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Abstract—In this paper, we show that: 1) if the Krasovskii
regularization of a hybrid system H has complete and discrete
solutions, thenH has solutions with arbitrarily small separa-
tion between jumps under the influence of admissible state
perturbations; 2) if H is nominally well-posed and does not
have complete discrete solutions, then it does not have solutions
with vanishing time between jumps (such as Zeno solutions);
3) if, in addition, there exists a compact setA such that all
maximal solutions to H from A are complete, discrete and
remain in A, then all solutions converging toA have vanishing
time between jumps. The results in this paper demonstrate that
a good practice to avoid solutions with arbitrarily fast sampling
in Event-Triggered Control (ETC) is to ensure that the closed-
loop system is nominally well-posed and that it does not have
complete discrete solutions.

I. I NTRODUCTION

Event-Triggered Control (ETC) refers to a feedback strat-
egy in which sensors and actuators are sampled “only if
needed”. The main goal of this approach is to improve
the efficiency of control tasks by reducing the average
sampling frequency with respect to standard periodic sam-
pling approaches. Crucially, one loses direct control over
the sampling frequency, thus there is a lingering possibility
that the minimum time between samples – the minimum
intersampling time – does not satisfy hardware requirements.
For this reason, the design of event-triggered controllers
must demonstrate that such requirements are satisfied. In this
paper, we study the existence of solutions to ETC systems
that have arbitrarily fast sampling and, for that reason, cannot
meet any hardware requirements.

A. Hybrid Dynamical Systems

A large part of ETC has been developed within a model
of dynamical systems with impulsive dynamics that describes
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the behavior of dynamical systems using discontinuous func-
tions of continuous-time (see e.g. [1]–[10]).

On the other hand, the framework of hybrid dynamical
systems presented in [11] describes dynamical systems with
impulsive dynamics as solutions to systemsH of the form:

ξ̇ ∈ F (ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D
(1)

where ξ ∈ R
p is the state, the setC ⊂ R

p and the set-
valued mapF : Rp

⇒ Rp describe the continuous-time
dynamics and are therefore called the flow set and the flow
map, respectively, whereas the setD ⊂ Rp and the set-valued
mapG : Rp

⇒ Rp describe the discrete-time dynamics and
are called the jump set and the jump map, respectively.1 For
any given initial conditionξ in C, solutions can be extended
in continuous-time if there is any vector inF (ξ) that is
tangent toC. If, on the other hand,ξ belongs toD then
it may be extended in discrete-time by jumping. Solutions
to hybrid dynamical systems are therefore described using a
combination of continuous-time and discrete-time domains:
the hybrid time domain, which is defined below.

Definition 1. A subsetE ⊂ R≥0 × N is a compact hybrid
time domain if

E =

J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times0 = t0 ≤ t1 ≤ . . . ≤ tJ . It
is a hybrid time domain if for all(T, J) ∈ E,E ∩ ([0, T ]×
{0, 1, . . . , J} is a compact hybrid time domain.

Hybrid systems are able to represent any combination
of continuous and discrete time solutions, including purely
discrete solutions (which are characterized by having a hybrid
time domain that is a subset of{0}×N). For example, Zeno
solutions are solutions with infinite amount of discontinuities
(jumps) in finite continuous-time and they can be represented
either in continuous-time or in hybrid time. When described
on a hybrid time domain, the slice of the hybrid time domain
at the tail end of a Zeno solution is converging to{0} × N,
i.e., the same hybrid time domain of a complete discrete
solution. Suppose that we consider a sequence of solutions to
the hybrid system that is obtained from the tail end of a Zeno
solution in a way that the sequence converges. It depends on
the data ofH whether the sequence converges to a solution of
H or not but, ifH is nominally well-posed, then all bounded

1A set-valued mapM : Rp
⇒ Rp maps points inRp to subsets ofRp.

The fact that the flow and jump dynamics of a hybrid dynamical system are
presented in this way is done for greater generality, but in many cases these
are just differential and difference equations, respectively.



sequences of convergent solutions toH tend to a solution of
H, and, in that case, we can say that the sequence we just
constructed out of a Zeno solution converges to a complete
discrete solution toH. This is an intuitive explanation of the
results presented in Section III. The implication of this result
is that, if the hybrid system is nominally well-posed and it
does not have complete discrete solutions, then its bounded
solutions are not Zeno solutions. More generally, we can say
that it does not have solutions with time domain converging to
{0}×N, which we callsolutions with vanishing time between
jumps.

