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Abstract—In this paper, we show that: 1) if the Krasovskii the behavior of dynamical systems using discontinuous-func
regularization of a hybrid system #H has complete and discrete tions of continuous-time (see e.q! [1]=[10]).

solutions, then? has solutions with arbitrarily small separa- On the other hand, the framework of hybrid dynamical

tion between jumps under the influence of admissible state ) - . .
perturbations: 2) if  is nominally well-posed and does not systems presented in [11] describes dynamical systems with

have complete discrete solutions, then it does not have stibns  impulsive dynamics as solutions to systedsof the form:

with vanishing time between jumps (such as Zeno solutions); e F C
3) if, in addition, there exists a compact set4 such that all §€ (f) §€ 1)
maximal solutions to ‘H from A are complete, discrete and g* c G(g) EeD

remain in A, then all solutions converging to.A have vanishing b »
time between jumps. The results in this paper demonstrate tat Where§ € R” is the state, the sef’ C R” and the set-
a good practice to avoid solutions with arbitrarily fast sanpling valued mapF : RP = RP describe the continuous-time
in Event-Triggered Control (ETC) is to ensure that the clos@- dynamics and are therefore called the flow set and the flow
loop system is nominally well-posed and that it does not have map, respectively, whereas the &t R and the set-valued
complete discrete solutions. Py ' : : : :
map G : RP = R? describe the discrete-time dynamics and
are called the jump set and the jump map, respectil/elyr
. INTRODUCTION any given initial conditior¢ in C', solutions can be extended

Event-Triggered Control (ETC) refers to a feedback straft continuous-time if there is any vector iR (¢) that is
egy in which sensors and actuators are sampled “onlyt@ngent toC. If, on the other handg belongs toD then
needed”. The main goal of this approach is to imprové may be extended in discrete-time by jumping. Solutions
the efficiency of control tasks by reducing the averad® hybrid dynamical systems are therefore described using a
sampling frequency with respect to standard periodic sag§@mbination of continuous-time and discrete-time domains
pling approaches. Crucially, one loses direct control ovéte hybrid time domain, which is defined below.
the sampling frequency, thus there is a lingering posgiilipefinition 1. A subset ¢ R., x N is a compact hybrid
that the minimum time between samples — the miNiMUfne domain if =
intersampling time — does not satisfy hardware requirement J_1
For this reason, the design of event-triggered controllers E— U ([t;,tis1], )
must demonstrate that such requirements are satisfiedisin th A
paper, we study the existence of solutions to ETC syste
that have arbitrarily fast sampling and, for that reasonnoa
meet any hardware requirements.

=0

S
%r some finite sequence of tim@s=1ty <t; < ... <ty. It
is a hybrid time domain if for al(T, J) € E, E N ([0, T] x
{0,1,...,J} is a compact hybrid time domain.

A. Hybrid Dynamical Systems Hybrid systems are able to represent any combination

A large part of ETC has been developed within a mod@f continuous and discrete time solutions, including purel

of dynamical systems with impulsive dynamics that dessrib8iscrete solutions (which are characterized by having aitlyb
time domain that is a subset 6} x N). For example, Zeno
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sequences of convergent solutionsHaend to a solution of each of its bounded solutions has a positive lower bound
‘H, and, in that case, we can say that the sequence we jsthe intersampling time, as proved in_[15, Lemma 2.7].
constructed out of a Zeno solution converges to a compléthere are a few strategies to ensure that (4) is satisfied in
discrete solution t@{. This is an intuitive explanation of the ETC: state-space regularization (see €.gl [12, Proposijp
results presented in Sectibn lll. The implication of thisuié and temporal regularization (see e.@.1[14, Section 3.5]).
is that, if the hybrid system is hominally well-posed and iHowever, these strategies often sacrifice asymptoticlgyabi
does not have complete discrete solutions, then its boundedpractical stability. A notable exception is the caseId][
solutions are not Zeno solutions. More generally, we can sa#ich provides a set of assumptions on the system data
that it does not have solutions with time domain converging that allow for a explicit computation of the intersampling
{0} x N, which we callsolutions with vanishing time betweertime, thus enabling the use of temporal regularization to
jumps remove solutions with vanishing time between jumps without

