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ABSTRACT
In this abstract we describe a framework for computationally-aware
computing through set-valued model predictive control. Model-
predictive control (MPC) can enable multi-objective optimization
in real-time, though it depends on accurate models through which
future state values can be predicted. This abstract improves upon
existing MPC approaches in that it considers the state to be a set
(rather than a singleton in the state), allowing the trajectories to
be given by a sequence of sets. The framework is beneficial for
physical systems control where the uncertainty in future projection
can be attributed to both model error, and environmental or sensor
uncertainty, thus providing guarantees of performance, robustly.
We provide an overview of the framework, and include discussion
for its advantages.

CCS CONCEPTS
• Computer systems organization → Robotic control; Em-
bedded and cyber-physical systems.
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1 INTRODUCTION AND MOTIVATION
Model-Predictive Control (MPC) has successfully been applied to
many online control problems where system constraints and goals
can be expressed as a cost function. Through the use of a predictive
model that simulates a candidate input stream over a fixed time
horizon, an optimizer can select the input sequence that results
in an acceptably low (and in some cases, the lowest) cost accord-
ing to the function definition. Key limitations in the application
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of MPC emerge when using nonlinear models for which closed-
form optimized solutions cannot be pre-computed. In these cases,
there are competing concerns of achieving accurate predictions of
future behavior, while simultaneously performing rapid iteration
in selecting inputs to optimize those predictions. Previous work
has demonstrated the merits of leveraging trade-offs in accuracy
vs. computation speed at different regions of the state space. In par-
ticular, work by members of the proposing team has demonstrated
how simplifications in the system model can be accommodated [8]
if the execution frequency of the MPC system can be sufficiently
increased according to metrics for switching criteria between accu-
rate (but slow-to-compute) and less-accurate (but fast-to-compute)
models [7].

Despite these advancements in switching control that are respon-
sive to computation time, the approaches still rely on computing
single trajectories based on traditional dynamical models. In the
case of systems with uncertainty, the formulation of predictive
controllers requires models which are capable to capture system dy-
namics, constraints, and also system uncertainty, which may lead to
a spread in possible trajectories. This variability can be represented
by using a set based formulation.

In this abstract, we explore theoretical and practical challenges
for representing sets of behaviors as set dynamical systems [6]. If
successful, this new approach could result in an ability to oper-
ate within the limitations of models, providing confidence in safe
behaviors at runtime that are typically associated with verification.

2 FRAMEWORK
2.1 Model-Predictive Control
With a discrete-time control system described as 𝑥+ = 𝑔(𝑥,𝑢) where
𝑥 ∈ R𝑛 represents the state of the system (and 𝑥+ the next state),
and 𝑢 ∈ R𝑚 the control input, let 𝑔(·) define its true behavior. A
common approach to implement a discretized nonlinear MPC is
to use a model 𝑥+ = 𝑔(𝑥,𝑢) with 𝑔(𝑥,𝑢) ≈ 𝑔(𝑥,𝑢), in this way
approximating the discrete-time control system for the purposes of
prediction. Using this approximation model, the MPC framework
traditionally consists of defining a cost functional

J (x, u) =
𝐽 −1∑
𝑗=1

ℓ (𝑥 𝑗 , 𝑢 𝑗 ) +𝑉 (𝑥 𝐽 ) (1)

where ℓ (·) represents the stage cost and𝑉 (·) represents the terminal
cost, with the argument x of J denoting a given state trajectory
and u a control input signal to 𝑥𝑘+1 = 𝑔(𝑥𝑘 , 𝑢𝑘 ). With this cost
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functional, given an initial condition 𝑥◦, theMPC problem is defined
as selecting that input stream via the optimization

min
u∈𝑈 : 𝑥+=𝑔 (𝑥,𝑢),𝑥 (0)=𝑥◦

J (x, u) (2)

Various approaches such as Tube-based MPC [3] have provided
insights into how to keep a single trajectory within a set that defines
a tube of uncertainty. The approach we explore goes beyond the
uncertainty of a single trajectory (as defined by a set or tube) to
rather consider how a set’s shape can be predicted into future
timesteps using set dynamics.