Remark. Since it is fairly cumbersome to check nominal
well-posedness of a hybrid system through the convergence
of sequences of solutions, it is often preferable to check that
the hybrid system satisfies the so-calledhybrid basic condi-
tions given in [11, Assumption 6.5], which imply nominal
well-posedness (c.f. [11, Theorem 6.8]).

B. ETC Systems as Hybrid Systems

It is instructive to look at existing ETC systems and
classify them according to the existence of discrete solutions.
In this direction, we borrow the definition of an ETC system
that is given in [12], whereξ := (x, e, η) is a state variable
comprised of the state of the plantx, the sampling errore
and an auxiliary variableη. The flow and jump maps are
given by

F (ξ) :=




f(x, e)
g(x, e)

h(x, e, η)


 G(ξ) :=




x
0

ℓ(x, e, η)


 (2)

for each ξ ∈ R
p. Under the assumption thatF and G

are continuous and thatC and D are closed, the ETC
system (2) is nominally well-posed. The paper [12] presents
five different ETC strategies that are encompassed by the
hybrid system (2). Each of the five ETC systems in [12] has a
semiglobal uniform positive lower bound to the intersampling
time outside of the attractorA, but in three of the five ETC
systems presented in [12] this property does not extend to
solutions fromA, due to the existence of complete discrete
solutions fromA. Another work that addresses the inter-event
separation properties in ETC systems is [13], and it considers
ETC systems of the form (2) without the auxiliary variable
η and withC andD given by:

C := {ξ ∈ R
p : ρ1(|e|) ≤ σ |x| + β}

D := {ξ ∈ R
p : ρ1(|e|) ≥ σ |x| + β}

whereρ1 is a class-K function,σ ∈ [0, 1) andβ ≥ 0. It is
possible to verify that whenβ > 0,

G(D) ∩D = ∅ (4)

thus there are no complete discrete solutions to (2). This im-
plies that there is a positive lower bound to the intersampling
time and that this property is robust to arbitrarily small noise,
which constitutes one of the main results in [13]. A thorough
analysis of (4) and its implications in the design of event-
triggered controllers is also provided in [14, Proposition3].

Condition (4) provides an easy way to check that there
are no complete discrete solutions to (1). In fact, when a
nominally well-posed hybrid system satisfies condition (4),

each of its bounded solutions has a positive lower bound
to the intersampling time, as proved in [15, Lemma 2.7].
There are a few strategies to ensure that (4) is satisfied in
ETC: state-space regularization (see e.g. [12, Proposition 2])
and temporal regularization (see e.g. [14, Section 3.5]).
However, these strategies often sacrifice asymptotic stability
for practical stability. A notable exception is the case of [16],
which provides a set of assumptions on the system data
that allow for a explicit computation of the intersampling
time, thus enabling the use of temporal regularization to
remove solutions with vanishing time between jumps without
sacrificing asymptotic stability. Due to this advantage, the
approach in [16] has become a pivotal tool in the design
of ETC systems as evidenced by the recent contributions
in [17], [18], and [19], for example.

However, the condition (4) is fairly restrictive and not
necessary to show that there are no solutions to (1) with
vanishing time between jumps.

C. When removing complete discrete solutions is not a good
idea

A common approach to circumvent the existence of com-
plete discrete solutions to (2) consists in removingA from
the jump set (c.f. [1], [6]). However, this breaks nominal
well-posedness of the hybrid system.

In Section IV, we show that if a hybrid system has a
Krasovskii solution that is complete and discrete, then it
has arbitrarily small separation between jumps under the
influence of admissible state perturbations. Therefore, we
prescribe the following procedure in order to check if inter-
event separation properties are robust to small perturbations:
1) apply a Krasovskii regularization to the ETC system;
2) verify that the regularized system has no complete discrete
solutions. Unlike [13, Theorem IV], our result applies to
hybrid systems in general, so it is not tied to any particular
ETC system.