Remark. Since it is fairly cumbersome to check nominafacrificing asymptotic stability. Due to this advantages th
well-posedness of a hybrid system through the converger@iProach in[[16] has become a pivotal tool in the design
of sequences of solutions, it is often preferable to cheak tfPf ETC systems as evidenced by the recent contributions
the hybrid system satisfies the so-callegbrid basic condi- i [17], [18], and [19], for example.

tions given in [11, Assumption 6.5], which imply nominal However, the condition[{4) is fairly restrictive and not
well-posedness (c.fL[11, Theorem 6.8]). necessary to show that there are no solutiongto (1) with

vanishing time between jumps.

B. ETC Systems as Hybrid Systems . _ _ _
It is instructive to look at existing ETC systems an(?' When removing complete discrete solutions is not a good

classify them according to the existence of discrete smigti idea

In this direction, we borrow the definition of an ETC system A common approach to circumvent the existence of com-
that is given in[[I2], wheré := (z,¢,7) is a state variable plete discrete solutions t@(2) consists in removiddgrom
comprised of the state of the plamf the sampling erroe  the jump set (c.f.[[1], [[6]). However, this breaks nominal
and an auxiliary variable). The flow and jump maps arewell-posedness of the hybrid system.

given by In Section[I¥, we show that if a hybrid system has a
Krasovskii solution that is complete and discrete, then it

F() = fg;f,g)) Ge) = "g @) has arbitrarily small separation between jumps under the
> h%x ’e - > Uz, e,) influence of admissible state perturbations. Therefore, we

prescribe the following procedure in order to check if inter
for each{ € RP. Under the assumption thal' and G event separation properties are robust to small pertantsti
are continuous and that’ and D are closed, the ETC 1) apply a Krasovskii regularization to the ETC system;
system[() is nominally well-posed. The pager![12] presengs verify that the regularized system has no complete discre
five different ETC strategies that are encompassed by t@lutions. Unlike [[1B, Theorem 1V], our result applies to
hybrid system[(R). Each of the five ETC systems<.in [12] hastgbrid systems in general, so it is not tied to any particular
semiglobal uniform positive lower bound to the intersamgli ETC system.

time outside of the attractod, but in three of the five ETC  |n Sectiorf Y, we show that there is a particularly pathologi-
systems presented i _[12] this property does not extendd8l case of nonrobustness of inter-event separation pieper
solutions fromA, due to the existence of complete discretg there are forward invariant sets from which all solutiame
solutions fromA. Another work that addresses the inter-evenfiscrete, then solutions with vanishing time between jumps
separation properties in ETC systems ig [13], and it comsideyre unavoidable.

ETC systems of the fornL2) without the auxiliary variable

n and withC and D given by:

D. Summary of Contributions and Organization of the Paper
C:={{eR":pi(le]) < olz| + B}

The remainder of the paper is devoted to making precise

D :={ eR": pi(le]) = o |z + B} the points that have been highlighted before. Secfion II
wherep; is a classk function,s € [0,1) and3 > 0. It is presents the definition of solution to a hybrid systdrh (1)
possible to verify that whep > 0, and of solutions with vanishing time between jumps. Sec-

tion [T presents the formal definition of nominal well-
G(D)ND =0 ) posedness and follows that definition with a result on the
thus there are no complete discrete solution§lo (2). This imecessity of complete discrete solutions to nominally well
plies that there is a positive lower bound to the intersangpli posed hybrid systems in the presence of bounded solutions
time and that this property is robust to arbitrarily smalisep with vanishing time between jumps. In Sectlond IV, we show
which constitutes one of the main results[in][13]. A thorougtiat the existence of complete discrete Krasovskii sahstio
analysis of [4) and its implications in the design of evente (I) implies that there exist admissible state pertucpeti
triggered controllers is also provided in_[14, Proposit8]ln that induce arbitrarily small separation between jumps. In
Condition [4) provides an easy way to check that thef@ection[\, we show that if there exists a set from which
are no complete discrete solutions fd (1). In fact, whenadl maximal solutions to[{1) are complete and discrete, then
nominally well-posed hybrid system satisfies conditibh (4arbitrarily small separation between jumps is unavoidable



