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Abstract: In this paper, we consider the problem of computing multidimensional interval
controlled invariants for nonlinear input-affine systems. We first present sufficient conditions
for an interval to be controlled invariant. Then, we introduce the concept of local framers, based
on which we present a sound algorithm to compute interval controlled invariants. Finally, we
show how the proposed framework makes it possible to provide safety guarantees when using
deep neural networks, either as a model or a controller of nonlinear systems. Illustrative examples
are provided showing the merits of the proposed approach and its scalability properties.

Keywords: Invariance, nonlinear systems, framers, neural networks.

1. INTRODUCTION

Controlled invariance plays an important role in control
theory (Blanchini and Miani [2008]). The notion of con-
trolled invariance reflects the ability to control the system
so that all trajectories initialized in a set remain there for
all future time. Formulation and definitions of the concept
of controlled invariance of a set are summarized in (Aubin
[2009], Blanchini and Miani [2008]) for continuous-time
and discrete-time systems, and in (Chai and Sanfelice
[2020]) for hybrid systems. For continuous-time systems,
different approaches have been proposed in the literature
to compute controlled invariants. In (Blanchini and Mi-
ani [2008]) controlled invariants are obtained as sublevel
sets of Lyapunov-like functions. Controlled invariants for
polynomial systems have been investigated using linear
programming in (Korda et al. [2014]). For general nonlin-
ear systems, polytopics controlled invariants are computed
in (Cannon et al. [2003]) by embedding the nonlinear dy-
namics into linear ones. Other approaches have been pro-
posed recently using symbolic control techniques (Saoud
[2019], Tabuada [2009]).

In this paper, we are interested in the study of multidimen-
sional interval (or simply interval) controlled invariants for
a class of nonlinear input-affine systems. To the best of
the authors knowledge, only monotone systems have been
considered when dealing with interval controlled invari-
ants. The authors in (Abate et al. [2009]) are dealing with
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monotone autonomous multi-affine systems and in (Meyer
et al. [2016]) the authors present an approach for the
computation of robust controlled invariants for monotone
systems with inputs. In this paper, a new approach to
compute interval controlled invariants that is applicable
to a class of nonlinear input-affine systems is proposed.
First, we present sufficient conditions for an interval to
be controlled invariant. Then, we introduce the concept
of local framer and present a sound algorithm to compute
interval controlled invariants. Finally, we show how the
proposed approach can be used to ensure invariance when
using deep neural networks for the purpose of approxima-
tion and control of continuous-time nonlinear input-affine
systems. To validate the practicality of the proposed we
consider the control problem of a Kuramoto oscillator and
an agent moving in a 2-D plane.

The remainder of this paper is organized as follows. In
Section 2 we introduce the class of systems considered
and sufficient conditions for an interval to be controlled
invariant. In Section 3, we present applications of the
proposed framework to safe deep neural networks approx-
imation and control. Finally, Section 4 presents numerical
results validating the merits of the proposed approach.
Due to space constraints, the proofs are omitted and will
be published elsewhere.

Notation: The symbols N, R, R≥0, and R≤0 denote the
set of positive integer, real, non negative real, and non-
positive real numbers, respectively. Given vectors xa, xb ∈
Rn, xa ≤ xb stands for xai ≤ xbi for all i ∈ {1, 2, . . . , n} and
xa < xb stands for xai < xbi for all i ∈ {1, 2, . . . , n}. Using
this partial order, we define a multidimensional interval
set as follows: for x, x ∈ Rn, with x ≤ x, [x;x] = {x ∈
Rn | x ≤ x, x ≥ x} and (x;x) = {x ∈ Rn | x <
x, x > x}. Given a map f : Rn → Rm and a compact



set A ⊂ Rn, f(A) = {y ∈ Rm | ∃x ∈ A and f(x) = y}
is the reachable set from the set A under the map f .
Given two sets A,B ⊂ Rn, the set A + B represents the
Minkowski sum of the sets A and B, which is defined
as A + B = {a + b | a ∈ A, b ∈ B}. For x ∈ R,
z = (z1, z2, . . . , zn−1) ∈ Rn−1, and i ∈ {1, 2, . . . , n}, we use
dx, zei to denote the unique element y = (y1, y2, . . . , yn) ∈
Rn such that yi = x, yj = zj for all j ∈ {1, 2, . . . , i −
1} and yj = zj−1 for all j ∈ {i + 1, i + 2, . . . , n}, i.e.
dx, zei = (z1, z2, . . . , zi−1, x, zi, . . . , zn−1) ∈ Rn.