In Section V, we show that there is a particularly pathologi-
cal case of nonrobustness of inter-event separation properties:
if there are forward invariant sets from which all solutionsare
discrete, then solutions with vanishing time between jumps
are unavoidable.

D. Summary of Contributions and Organization of the Paper

The remainder of the paper is devoted to making precise
the points that have been highlighted before. Section II
presents the definition of solution to a hybrid system (1)
and of solutions with vanishing time between jumps. Sec-
tion III presents the formal definition of nominal well-
posedness and follows that definition with a result on the
necessity of complete discrete solutions to nominally well-
posed hybrid systems in the presence of bounded solutions
with vanishing time between jumps. In Section IV, we show
that the existence of complete discrete Krasovskii solutions
to (1) implies that there exist admissible state perturbations
that induce arbitrarily small separation between jumps. In
Section V, we show that if there exists a set from which
all maximal solutions to (1) are complete and discrete, then
arbitrarily small separation between jumps is unavoidable.



Each of the contributions in this paper is accompanied by
an illustrative numerical example. In Section VI, we present
some concluding remarks.

Notation. Given a topological spaceS, cl(S), int(S) and
co(S) denote the closure, the interior and the convex hull
of S, respectively. The symbolsN andR≥0 denote the set
of natural numbers and zero and the set of nonnegative real
numbers, respectively. Givenξ ∈ Rp, |ξ| :=

√
〈ξ, ξ〉, where

〈a, b〉 denotes the inner product betweena ∈ Rp andb ∈ Rp.
The unitary ball inRp is given byB := {ξ ∈ Rp : |ξ| ≤ 1}
and c + δB := {ξ ∈ Rp : |ξ − c| ≤ δ}. Given S ⊂ Rp

and a set-valued mapM : S ⇒ Rk, its domain is given by
domM := {ξ ∈ Rp : M(ξ) 6= ∅} and its graph is given
by gphM := {(ξ, y) ∈ Rp × Rk : y ∈ M(ξ)}. A function
α : R≥0 → R≥0 is said to be class-K, denoted byα ∈ K, if
it is continuous, strictly increasing and zero at zero.

II. SOLUTIONS TO HYBRID DYNAMICAL SYSTEMS

In this section, we introduce various kinds of solutions to
the hybrid dynamical systemH defined in (1) which are of
interest to the developments of this paper. With the exception
of solutions with vanishing time between jumps, most of the
concepts presented in this paper are directly taken from [11].

A function φ : E → Rp is a hybrid arc ifE is a hybrid
time domain and if for eachj ∈ N, the functiont 7→ φ(t, j)
is locally absolutely continuous on the intervalIj := {t ∈
R≥0 : (t, j) ∈ E}. A solution φ to H is a hybrid arc that
satisfiesφ(0, 0) ∈ cl(C) ∪D, φ(t, j) ∈ C for all t ∈ int Ij ,
φ̇(t, j) ∈ F (φ(t, j)) for almost allt ∈ Ij , φ(t, j) ∈ D and
φ(t, j + 1) ∈ G(φ(t, j)) for all (t, j) ∈ domφ such that
(t, j + 1) ∈ domφ.

A solutionφ to a hybrid system is said to benontrivial if
it has at least two points,maximalif it cannot be extended by
flowing nor jumping,completeif its domain is unbounded,
discreteif it is nontrivial anddomφ ⊂ {0} × N, Zeno if it
is complete and

sup t domφ := sup{t ∈ R≥0 : ∃j∈N(t, j) ∈ domφ} < +∞,

eventually discreteif sup t domφ = T < +∞ anddomφ ∩
{T }×N contains at least two points. GivenS ⊂ Rp, the set
of maximal solutions toH satisfyingφ(0, 0) ∈ S is denoted
by SH(S).

