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Model Predictive Control (MPC) is an optimal control method that is at-
tractive for safe, efficient and goal based satellite operation. However, cur-
rent satellite systems have limited computation and thus standard MPC
approaches are limited. To overcome this, we propose a hybrid dynamical
systems framework to encompass both satellite and optimizer dynamics.
This enables a practical analysis of MPC and allows for user trade off be-
tween feasibility and optimality via tuneable parameters while retaining
asymptotic stability.
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1 INTRODUCTION AND MOTIVATION
Model Predictive Control (MPC) is an optimization-based, feedback
technique that has found success in chemical processing [5, 13],
automobiles [6, 9], unmanned aerial vehicles [14, 16], and satellites
[4, 10–12, 17–21]. Two common assumptions for MPC are (A1) that
the optimization needed for feedback is solved on time scales suffi-
ciently faster than the plant dynamics and (A2) the optimization is
solved exactly before the feedback action is enacted. This decouples
the computational complexity from the feedback, but is not practical
for general applications as optimization takes physical time and, if
too slow, the plant may “miss” when it must actuate. This work takes
the approach of combining the plant dynamics and optimization
into one hybrid dynamical system framework, allowing for a more
practical analysis of MPC and enabling a mechanism for user trade
off between computation, feasibility, and optimality.
There are limited MPC solutions that consider the explicit cou-

pling of the plant-optimization and its associated computational
restrictions. Some works treat computation as a fixed-time delay [3],
removing direct consideration of the optimization. The article [9]
takes a similar approach to this work by using a dynamical system
formulation of the optimization in the MPC loop, but computation
time is not directly taken into consideration. For restrictions that
prevent convergence to the exact optimum, articles such as [7, 15]
discuss using suboptimal MPC policies, but do not jointly consider
the computation time. This hybrid MPC solution herein is unique
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since it allows for a simultaneous investigation of computation time,
feasibility, optimality, and stability.

In this work, we will focus on satellite operations. The field is di-
verse in its applications, given its use in orbital transfers [17], station-
keeping [19], attitude control [12], in-space robotics [18], and ren-
dezvous, proximity operations and docking (RPOD) [4, 10, 11, 20, 21].
Many satellite processors are radiation hardened, which increases
their size, weight, and power while simultaneously reducing avail-
able processing (at least 5-10 times that of a standard computer) and
memory (most times less than 256 MB). Thus "instantaneous compu-
tation”, i.e assumption (A1), cannot apply. For these applications, it
is then sometimes preferred to have a solution that is feasible but not
quite optimal rather than take the extra time to obtain optimality, i.e.
violating assumption (A2). This work will enable such a philosophy.
Through the appropriate selection of parameters, the hybrid MPC
framework will, in general, enable users to prioritize feasibility or
optimality, all while retaining asymptotic stability for operations. In
addition, and in particular settings, this framework will allow near
optimal performance when implemented in real-world platforms.

2 PROBLEM FORMULATION AND MODELS
Consider two disjoint layers of dynamics. The first layer encom-
passes the dynamics of the physical system, namely, the satellite.
The second layer encompasses the optimization mechanics. MPC
connects the two by first using the lower layer to optimize, over a fi-
nite window, an objective function subject to constraints. A portion
of that optimal solution is then given to the upper layer to enact and
the process is repeated. Under proper assumptions, this produces
a stabilizing feedback action that yields an ever evolving optimal
path. This is the standard MPC formulation. However, we in this
work do not assume (A1) and (A2) previously as stated. The overall
problem is as follows:

Problem: Asymptotically stabilize the satellite to a desired set
point with practical optimality taking into account the computa-
tional constraints onboard the satellite.

Addressing the above leads to a compromise, either computation
at the price of optimality or vis, versa. In our proposed approach, this
is exemplified via a switching condition that halts the evaluation of
theMPC algorithm and allows the control input to execute first avail-
able input. Naturally, this coupling between the continuous-time
dynamics of the satellite model with the dynamics of the optimizer
leads to modeling the system as leveraging the hybrid inclusion
framework in [2]. The separate models are now defined, with the
proposed hybrid approach defined thereafter.

Upper Layer-Satellite Model: The satellite dynamics are special-
ized in this work to the controlled docking maneuver of one satellite
to a free-floating, uncontrolled satellite. In most applications and
under reasonable assumptions, this is analogous to stabilizing a
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linear-time invariant system with inputs to the origin (i.e. Clohessy-
Wiltshire equations [1]). We start with this model and then begin to
relax assumptions, increasing complexity, and thereby highlighting
the trade offs in computation.
Lower Layer-Optimization: At its core, MPC recursively enacts an

optimization solver to find the solution to a well-defined optimal
control problem (OCP). All solvers require some aspect of iteration,
and as such can be treated as their own system. In this work, the
solver is chosen as a dynamical system reformulation of gradient de-
scent with constraints [8]. Solving for the optimum then entails only
propagating the mathematical model capturing the optimization
algorithm until it approaches a neighborhood of the optimum. The
rate of convergence for this model is tuneable via a modeling param-
eter. This parameter is related to the magnitude of the “Newton-step”
or “velocity state” of the solver, and our preliminary work suggests
that under proper assumptions the rate is exponential.