2. CONTROLLED INVARIANTS

2.1 Nonlinear input-affine systems

Consider a nonlinear input-affine system Σ defined by

ẋ = f(x) + g(x)u (1)

where x = (x1, x2, . . . , xn) ∈ X ⊂ Rn is the state and u ∈
U = [U ;U ] ⊂ Rm is the control input. The functions f and
g are locally Lipschitz, where U ,U ∈ Rm. The trajectories
of (1) are denoted by Φ(., x0, u), where Φ(t, x0, u) is the
state reached at time t ∈ R≥0 from the initial state x0

under the control input u : R≥0 → Rm. When the control
inputs of system (1) are generated by a state-feedback
controller κ : Rn → U , the dynamics of the closed-loop
system are given by

ẋ = f(x) + g(x)κ(x) (2)

and its trajectories from x0 are denoted by Φκ(., x0). We
first have the following standard assumption on the con-
troller κ ensuring uniqueness and completeness of maximal
trajectories of the closed-loop system.

Assumption 1. The controller κ : X → U is such that
from any initial condition x0 ∈ X , the system (2) admits
a unique solution Φκ(., x0) originating from x0 defined for
all t ≥ 0. •

The following local control property is employed in the
main results of this section.

Assumption 2. System (1) can be written as follows: for
each i ∈ {1, 2, . . . , n}

ẋi = fi(x) + gi(x)ui, (3)

with x = (x1, x2, . . . , xn) ∈ X ⊂ Rn and u =
(u1, u2, . . . , un) ∈ U ⊂ Rm, where ui ∈ Ui = [U i;Ui], and
U i (respectively, Ui) is the i-th component of U (respec-
tively, U). •

Intuitively, the local control property in Assumption 2
means that every component of the control input directly
influences only a single component of the state in (1).
This property can be more exhaustively written as follows.
Expressing g as

g(x) =


g11(x) g12(x) . . . g1m(x)
g21(x) g22(x) . . . g2m(x)

...
...

. . .
...

gn1(x) gn2(x) . . . gnm(x)


it can be seen that if there exists a column of the matrix
g(x) with two nonzero elements in the i-th column, ui
will affect two state components of x = (x1, x2, . . . , xn).
Similarly, if the column g∗i is zero, then the system does

not depend on ui. Hence, system (1) satisfies the local
control property in Assumption 2 if and only if each
column of the matrix g has only one nonzero element.

For the system in (3), ui ∈ Ui, i ∈ {1, 2, . . . , n}, represents
all input components with a direct influence on xi. With
some abuse of notation, we rewrite the dynamics of each
xi, i ∈ {1, 2, . . . , n}, in (3) as follows:

ẋi = fi(xi, zi) + gi(xi, zi)ui (4)

with zi = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1, i ∈
{1, 2, . . . , n}. For i ∈ {1, 2, . . . , n}, we define the linear
map πi,1 : Rn → R and πi,2 : Rn → Rn−1 such that for all
x = (x1, x2, . . . , xn), πi,1(x) = xi and πi,2(x) = zi. In the
following, we will denote Xi = πi,1(X ) and Zi = πi,2(X ).

Remark 1. Let us mention that in some cases, even if
Assumption 2 is not satisfied by the original system, one
can find a change of coordinates ensuring Assumption 2
for the transformed system.

2.2 Sufficient conditions for controlled invariance

In this section we provide a result for the computation
of controlled invariants for the considered class of sys-
tems. First, we recall the concept of controlled invariant
(Blanchini and Miani [2008]). In simple words, a controlled
invariant set is a set for which there exists a controller such
that if the state of the system is initialized in this set then
its solutions remain there for all time.