Each of the contributions in this paper is accompanied lyhere, for each > 0, there exists/ such that; . —¢; <7
an illustrative numerical example. In Section VI, we prdseffor all 5 > .J, andsup ;F = +oco0.
some concluding remarks. To understand why solutions with vanishing time between

Notation. Given a topological spacé, cl(S), int(S) and JUmps are important, lep denote a solution td 1) with; &
co(S) denote the closure, the interior and the convex hdfi>o satisfying(t;,i—1), (t;,7) € dom ¢ for eachi € N\{0},
of S, respectively. The symbol§ andR-,, denote the set and let
of natural number_s and zero and the set of nonnegative real ¢, (¢, j) := ¢(t +t;,j +i) V(t,j) € dom ¢ (5)
numbers, respectively. Givehe RP, [£| := /(£ &), where . i ) .
(a, b) denotes the inner product betweer R? andb ¢ R, OF €achi € Nwith dom¢; = {(t,j) € Ryo xN: (¢4, j+
The unitary ball inR? is given byB := {¢ € R? : [¢| < 1} 1) € dom gb}: In other words, for each € N, the hybrid arc
andc+ 0B := {¢ € R? : [¢ —¢| < ). Given S c Rp ¢ is asolutiontol(ll) that is extracted from the tail endjof
and a set-valued mapf : S = R, its domain is given by Vamshmg time between jumps is a necessary and sufficient
domM := {¢ € R? : M(¢) # 0} and its graph is given condition for the convergence didom ¢;}2, to {0} x N,
by gph M = {(€,y) € R” x R¥ : 5y € M(¢)}. A function @S Shown next.
a:R., — R, is said to be clas, denoted byr € K, if  Lemma 1. Given a complete solutios to (@), {dom ¢;}32,
it is continuous, strictly increasing and zero at zero. (with ¢; given in(8)) converges tq{0} x N if and only if ¢

has vanishing time between jumps.

[I. SOLUTIONS TOHYBRID DYNAMICAL SYSTEMS . : . _
) ) ] ) ) ) Proof. Suppose that is a solution to [(]l) with vanishing
In this section, we introduce various kinds of solutions tgme petween jumps. Defining; as in [5), we have that
_the hybrid dynamical systeri def_ined in[(1) _which are of lim; ;o dom é; = {0} x N if and only if, for eachJ € N,
interest to the_develo_pments_ of this paper. With the exoapti,, ¢i N (Rw, x {J}) converges to{0} x {J} (c.f. [11,
of solutions with vanishing time between jumps, most of theyample 5.3]). Let;, denote the continuous-time associated
concepts presented in this paper are directly taken froth [1}iin the jumpk of ¢ for eachk € N, i.e., to := 0 by
A function ¢ : E — RP is a hybrid arc if £ is a hybrid yefinition and(ty, k — 1), (tx, k) € dom ¢. Since
time domain and if for eacli € N, the functiont — ¢(t, j)
is locally absolutely continuous on the intengll := {¢t ¢  dom@i N (Ryg x {J}) = [tsi — ti, togipr — ] x {J},
R>o : (t,5) € E}. A solution ¢ to # is a hybrid arc that for eachi € N, it follows that dom¢; N (Rwq x {J})
satisfies¢(0,0) € cl(C) U D, ¢(t,j) € C forall t € int I/, converges tq0} x {J} if and only if ¢ ;41 — t; converges
o(t,j) € F(o(t,)) for almost allt € I7, ¢(t,j) € D and to 0 asi tends tooc. Since¢ has vanishing time between
o(t,j + 1) € G(o(t,j)) for all (t,7) € dom¢ such that jumps, we have that, for eash> 0, there exists, € N such
(t,7+ 1) € dom ¢. thatt,,, —t; < 7 for eachi > iy. For eache > 0, selecting
A solution ¢ to a hybrid system is said to bentrivial if - = ¢/(J+1) yieldst ;1 —t; = Z‘*]—o tivisr —tivi <€
it has at least two pointspaximalif it cannot be extended by allowing us to conclude thal{domj@-}fio converges to
flowing nor jumping,completeif its domain is unbounded, {0} x N. B
discreteif it is nontrivial anddom ¢ C {0} x N, Zenoif it If {dom ¢;}52, converges tq0} x N, then, for each/ e
is complete and N, dom¢; N (R, x {J}) converges to{0} x {J}. This
sup ; dom ¢ := sup{t € R : Jjen(t, j) € dom ¢} < +oo, implies that, for eacke > 0, there existsip € N such that
- tyyir1 —t; < e for all i > ig. Selectingr = e andJ =0
we conclude that,.; — t; < 7 for eachi > iy, thus¢ has
vanishing time between jumps. O