3 HYBRID MPC APPROACH
The hybridmodel combines the satellite dynamicswith the continuous-
gradient optimization solver, see Figure 1. These two layers ideally
run in parallel, with the plant input held constant in sample-and-
hold between subsequent solvings. To enable the hybrid model, logic
and timer states are employed to indicate when the plant input is
updated and when to begin or stop the optimization solver.

The stopping condition is of particular importance, as it dictates
when the optimization stops and the satellite enacts the control. In
this work, it is based on the change in the cost. When this change
is smaller than the ratio between a small tolerance and the Newton-
step, then the solution is close to the optimum and can (though does
not have to) be executed. This small tolerance is another tuneable
parameter that relates to the trade off in computation.

The switch between the optimizer and the plant is governed by a
supervisor. When the solution is close to the optimum – as deter-
mined by the stopping condition – and a timer has reached a fixed
threshold, the supervisor updates the logic state, updates the plant
input with the first step of the solver input, and the timer is reset to
zero. Conversely, when the plant state is far from the optimum and
the timer reaches the fixed threshold, then the supervisor updates
the logic state, starts the optimization, and resets the timer to zero,
after which the optimization starts again.
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Fig. 1. The proposed hybrid approach to MPC taking into consideration
computational constraints onboard the plant.

This hybrid MPC approach is unique as it allows for the analy-
sis between computation costs and optimality via two parameters;
namely, the optimizer rate and the stopping threshold. In particular,

when the optimizer rate is large, the rate of convergence increases,
and it is hypothesized that this is at a cost of transients that may not
be close to the optimum or even feasible. In contrast, when stopping
threshold is large, the distance to the optimum may be greater at
the end of the process, but it is hypothesized that feasibility within
the optimizer can be retained easier. Irregardless of this choice, this
method will be demonstrated asymptotically stable.

4 ADVANTAGES AND RESEARCH QUESTIONS
From an applied perspective, this approach has several implications
for satellites. A specific example is in the computational require-
ments for docking and how they vary as a function of distance.
When distances between the chief and deputy are large, time be-
tween maneuvers are on the order of a quarter of an orbit (for Low
Earth Orbit, this is once ever 15 minutes, for Geostationary Orbit
this is once every 6 hours). Computation times can thus be longer
and maneuvers can focus on optimality. When close in for docking
however, maneuvers will need to happen at most every minute, if
not sooner, so feasibility is a focus and computation needs to be as
rapid as possible. This trade off for computation/optimality becomes
then a function of mission set and distance, which can be exploited
in this hybrid MPC formulation.
If successful, our proposed approach for MPC that is aware of

computations provides the following unique advantages:
• Integration of computational models in the feedback control
loop: This is typically not considered during control design.
A framework that allows modeling computing and physics
elements would lead to MPC algorithms that take into con-
sideration physical and computational constraints.

• Computational optimality and stability certificates: Thesewould
allow straightforward consideration of hardware platform
limits when implementing the control algorithm.

• Identifiable computation permits: These would determine the
computational needs and limitations for the actual platform
to implement the MPC algorithm.

• Varying computation for different objectives: Requirements for
computation could vary from objective to objective on the
same system using the same MPC algorithm.

At the same time, the approach challenges the standard practice
of feedback control design and demands new tools for analysis,
design, and simulation. In particular,

• Models of optimization schemes and stopping conditions: These
need to be modeled mathematically in finite-dimension. Tech-
niques to capture optimization algorithms using mathemati-
cal models and are amenable to the control theory are needed.

• Hardware key parameters: Platforms that run the algorithms
need to be systematically identified from the physical system
and incorporated in the models of computing. Algorithms to
automatically identify such hardware features are mandatory.

• Entire system, numerical simulation engines: These environ-
ments need to be developed to efficiently provide numerical
solutions that represent the behavior of the actual system.

To address these points and materialize the proposed framework, el-
ements from control theory, optimization, and computing hardware
have to be synergistically combined.

2



Towards Hybrid Model Predictive Control for Computationally Aware Satellite Applications CAADCPS ’21, May 18–21, 2021,

REFERENCES
[1] A. De Ruiter, C. Damaren, and J. Forbes. 2012. Spacecraft Dynamics and Control.

Wiley.
[2] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. 2012. Hybrid Dynamical

Systems: Modeling, Stability, and Robustness. Princeton University Press, New
Jersey. https://doi.org/~sricardo/index.php?n=Main.Books

[3] Lars Grüne and Jürgen Pannek. 2017. Nonlinear Model Predictive Control. Springer.
[4] Christopher Jewison, R Scott Erwin, and Alvar Saenz-Otero. 2015. Model predic-

tive control with ellipsoid obstacle constraints for spacecraft rendezvous. IFAC-
PapersOnLine 48, 9 (2015), 257–262.