Definition 1. The set K ⊆ X is said to be a controlled
invariant for the system Σ in (1) if there exists a controller
κ : K → U such that, for all x0 ∈ K, each solution
Φκ(., x0) : R≥0 → X satisfies Φκ(t, x0) ∈ K for all t ∈ R≥0.
When this property holds, κ is said to be an invariance
controller for the system Σ and the set K.

The following result provides a characterization of con-
trolled invariance of a set K given by an interval. The
invariance controller is designed by exploiting the sign of
the nonlinear functions f and g in the boundary of K.

Theorem 1. Suppose that the nonlinear system Σ defined
in (1) satisfies Assumption 2. Let K ⊆ X be an interval
defined as K = [x;x], where x < x. The set K is a
controlled invariant for the system Σ if, for each i ∈
{1, 2, . . . , n}, there exist ui, ui ∈ Ui such that

fi(xi, [zi; zi]) + gi(xi, [zi; zi])ui ⊂ R≥0 (5)

fi(xi, [zi; zi]) + gi(xi, [zi; zi])ui ⊂ R≤0 (6)

where fi and gi are given as in (4).

A graphical representation of the conditions in Theorem 1
is provided in Figure 1.

Remark 2. At times, we may have that, for some i ∈
{1, 2, . . . , n}, gi(x) = 0 for all x ∈ X . In such a case, con-
ditions (5) and (6) reduce to, respectively, fi(xi, [zi; zi]) ⊂
R≥0 and fi(xi, [zi; zi]) ⊂ R≤0, whose satisfaction solely
depends on the properties of f alone.

Theorem 1 provides theoretical guidelines to compute
interval controlled invariants. The main difficulty is to
provide an efficient algorithmic procedure to check con-
ditions (5) and (6). Indeed, the difficulty lies in the fact
that the sets fi(xi, [zi; zi]), gi(xi, [zi; zi]), fi(xi, [zi; zi]),
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Fig. 1. A graphical representation of the conditions in The-
orem 1 for a two dimensional system. The vector fields
are pointing toward the interior of K or tangentially
to K at points in the boundary of the interval K.

and gi(xi, [zi; zi]) are difficult to compute numerically for
general nonlinear functions f and g.

In the following, we introduce the concept of local framers,
and show how this concept makes it possible to check the
satisfaction of conditions (5) and (6).

2.3 Local framers and controlled invariance

The concept of framer 1 has been extensively used for the
construction of interval observers (Moisan et al. [2007])
since they allow to provide bounds for the unknown state.

Definition 2. Given a set X ⊂ Rn and a function f : X →
Rm, a local framer of f is given by a family of collections
of pair of maps f

i
, f i : Xi×Zi×Zi → R, i ∈ {1, 2, . . . , n},

such that for all xi ∈ Xi and for all zi, zi ∈ Zi, with
zi ≤ zi, we have

fi(xi, [zi; zi]) ⊆ [f
i
(xi, zi, zi); f i(xi, zi, zi)] (7)

where fi : X → R is the i-th component of the function f .

Next, we show how the existence of a local framer allows to
compute interval controlled invariants for the considered
class of systems. The issue of computing local framers is
discussed Remark 3.

Proposition 1. Suppose that the system Σ defined in (1)
satisfies Assumption 2. Let f

i
, f i (respectively, g

i
, gi),

i ∈ {1, 2, . . . , n}, be a local framer of f (respectively, g).
Let K ⊆ X be an interval defined as K = [x;x], where
x < x. The set K is a controlled invariant for the system
Σ if, for each i ∈ {1, 2, . . . , n}, there exist ui, ui ∈ Ui such
that {

f
i
(xi, zi, zi) + g

i
(xi, zi, zi)ui ≥ 0 if ui ≥ 0

f
i
(xi, zi, zi) + gi(xi, zi, zi)ui ≥ 0 if ui < 0

(8)

{
f i(xi, zi, zi) + gi(xi, zi, zi)ui ≤ 0 if ui ≥ 0

f i(xi, zi, zi) + g
i
(xi, zi, zi)ui ≤ 0 if ui < 0

(9)

1 The same concept has been used in interval arithmetic under the
name of interval enclosure function (Jaulin et al. [2001])

The result in Proposition 1 leads to the following algo-
rithm.

