust hybrid finite time parameter esti-
mator is proposed. We have shown that the proposed hybrid

3Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/FinitetimePiecewiseconstantparameter
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Fig. 2: Evolution of the parameter estimation error with and
without noise for unknown piecewise-constant parameters

estimator allows for finite time convergence, while only
requiring the regressor to be exciting on a finite interval.
Moreover, robustness with respect to time-varying measure-
ments noise is analysed using tools from hybrid systems
theory. Finally, numerical examples are provided, showing
the practicality of the proposed approach. In future work we
will develop finite-time parameter estimators for the classical
MRAC model.
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