Next, we formally introduce the concept of solutions with
vanishing time between jumps. Given a solutionφ to (1),
let t0 = 0 and, for eachj ∈ N\{0}, tj ∈ R≥0 is such that
(tj , j − 1) and (tj , j) belong todomφ. We say thatφ has
vanishing time between jumpsif: 1) for each j ∈ N, there
exists t ∈ R≥0 such that(t, j) ∈ domφ, and; 2) for each
τ > 0, there existsJ ∈ N such thattj+1 − tj < τ for
all j ≥ J . Roughly speaking, solutions with vanishing time
between jumps have an infinite amount of jumps and the time
between jumps tends to zero. Examples of solutions that have
vanishing time between jumps include: 1) eventually discrete
solutions, where the time between jumps becomes zero;
2) Zeno solutions, which have a infinite amount of jumps
in finite continuous time, but also; 3) solutions where the
time between jumps converges to0 andsup t domφ = +∞.
For example,E =

⋃∞

j=0[tj+1, tj ] × {j} with t0 = 0 and
tj+1 = tj +1/j for eachj ∈ N\{0} is a hybrid time domain

where, for eachτ > 0, there existsJ such thattj+1− tj < τ
for all j ≥ J , andsup tE = +∞.

To understand why solutions with vanishing time between
jumps are important, letφ denote a solution to (1) withti ∈
R≥0 satisfying(ti, i−1), (ti, i) ∈ domφ for eachi ∈ N\{0},
and let

φi(t, j) := φ(t+ ti, j + i) ∀(t, j) ∈ domφi (5)

for eachi ∈ N with domφi = {(t, j) ∈ R≥0×N : (t+ti, j+
i) ∈ domφ}. In other words, for eachi ∈ N, the hybrid arc
φi is a solution to (1) that is extracted from the tail end ofφ.
Vanishing time between jumps is a necessary and sufficient
condition for the convergence of{domφi}∞i=0 to {0} × N,
as shown next.

Lemma 1. Given a complete solutionφ to (1), {domφi}∞i=0

(with φi given in (5)) converges to{0} ×N if and only if φ
has vanishing time between jumps.

Proof. Suppose thatφ is a solution to (1) with vanishing
time between jumps. Definingφi as in (5), we have that
limi→+∞ domφi = {0}×N if and only if, for eachJ ∈ N,
domφi ∩ (R≥0 × {J}) converges to{0} × {J} (c.f. [11,
Example 5.3]). Lettk denote the continuous-time associated
with the jump k of φ for eachk ∈ N, i.e., t0 := 0 by
definition and(tk, k − 1), (tk, k) ∈ domφ. Since

domφi ∩ (R≥0 × {J}) = [tJ+i − ti, tJ+i+1 − ti]× {J},

for each i ∈ N, it follows that domφi ∩ (R≥0 × {J})
converges to{0}× {J} if and only if tJ+i+1 − ti converges
to 0 as i tends to∞. Sinceφ has vanishing time between
jumps, we have that, for eachτ > 0, there existsi0 ∈ N such
that ti+1 − ti < τ for eachi ≥ i0. For eachǫ > 0, selecting
τ = ǫ/(J+1) yields tJ+i+1− ti =

∑J
j=0 tj+i+1− tj+i < ǫ,

allowing us to conclude that{domφi}∞i=0 converges to
{0} × N.

If {domφi}∞i=0 converges to{0} ×N, then, for eachJ ∈
N, domφi ∩ (R≥0 × {J}) converges to{0} × {J}. This
implies that, for eachǫ > 0, there existsi0 ∈ N such that
tJ+i+1 − ti < ǫ for all i ≥ i0. Selectingτ = ǫ andJ = 0
we conclude thatti+1 − ti < τ for eachi ≥ i0, thusφ has
vanishing time between jumps.

Furthermore, if there are no complete solutions with van-
ishing time between jumps then the continuous time can be
extended indefinitely, as shown in the following lemma.

Lemma 2. If (1) does not have solutions with vanishing time
between jumps, then each complete solutionφ to (1) satisfies
sup t domφ = +∞.

Proof. Proceeding by contradiction, suppose thatH does
not have solutions with vanishing time between jumps and
that there exists a complete solution toH such thattf :=
sup t domφ < +∞. If φ has a finite number of jumps then
it follows from completeness ofφ that sup t domφ = +∞
which contradicts the assumption. It follows thatφ must
have an infinite number of jumps, andlimj→∞ tj = tf with
(tj , j) ∈ domφ satisfying (tj , j − 1), (tj , j) ∈ domφ for
eachj ∈ N\{0}. Sincetj+1 − tj ≤ tf − tj for eachj ∈ N,
it follows that, for eachτ > 0, there existsJ ∈ N such that
tj+1 − tj < τ for all j ≥ J . However, this is a contradiction



because we assumed that there were no solutions toH with
vanishing time between jumps.