Algorithm 1: Controlled invariance

Input: Functions f and g of a system Σ as in (1) and
an interval K = [x;x] with dimension n.
Output: True, if K is a controlled invariant for Σ.
begin
for i = 1 : n

Compute local framers:
f
i
(xi, zi, zi), gi(xi, zi, zi), f i(xi, zi, zi),

gi(xi, zi, zi)
Set bi = 1 if conditions (8) and (9) of Proposition 1

are satisfied, otherwise set bi = 0
end for

b =
n∧
i=1

bi

return True if b = 1.

Remark 3. Algorithm 1 is linear with respect to the state
space dimension. Indeed, the computational complexity is
given by O ((α+ β)n), where n represents the state-space
dimension, α represents the complexity to compute the
local framer, and β represents the complexity to check (8)-
(9) in Algorithm 1.

The following result characterizes the class of possible
invariance controllers enforcing conditions (8) and (9) of
Proposition 1.

Corollary 1. Suppose that the system Σ defined in (1)
satisfies Assumption 2. Let f

i
, f i, i ∈ {1, 2, . . . , n}, be a

local framer of f . Similarly, let g
i
, gi, i ∈ {1, 2, . . . , n},

be a local framer of g. Let K ⊆ X be an interval
defined as K = [x;x], where x < x. If the set K is a
controlled invariant for the system Σ, then any continuous
function κ : X → U satisfying Assumption 1 with
κ(x) = (κ1(x), κ2(x), . . . , κn(x)) and κi : X → Ui, i ∈
{1, 2, . . . , n}, satisfying

κi(x) ∈


{ui ∈ Ui | condition (8) holds } if xi = xi
Ui if xi ∈ (xi;xi)

{ui ∈ Ui | condition (9) holds } if xi = xi

is an invariance controller for the system Σ and the set K.

Remark 4. The continuity of the controller κ in Corol-
lary 1 can be dropped, at the cost of potentially more
restrictive conditions. Indeed, in view of ([Aubin, 2009,
Theorem 5.2.1]), conditions (8) and (9) do not need to
be satisfied only at the boundary of the set of interest
K, but also on the external part of a sufficiently small
neighborhood of the set K.

Remark 5. (On the computation of local framers). The
construction of local framers can be done for general
nonlinear functions using tools from interval arithmetic.
If a function f : Rn → Rn can be expressed as a
finite composition of the basic operators {+,−,×, /} and
elementary functions (e.g., sin, cos, exp, log, . . .), a local
framer for f can be constructed using the natural inclusion
approach in ([Jaulin et al., 2001, Section 2.4]) by replacing
each variable and each operator or function by their
interval counterparts.



3. APPLICATIONS

In this section, we show how the proposed approach can
be used to ensure safety when using deep neural networks
for the purpose of approximation and control for the
considered class of systems.

3.1 Safe deep neural networks approximation of continuous
time dynamical systems

It is well known that deep neural networks (DNNs) can be
used as universal approximators of static functions (Hornik
[1991]). Indeed, any continuous function can be approxi-
mated over a compact set up to a desired level of accuracy
by the selection of suitable activation functions and an
adequate number of hidden layer neurons. Motivated by
this property, DNNs have been extensively used in the
control community as models for complex systems, where
the unknown dynamics are generally learned using a DNN
to be used for control purposes, ([Lewis et al., 2020, Section
6-2], Bansal et al. [2016]). Since DNNs approximation
results are valid as long as the state of the system belongs
to the compact set on which the data have been collected,
one need to ensure, a priori, that the trajectories of the
closed-loop controlled system will always remain in that
compact set. In this section, we first start by presenting
some preliminaries on DNNs, then we formulate the safe
DNNs approximation problem and finally propose a solu-
tion using the tools presented in the previous section.