[5] Jay H Lee and Brian Cooley. 1997. Recent advances in model predictive control and
other related areas. In AIChE Symposium Series, Vol. 93. New York, NY: American
Institute of Chemical Engineers, 1971-c2002., 201–216.

[6] Dominic Liao-McPherson, Mike Huang, Shinhoon Kim, Masanori Shimada, Ken
Butts, and Ilya Kolmanovsky. 2020. Model predictive emissions control of a diesel
engine airpath: Design and experimental evaluation. International Journal of
Robust and Nonlinear Control 30, 17 (2020), 7446–7477.

[7] Dominic Liao-McPherson, Marco M Nicotra, and Ilya Kolmanovsky. 2020. Time-
distributed optimization for real-time model predictive control: Stability, robust-
ness, and constraint satisfaction. Automatica 117 (2020), 108973.

[8] Marco M Nicotra, Dominic Liao-McPherson, and Ilya V Kolmanovsky. 2018. Em-
bedding constrained model predictive control in a continuous-time dynamic
feedback. IEEE Trans. Automat. Control 64, 5 (2018), 1932–1946.

[9] Peter Ortner and Luigi Del Re. 2007. Predictive control of a diesel engine air path.
IEEE transactions on control systems technology 15, 3 (2007), 449–456.

[10] Hyeongjun Park, Stefano Di Cairano, and Ilya Kolmanovsky. 2011. Linear Qua-
dratic Model Predictive Control Approach to Spacecraft Rendezvous and Docking.
In Proceedings of 21st AAS/AIAA Space Flight Mechanics Meeting, Spaceflight Me-
chanics, Part III of Advances in the Astronautical Sciences, Vol. 140.

[11] Christopher Petersen, Andris Jaunzemis, Morgan Baldwin, Marcus Holzinger,
and Ilya Kolmanovsky. 2014. Model Predictive Control and Extended Command
Governor for Improving Robustness of Relative Motion Guidance and Control. In

Proc. AAS/AIAA space flight mechanics meeting.
[12] Christopher D Petersen, Frederick Leve, and Ilya Kolmanovsky. 2017. Model pre-

dictive control of an underactuated spacecraft with two reaction wheels. Journal
of Guidance, Control, and Dynamics 40, 2 (2017), 320–332.

[13] S Joe Qin and Thomas A Badgwell. 1997. An overview of industrial model
predictive control technology. In AIche symposium series, Vol. 93. New York, NY:
American Institute of Chemical Engineers, 1971-c2002., 232–256.

[14] Arthur Richards and Jonathan How. 2004. Decentralized model predictive con-
trol of cooperating UAVs. In 2004 43rd IEEE Conference on Decision and Control
(CDC)(IEEE Cat. No. 04CH37601), Vol. 4. IEEE, 4286–4291.

[15] Pierre OM Scokaert, David Q Mayne, and James B Rawlings. 1999. Suboptimal
model predictive control (feasibility implies stability). IEEE Trans. Automat. Control
44, 3 (1999), 648–654.

[16] Nathan Slegers, Jason Kyle, and Mark Costello. 2006. Nonlinear model predictive
control technique for unmanned air vehicles. Journal of guidance, control, and
dynamics 29, 5 (2006), 1179–1188.

[17] Joseph A Starek and Ilya V Kolmanovsky. 2014. Nonlinear model predictive
control strategy for low thrust spacecraft missions. Optimal Control applications
and methods 35, 1 (2014), 1–20.

[18] Josep Virgili-Llop, Costantinos Zagaris, Richard Zappulla, Andrew Bradstreet,
and Marcello Romano. 2019. A convex-programming-based guidance algorithm
to capture a tumbling object on orbit using a spacecraft equipped with a robotic
manipulator. The International Journal of Robotics Research 38, 1 (2019), 40–72.

[19] Avishai Weiss, Uroš Kalabić, and Stefano Di Cairano. 2015. Model predictive
control for simultaneous station keeping and momentum management of low-
thrust satellites. In 2015 American Control Conference (ACC). IEEE, 2305–2310.

[20] Avishai Weiss, Ilya Kolmanovsky, Morgan Baldwin, and R Scott Erwin. 2012.
Model Predictive Control of Three Dimensional Spacecraft Relative Motion. In
2012 American Control Conference (ACC). IEEE, 173–178.

[21] Anonto Zaman, Alex Soderlund, Christopher Petersen, and Sean Phillips. 2021.
Autonomous Satellite Rendezvous and Proximity Operations via Model Predictive
Control Methods. In AIAA/AAS Spaceflight Mechanics Meeting.

3

https://doi.org/~sricardo/index.php?n=Main.Books

	Abstract
	1 Introduction and Motivation
	2 Problem Formulation and Models
	3 Hybrid MPC Approach
	4 Advantages and Research Questions
	References