III. A N ECESSARYCONDITION FOR SOLUTIONS WITH

VANISHING TIME BETWEEN JUMPS

One of the most important properties of hybrid systems
is that of nominal well-posedness, since it has important
implications in the robustness of stability of a compact
set for a hybrid system as discussed in [11, Chapter 6].
To understand nominal well-posedness, we introduce the
following preliminary definitions.

A sequence{φ}∞i=1 of hybrid arcsφi : domφi → Rp

converges graphically if the sequence of sets{gphφi}
∞
i=1

converges and its limitφ is φ := gph - limi→∞ φi. A se-
quence of hybrid arcs{φi}∞i=1 is locally eventually bounded
if, for any m > 0, there existsi0 > 0 and a compact set
K ⊂ Rp such that, for alli > i0, (t, j) ∈ domφi with
t+ j < m, φi(t, j) ∈ K.

The study of nominally well-posed hybrid dynamical sys-
tems has one major advantage over other system models with
impulsive dynamics: locally eventually bounded convergent
sequences of solutions to nominally well-posed hybrid sys-
tems converge to solutions of the hybrid system.

Definition 2. A hybrid system is called nominally well-
posed if the following property holds: for every graph-
ically convergent sequence{φi}∞i=1 of solutions to (1)
with limi→∞ φi(0, 0) = ξ for some ξ ∈ Rp, 1) if
the sequence{φi}∞i=1 is locally eventually bounded then
the sequence{length(domφi)}∞i := {sup t domφi +
sup j domφi}

∞
i=1 is either convergent or properly di-

vergent to ∞ and φ = gph - limi→∞ φi is a solu-
tion to (1) with φ(0, 0) = ξ and length(domφ) =
limi→∞ length(domφi); 2) if the sequence is not locally
eventually bounded, then there exists a numberm > 0 for
which there exist(ti, ji) ∈ domφi, i ∈ N\{0} such that
limi→∞ |φi(ti, ji)| = ∞ and φ = gph - limi→∞ φi|t+j<m

is a maximal solution to (1) withlength(domφ) = m and
limt→sup t domφ |φ(t, sup j domφ)| = +∞.

Using the previous definitions, we are able to state the
main result of this section.

Theorem 1. If (1) is nominally well-posed and if there exists
a bounded solutionφ to (1) with vanishing time between
jumps, then there exists a complete discrete solution to(1).

Proof. Let φi be given by (5) for eachi ∈ N. Note that, for
eachi ∈ N, φi is a solution to (1), since it is a tail of the
solutionφ. Moreover,{φi}

∞
i=0 is locally eventually bounded

becauseφ is bounded and it has a subsequence{φik}
∞
k=0

that is graphically convergent because it does not escape to
the horizon (c.f. [11, Theorem 5.7]). Since there exists a
subsequence of{φi}∞i=0 that is locally eventually bounded
and graphically convergent, it follows from nominal well-
posedness of (1) that its limit is a solution to (1).

Sinceφ has vanishing time between jumps, it follows from
Lemma 1 thatdomφik converges to{0} × N ask tends to
∞, which concludes the proof.

If a hybrid system (1) does not have complete discrete
solutions, but it is not nominally well-posed, then the im-

plication that it does not have solutions with vanishing time
between jumps cannot be drawn from Theorem 1. In that
case, one should look for Krasovskii solutions to (1) that are
complete and discrete, as demonstrated in the next section.