2.2 Set-Valued Dynamics
Based on previous work [6], we express set-valued dynamics as

𝑋+ = 𝐺 (𝑋,𝑈 ) (3)

where 𝑋 is the set-valued state, and 𝑈 the set-valued input; we
describe 𝐺 : P(R𝑛) × P(R𝑚) ⇒ P(R𝑛), where P(𝑆) represents
the powerset of 𝑆 , as a set-valued map that defines the evolution of
the set-valued states.

With this basis (leaving additional formalisms and properties
of the above dynamics to previous work in [1, 4, 5]) we describe
set-valued analogs to the dynamics given in (1) and (2).

A set-based cost functional is defined as

J (X,U) =
𝐽 −1∑
𝑗=1

ℓ (𝑋 𝑗 ,𝑈 𝑗 ) +𝑉𝑓 (𝑋 𝑗 ) (4)

with each𝑋 𝑗 and𝑈 𝑗 representing the set-values at that time step,
ℓ : P𝐶 (R𝑛) ×P(R𝑚) → R≥0 is the stage cost, and𝑉𝑓 : P𝐶 (R𝑛) →
R≥0, with P𝐶 (𝑆) the set of all compact nonempty subsets of 𝑆 , is
the terminal cost. A sequence of compact nonempty sets X defines
the state trajectory, and a sequence of closed nonempty sets U is
the input.

If the calculation of the previous cost, along with the propagation
of the set-valued state using (3) are possible, then we pose the
analogous set-valued MPC problem as

min
(X,U) ∈𝑆 (𝑋0)

J (X,U) (5)

with the initial state defined as the set 𝑋0, and 𝑆 (𝑋0) expressing
the set of all solution pairs (X,U) with initial set 𝑋0.

3 OPPORTUNITIES AND CHALLENGES
If it is possible to describe a set-valued dynamics analog to MPC,
then there are several key advantages to the approach.

• Execution of set-valued MPC could provide runtime guaran-
tees that are typically associated only with system models
that have undergone verification analysis;

• The output solution pairs (X,U) could be compared to con-
straints that should be avoided (collision, etc.);

• Approximations 𝐺1 (·), 𝐺2 (·), etc., to the ideal system’s set-
valued dynamical model 𝐺 (·) that may be faster to compute
can be compared to an ideal model’s solution pairs—which
could help to determine what level of accuracy is required
to execute the system at runtime;

• Uncertainties in system execution and set-dynamics can be
lumped in prediction of future states; and

• Captured dynamical data could be fitted to sets providing
new opportunities for set-based system identification.

The framework for Set-Valued MPC has similar structure to tradi-
tional MPC, but in order to execute it, theoretical advancements
are needed.

Distance or error: In order to optimize a solution pair (X,U) in
comparison to a previous candidate, it is necessary to understand
what makes one candidate input set U lower cost than another
one—and in turn how to translate that change in cost to a change
in inputs that would result in lower cost.

Set-Valued MPC Properties: Under what conditions will a set-
valued MPC problem be stable? Can invariance be shown? What
is the computational cost of solving MPC for trajectories given in
terms of sets? Can these set-valued trajectories be approximated
for faster computing, and what would be the accuracy associated?

Approaches to demonstrate these properties, as well as defi-
nitions and formalisms that support the metrics and properties
required to explore concepts of stability, continue to see advance-
ment [2]. Results include simulations that demonstrate the analysis
concepts, and set-dynamical maps in the domain of car-like robot
control to validate the approaches.

4 CONCLUSIONS
Set-Valued MPC could provide a unique way in which families of
system behaviors (rather than individual trajectories) can be simu-
lated and explored. Promising approaches to theoretical advance-
ments in this area continue to be developed, and can be compared
to the properties of physical systems through families of inputs.
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