Preliminaries on deep neural networks: In this paper we
assume that the DNN is a feedforward neural network. A
feedforward neural network has N0 = n̄ input neurons,
L hidden layers, with N l, l ∈ {1, 2, . . . , L}, neurons per
hidden layer, and one output layer with NL+1 = m̄ output
neurons. The neural network N : Rn̄ → Rm̄ can be
formally defined for ξ ∈ Rn̄ as follows:

N (ξ) = aL+1 ◦ fL+1 ◦ aL ◦ fL ◦ . . . ◦ a1 ◦ f1(ξ) (10)

where, for each l ∈ {1, 2, . . . , L + 1}, al is the activation
function and each f l is an affine transformation of the
output of the previous layer given by

f l(x) = W lx+ bl (11)

for each l ∈ {1, 2, . . . , L+ 1}, the matrix W l and the offset
vector bl have the following size:

W l ∈


RN

1×n̄ if l = 1

RN
l×N l−1

if l ∈ {2, 3, . . . , L}
Rm̄×N

L

if l = L+ 1

(12)

bl ∈

{
RN

l

if l ∈ {1, 2, . . . , L}
Rm̄ if l = L+ 1

(13)

The activation function of the output layer, aL+1, is the
identity map from Rm̄ to Rm̄.

Problem statement: Given the system Σ defined in (1)
with the functions f and g modeled as DNNs Nf and Ng,
where the DNNs Nf and Ng have been learned using the
data collected on a compact interval K ⊆ Rn, provide a
collection of controllers 2 κ : K → U , ensuring that the set
2 We are providing here a collection of controllers ensuring the safety
of the closed-loop system, among these controllers, one can choose
one allowing to achieve a higher level specification such as stability
or more complex logic specification (Tabuada [2009]).

K is an invariant for the closed-loop system ΣN defined
by

ẋ = Nf (x) +Ng(x)κ(x) (14)

Solution strategy: To provide a solution to our problem,
we will follow the approach proposed in Section 2. The
main ingredient used to compute controlled invariants are
the local framers.

In the following, we will briefly describe how the approach
proposed in the toolbox ReluVal (Wang et al. [2018]) can
be adapted to efficiently compute accurate local framers
for DNNs. Let us mention that ReluVal works only with
ReLU 3 activation functions. The approach of ReluVal is
made of three main ingredients:

• Symbolic interval propagation: it consists of a layer-
by-layer application of the natural inclusion approach
to the linear map (11). Indeed, if we consider the layer
l of the DNN, the local framer of the linear map f l

in (11) is given for i ∈ {1, 2, . . . , n}, xl−1
i ∈ Xi and

zl−1
i , zl−1

i ∈ Zi as follows:

f l
i
(xl−1
i , zl−1

i , zl−1
i ) = W l

+dxl−1
i , zl−1

i ei +

W l
−dxl−1

i , zl−1
i ei + bl

f
l

i(x
l−1
i , zl−1

i , zl−1
i ) = W l

+dxl−1
i , zl−1

i ei +

W l
−dxl−1

i , zl−1
i ei + bl (15)

where for the matrix A ∈ Rn×m the matrices A+ and
A− are defined for i, j ∈ {1, 2, . . . , n} as (A+)ij =
max{Aij , 0}, and (A−)ij = min{Aij , 0}.

• Concretization: the ReLU function is then applied
to the symbolic equations in (15) and we distin-

guish three cases: if f l
i
(xl−1
i , zl−1

i , zl−1
i ) > 0, we keep

the symbolic dependency on the input variables. If

f
l

i(x
l−1
i , zl−1

i , zl−1
i ) ≤ 0 we concertize to 0. Finally, if

f l
i
(xl−1
i , zl−1

i , zl−1
i ) ≤ 0 and f

l

i(x
l−1
i , zl−1

i , zl−1
i ) ≥ 0

then while passing the local framers through the
ReLU, we can no longer keep the symbolic represen-
tation. Therefore, we concretize the values of the local
framers.