Example 1. In this example, we illustrate the usefulness of
Theorem 1 in the design of an event-triggered controller.
Consider an LTI plant with the following state-space descrip-
tion:

ẋ = Ax+Bu, y = Cx,

wherex ∈ Rn, u ∈ Rm, andy ∈ Rk denote the plant state,
control input, and measured output, respectively. Further-
more, the matricesA ∈ Rn×n, B ∈ Rn×m, andC ∈ Rk×n

are known and the pair(A,C) is observable.
The design of the finite-time observer of [20] requires two

parallel Luenberger observers with hybrid dynamics
˙̂x1 = Ax̂1 +Bu+ L1(y − Cx̂1)

˙̂x2 = Ax̂2 +Bu+ L2(y − Cx̂2)

τ̇ = 1





ξ ∈ C1 (6a)

x̂+
1 = H1x̂1 +H2x̂2

x̂+
2 = H1x̂1 +H2x̂2

τ+ = 0





ξ ∈ D1 (6b)

where ξ := (x, x̂1, x̂2, xc, τ) ∈ Ξ := R4n × [0, τ̄ ] is the
full state, x̂1, x̂2,∈ Rn are observer states,C1 := Ξ, D1 :=
{ξ ∈ Ξ : τ = τ̄}, τ ∈ [0, τ̄ ] is a timer state that triggers
updates of̂x1 and x̂2 with period τ̄ > 0, L1, L2 ∈ Rn×k

are observer gains,H1, H2 ∈ Rn×n are given byHi :=
(I−eFiτ̄e−F3−iτ̄ )−1 with Fi := A−LiC for eachi ∈ {1, 2},
andxc ∈ Rn is a memory variable that stores the information
on x̂1 and is updated at events according to the dynamics:

ẋc = 0 ξ ∈ C2 := {ξ ∈ Ξ : |x̂1 − xc| ≤ δ} (7a)

x+
c = x̂1 ξ ∈ D2 := {ξ ∈ Ξ : |x̂1 − xc| ≥ δ}. (7b)

In order to guarantee that the finite-time observer works
as intended, the parametersL1, L2 ∈ Rn×k and τ̄ > 0 are
chosen such thatF1 andF2 are Hurwitz andI − eF1 τ̄e−F2τ̄

is invertible. In order for the observer (6) to achieve finite-
time estimation, it requires at most two updates ofx̂1 andx̂2,
thus, for each solutionφ = (x, x̂1, x̂2, xc, τ) to the closed-
loop system, there must be(t, j) ∈ domφ such thatt ≥
2τ̄ − τ(0, 0). Note that the jump set and jump map of the
closed-loop systems are given byD := D1∪D2 andG(ξ) :=
G1(ξ) ∪G2(ξ) for eachξ ∈ D with

G1(ξ) := (x,H1x̂1 +H2x̂2, H1x̂1 +H2x̂2, xc, 0) ∀ξ ∈ D1,

G2(ξ) := (x, x̂1, x̂2, x̂1, τ) ∀ξ ∈ D2,

hence the conditionG(D) ∩D = ∅ is not verified, because
for ξ ∈ D1∩D2 we haveG2(ξ) ⊂ D1. However, since there
are no complete discrete solutions and the closed-loop system
satisfies [11, Assumption 6.5], it follows from Theorem 1 that
there are no bounded solutions with vanishing time between
jumps (c.f. Remark I-A). It follows from Lemma 2 that
all bounded complete solutions to the closed-loop system
satisfy sup t domφ = +∞ > 2τ̄ − τ(0, 0), thus by proving
that all solutions are bounded (using Lyapunov analysis, for
example), one is able to prove that there are no solutions
with vanishing time between jumps.



IV. COMPLETE DISCRETESOLUTIONS IMPLY

ARBITRARILY SMALL SEPARATION BETWEEN JUMPS

By definition, Krasovskii solutions to a hybrid system
H := (C,F,D,G) are solutions of the Krasovskii regular-
ization of H, which is a hybrid system̂H := (Ĉ, F̂ , D̂, Ĝ)
given by

ξ̇ ∈ F̂ (ξ) :=
⋂

δ>0

cl (coF ((x + δB) ∩ C)) ξ ∈ Ĉ (8a)

ξ ∈ Ĝ(ξ) :=
⋂

δ>0

cl (G((x + δB) ∩D)) ξ ∈ D̂ (8b)

where the flow and jump sets are given bŷC := cl(C)
and D̂ := cl(D), respectively. The regularized system (8) is
nominally well-posed and, if it does have complete discrete
solutions, then arbitrarily small perturbations ofH induce
arbitrarily small separation between jumps.

To be more precise, the perturbation ofH is defined as
follows:

ξ̇ ∈ F (ξ + n) ξ + n ∈ C (9a)

ξ+ ∈ G(ξ + n) ξ + n ∈ D, (9b)

where n is an admissible state perturbation, i.e., domn
is a hybrid time domain and the functiont 7→ n(t, j) is
measurable ondomn∩(R≥0×{j}) for eachj ∈ N. The next
result follows directly from the equivalence between solutions
to (9) and solutions to (8).

Theorem 2. Given a hybrid systemH := (C,F,D,G) as
in (1), suppose thatF andG are locally bounded. If there is
a Krasovskii solutionφz to (1) that is complete and discrete,
then, for eachǫ > 0 and eachJ ∈ N\{0}, there exists an
admissible state perturbationn and a solutionφn to (9) such
that tj − tj−1 < ǫ for eachj ∈ {1, . . . , J}, wheretj ∈ R≥0

satisfies(tj , j−1), (tj, j) ∈ domφn for eachj ∈ {1, . . . , J}.
Moreover,

sup
(t,j)∈E

|n(t, j)| → 0 (10)

as ǫ → 0, whereE := domφn ∩ (R≥0 × {0, . . . , J}) is a
compact hybrid time domain.

Proof. Sinceφz is a Krasovskii solution to (1), then it is also
a Hermes solution to (1) (c.f. [11, Theorem 4.17]). For each
J ∈ N\{0}, the restriction ofφz to

domφz ∩
(
R≥0 × {0, . . . , J}

)
(11)

is a compact Hermes solution to (1) as in [11, Defini-
tion 4.12]. Hence, there exists a sequence{φi}i∈N of hybrid
arcs and a sequence{ni}i∈N of admissible state perturbations
such thatφi is a solution to (9) with admissible state pertur-
bationni for eachi ∈ N. Furthermore, for eachǫ > 0, there
existsi0 ∈ N, such that, for eachi > i0, φi is ǫ-close to the
restriction ofφz to (11). From the definition ofǫ-closeness
in [11, Definition 4.11], it follows thatsup t domφi < ǫ for
eachi > i0, thus tj − tj−1 < ǫ for eachj ∈ {1, . . . , J}.
The desired result follows from the fact that (10) hold by
deifinition of a compact Hermes solution and because we
can chooseφn = φi andn = ni with i > i0.

It is often the case that ETC systems verifyG(D)∩D = ∅
(see e.g. [1] and [6]), which precludes the existence of

complete discrete solutions. However, Theorem 2 demon-
strates that, if such ETC systems have Krasovskii solutions
that are complete and discrete, then there are admissible
state perturbations that induce arbitrarily fast samplingin
the presence of arbitrarily small state perturbations. This is
illustrated in the following example.

Example 2. Let us consider the stabilization of the integrator
ẋ = u with statex ∈ R and inputu ∈ R following the
approach of [1]. In this direction, we define the nominal
feedback lawκ(x) = −x for eachx ∈ R and use it to
define the following event-triggered controller:

˙̂u = 0 (x, û) ∈ C := {(x, û) ∈ R
2 : γ(x, û) ≤ 0}

û+ = κ(x) (x, û) ∈ D := {(x, û) ∈ R
2 : γ(x, û) ≥ 0}

with γ(x, û) := |û− κ(x)| − σ |x| and σ ∈ (0, 1). Let us
consider a solutionφn = (x, x̂) to the perturbed closed-loop
system with initial conditionφn(0, 0) = (x0,−x0) satisfying
x0 6= 0 under the influence of an admissible state perturbation
n = (n1, n2) satisfyingn2(t, j) = 0 and

n1(t, j) := −(2j+1 − 1)x(tj , j)(t− tj) (12)

for each (t, j) ∈ domφn. It is possible to show that the
intersampling time is given bytj+1 − tj = σ

1+σ
1

2j+1 for
all j ∈ N and that the magnitude of the noise signal is

|n1(t, j)| = (2j+1 − 1)
(

σ
2(1+σ)

)j
σ

1+σ
1
2j , for each(t, j) ∈

domφn. We conclude that the jumps of the perturbed solution
accumulate attf :=

∑+∞

j=0 tj+1 − tj =
σ

1+σ
while the noise

signal (12) converges to0. In particular, this implies that there
does not exist a positive lower bound to the inter-sampling
time in the presence of arbitrarily small noise.