• Refinement: to improve the precision of the local
framer, an iterative refinement is performed, through
the use of bisections.

Once the local framers are computed, we rely on the
result of Corollary 1 to provide a collection of controllers,
ensuring that the set of interest K is an invariant for the
closed-loop system.

3.2 Safety verification of deep neural network controllers
for continuous-time dynamical systems

DNNs have been extensively used as controllers in the
control community when dealing with complex and chal-
lenging dynamical systems (Koopman and Wagner [2017],
Sallab et al. [2017]). Motivated by the lack of formal
guarantees when using DNNs (as discussed in the previous
subsection), in this section, we present an approach to
verify invariance properties of dynamical systems under
control of continuous-time DNN controllers with ReLU
activation functions.
3 For x ∈ R, Relu(x) = max{0, x}.



Problem statement: Given the system Σ defined in (1),
an interval K ⊆ Rn, a DNN continuous-time controller
N : X → U , which has already been trained, verify
whether the set K is an invariant of the closed-loop system
given by

ẋ = f(x) + g(x)N (x) (16)

Solution strategy: To provide a solution to this control
problem, we follow the approach proposed in Section 2
and use local framers both for the system dynamics and
the controller. The following corollary of Proposition 1
summarizes the main idea.

Corollary 2. Suppose that the system Σ defined in (1)
satisfies Assumption 2. Let f

i
, f i (respectively, g

i
, gi),

i ∈ {1, 2, . . . , n}, be a local framer of f (respectively, g).
Let K ⊆ X be an interval defined as K = [x;x], where
x < x. Let N be the already trained DNN controller
and let N i,N i, i ∈ {1, 2, . . . , n}, be a local framer
for N (which can be constructed, as discussed in the
previous subsection). The set K is a controlled invariant
for the closed-loop controlled system in (16) if the following
conditions are satisfied: 4

f
i
+ min{g

i
N i, giN i, giN i, giN i} ≥ 0

f i + max{g
i
N i, giN i, giN i, giN i} ≤ 0

4. EXAMPLES

4.1 Kuramoto oscillator

The Kuramoto oscillator has many applications rang-
ing from automated vehicle coordination to power net-
works (Dorfler and Bullo [2012]). The fully interconnected
Kuramoto model consists of n phase oscillators with state
θi, i ∈ {1, 2, . . . , n}, evolving according to

θ̇ = f(θ) + g(θ)u (17)

with f(θ) = w + K
n φ(θ) and g(θ) = 1, where θ =

(θ1, θ2, . . . , θn) ∈ X = [0; 2π]n and w = (w1, w2, . . . , wn) is
the natural frequency of the oscillators. In the simulations,
wi, i ∈ {1, 2, . . . , n} is randomly chosen in the set [0, π].
The map φ : Rn → Rn is given by

φ(θ) =

(
n∑

j=1

sin(θj − θ1),

n∑
j=1

sin(θj − θ2) . . . ,

n∑
j=1

sin(θj − θn)

)
.

The constant K = 2 is the coupling strength, and control
input u = (u1, u2, . . . , un) with ui ∈ [−3.5; 2], i ∈
{1, 2, . . . , n}. The proposed model satisfies Assumption 2
with fi and gi, i ∈ {1, 2, . . . , n}, given by fi(θ) = wi +

K
n

n∑
j=1

sin(θj − θi) and gi(θ) = 1.

The objective is to construct a controller allowing to keep
the trajectories of the closed loop system in the safe set
K = [π3 ; 2π

3 ]n. Safety of Kuramoto oscillators has been
addressed recently in (Jagtap et al. [2020]), where the
authors use compositional barrier certificates, which can
be constructed only under a small-gain like condition. In
this paper we do not rely on such type of conditions.

4 The dependence of the functions f
i
, f i, gi

, gi and N i,N i on xi,zi
and zi) is omitted to improve readability.