A similar result to Theorem 2 is given in [13, Theo-
rem IV.1], the main differences between the two being that:
the latter applies solely to linear event-triggered systems
while the former applies to hybrid systems in general, and;
admissible state perturbations constitute a broader classof
perturbations than those that are considered in [13, Theo-
rem IV.1].

V. WHEN SOLUTIONS WITH VANISHING TIME BETWEEN

JUMPS AREUNAVOIDABLE

The final result that we present in this paper reveals
a particularly pathological case that may happen in ETC
systems (see e.g. [21]).

Theorem 3. Suppose thatH in (1) is nominally well-
posed and that there exists a compact subsetA of Rp

such that each maximal solutionφ0 to H from A is com-
plete, discrete, and satisfiesrgeφ0 := {φ0(t, j) : (t, j) ∈
domφ0} ⊂ A. Then each complete solutionφ toH satisfying
limt+j→∞ |φ(t, j)|A = 0 has vanishing time between jumps.

Proof. Similarly to the proof of Theorem 1, consider the
sequence{φi}∞i=0 defined in (5). Sinceφ converges to
A by assumption, it follows from compactness ofA that
{φi}∞i=0 is locally eventually bounded, hence it has a
convergent subsequence that converges graphically. Since
limi→∞ |φi(0, 0)|A = 0, it follows from nominal well-
posedness that{φi}∞i=0 converges to a solution toH from
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Fig. 1. Representation of the time between jumps for a simulation of the
system in Example 3.

A. Since all maximal solutions toH from A are complete
and discrete, we have that{domφi}∞i=0 converges to{0}×N.
It follows from Lemma 1 thatφ has vanishing time between
jumps.

It follows directly from Theorem 3, that, ifA is attrac-
tive for H, then complete solutions converging toA have
vanishing time between jumps, necessarily. We illustrate this
phenomenon in an ETC system in the next example.

Example 3. Let us consider the single integrator system of
Example 2, but instead of stabilizing the origin, suppose
that we wish to track a referencet 7→ xd(t) generated by
the system(ẋd, v̇d) = (vd,−xd) with (xd, vd) ∈ S :=
{(xd, vd) ∈ R2 : |(xd, vd)| = 1}. Using the feedback law

κ(xd, vd, x) := −(x− xd) + vd ∀(xd, vd, x) ∈ S× R,

the closed-loop system is given by (1) with data

F (ξ) :=
(
vd,−xd, û, 0

)
∀ξ ∈ C

G(ξ) :=
(
xd, vd, x, κ(xd, vd, x)

)
∀ξ ∈ D

and state has stateξ := (xd, vd, x, û) ∈ Ξ := S × R ×
R, and flow set and jump set given byC := {ξ ∈
Ξ : |û− κ(xd, vd, x)| ≤ σ |x− xd|}, D := {ξ ∈ Ξ :
|û− κ(xd, vd, x)| ≥ σ |x− xd|}. It is possible to verify that
A := {ξ ∈ Ξ : x = xd, û = κ(xd, vd, x)} is globally
asymptotically stable. However, each maximal solution from
A is complete and discrete, thus all solutions have vanishing
time between jumps (c.f. Fig. 1).

VI. CONCLUSION

Motivated by applications in Event-Triggered Control
(ETC), we analysed conditions for the existence of solutions
to hybrid dynamical systems with arbitrarily small separation
between jumps. In particular, we introduced the concept of
solutions with vanishing time between jumps – which are
solutions whose time between jumps converges to zero, –
and we demonstrated that, if a nominally well-posed hybrid
system does not have complete discrete solutions then it does
not have solutions with vanishing time between jumps. We
also demonstrated that the existence of Krasovskii solutions
to a hybrid system that are complete and discrete implies that
there are admissible state perturbations that generate arbitrar-
ily small separation between jumps. Finally, we proved that
hybrid systems with a compact set from which all solutions
are complete and discrete, the existence of solutions with
vanishing time between jumps might be unavoidable. These
results were illustrated with applications in ETC.
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