(a) Evolution of the state of the Kuramoto oscillator with
n = 1000 using a bang-bang controller

(b) Evolution of the input of the Kuramoto oscillator with
n = 1000 using a bang-bang controller

To check that the set of interest K is a controlled invari-
ant, we use Algorithm 1. The computation of the local
framer have been conducted using the natural inclusion ap-
proach ([Jaulin et al., 2001, Section 2.4]). Then, we select a
controller realization from the set of all possible controllers
described in Corollary 1. For simulations 5 , we use a bang-
bang control where we simply keep the previous value of
u. Figure 2a shows the evolution of the state variables. For
each oscillator, the initial condition is chosen randomly in
the interval θi(0) = [π3 ; 2π

3 ], i ∈ {1, 2, . . . , n}, and one can
see that the overall safety objective is satisfied. On Fig-
ure 2b we represent the input signal generated by the bang-
bang controller. To check the controlled invariance using
Algorithm 1, the computation time is less than 2 minutes
for 1000 oscillator, which shows the practical scalability
of the proposed approach. The numerical implementations
have been done in MATLAB, Processor 2.8 GHz Intel Core
i7, Memory 8 GB 1333 MHz DDR3.

4.2 Safe deep neural network approximation

We consider the nonlinear system Σ described by:[
ẋ1

ẋ2

]
= f(x) + g(x)u :=

[
x2 sin(k1x1)
x1 cos(k2x

2
2)

]
+

[
u1

u2

]
This system represents an agent moving in the 2-D plane
with position x = (x1, x2). The authors in (Hou et al.
[2009]) assume that the dynamics of Σ are unknown and
use a single hidden layer neural network to learn the model.
In this paper, we approximate the system using a DNN

5 Files for this simulation can be found at the following address:
https://github.com/HybridSystemsLab/InvarianceKuramoto



model, i.e, the function f is approximated by a DNN
Nf 6 . The data is collected on the state space of interest
X = [−2; 2]×[−2; 2], where the input space is given by U =
[−2; 2] × [−2; 2]. In view of Problem 3.1.2, the objective
is to ensure the safety of the DNN approximation result.
More precisely, the objective is to provide a collection of
state-feedback controllers κ : X → U ensuring that the set
of interest X , on which the data has been collected is an
invariant for the closed loop system

ẋ = Nf (x) + κ(x). (18)

For the simulations 7 , the function f is approximated by
a 2 hidden layers NN (L = 2), The number of neurons
each hidden layer is 4 (N1 = N2 = 8). The ReLU
activation function is used in the NN hidden layers with a
randomly initialized input weights. The training has been
done using the Matlab Deep Learning toolbox. We used
a feedforward DNN with Levenberg-Marquardt training
algorithm and Mean Squared Error as a loss function.
Once the approximative DNN Nf is obtained, we follow
the approach proposed in Section 3.1.3. We first use the
ReluVal toolbox (Wang et al. [2018]) to compute the local
framers. Then, we rely on Algorithm 1 and Corollary 1 to
provide a collection of controllers, ensuring that the set
of interest X is an invariant for the closed-loop system
in (18). The collection of possible controllers is given by
κ : X → U with κ(x) = (κ1(x), κ2(x)), where κi : X → Ui,
i ∈ {1, 2} satisfy

κ1(x) ∈


[1.9; 2] if x1 = −2

[−2; 2] if x1 ∈ (−2; 2)

[−2;−1.9] if x1 = 2

κ2(x) ∈


[0.6; 2] if x2 = −2

[−2; 2] if x2 ∈ (−2; 2)

[−2;−0.6] if x2 = 2

5. CONCLUSION

In this paper, we have presented an approach to the
computation of interval controlled invariants for nonlinear
input-affine systems using the concept of local framers.
Moreover, we have shown how the proposed approach
makes it possible to ensure safety properties when using
DNN representations for the purpose of modelling and
control. Illustrative examples are presented showing the
merits of the proposed approach and its scalability prop-
erties. In future works, we will address the question of
the computation of tight local framers, which will make
it possible to construct a complete algorithm. Moreover,
we will generalize the approach to deal with other set
structures beyond intervals used in this paper.
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