eventually discretéf sup;dom ¢ =T < +oo anddom ¢ N
{T'} x N contains at least two points. Giveéhc R?, the set
of maximal solutions taH satisfying¢(0,0) € S is denoted
by S#(S). Furthermore, if there are no complete solutions with van-
Next, we formally introduce the concept of solutions witlishing time between jumps then the continuous time can be
vanishing time between jumps. Given a solutionto (d), extended indefinitely, as shown in the following lemma.
let o = 0 and, for eacly € N\{0}, ¢; € R is such that
(tj,j — 1) and (¢}, j) belong todom ¢. We say thaip has
vanishing time between jumyifs 1) for eachj € N, there
existst € R, such that(t, j) € dom ¢, and; 2) for each
7 > 0, there exists/ € N such thatt;;; —t¢; < 7 for Proof. Proceeding by contradiction, suppose thatdoes
all 7 > J. Roughly speaking, solutions with vanishing timenot have solutions with vanishing time between jumps and
between jumps have an infinite amount of jumps and the tinttgat there exists a complete solution #b such thatt; :=
between jumps tends to zero. Examples of solutions that havg ; dom ¢ < +oo. If ¢ has a finite number of jumps then
vanishing time between jumps include: 1) eventually digcreit follows from completeness o that sup;dom ¢ = +oco
solutions, where the time between jumps becomes zewdhich contradicts the assumption. It follows that must
2) Zeno solutions, which have a infinite amount of jumpbkave an infinite number of jumps, atith,_,, t; = ¢, with
in finite continuous time, but also; 3) solutions where th&,, j) € dom¢ satisfying (¢;,7 — 1), (¢;,7) € dom¢ for
time between jumps converges@@ndsup ; dom ¢ = +oo. eachj € N\{0}. Sincet;, —t; <ty —¢; for eachj € N,
For example,E = ;2 [tj+1,t;] x {j} with o = 0 and it follows that, for eachr > 0, there exists/ € N such that
tjy1 = t; +1/j for eachj € N\{0} is a hybrid time domain t;,, —t; < 7 for all j > J. However, this is a contradiction

Lemma 2. If () does not have solutions with vanishing time
between jumps, then each complete solutido (1) satisfies
sup ; dom ¢ = +o0.



because we assumed that there were no solutiofté with  plication that it does not have solutions with vanishingdim
vanishing time between jumps. O between jumps cannot be drawn from Theofgm 1. In that
case, one should look for Krasovskii solutions[tb (1) that ar
[1l. AN ECESSARYCONDITION FORSOLUTIONSWITH  complete and discrete, as demonstrated in the next section.
VANISHING TIME BETWEEN JUMPS

o f th . . f hvbrid Example 1. In this example, we illustrate the usefulness of
ne of the most important properties of hybri .SyStemﬁmorem[ll in the design of an event-triggered controller.

is that of nominal well-posedness, since it has importap(,,gjger an LTI plant with the following state-space descri
implications in the robustness of stability of a compazﬂon.

set for a hybrid system as discussed lin|[11, Chapter
To understand nominal well-posedness, we introduce the
following preliminary definitions. wherez € R”, v € R™, andy € R* denote the plant state,

A sequence{¢}, of hybrid arcs¢; : dom¢; — RP control input, and measured output, respectively. Further
converges graphically if the sequence of sgiph¢;}2, more, the matricest € R"*?, B € R"*™, andC € RF*"
converges and its limitp is ¢ := gph-lim, ,  ¢;. A se- are known and the pait4, C) is observable.
quence of hybrid arc§e; }2°, is locally eventually bounded The design of the finite-time observer 0f [20] requires two
if, for any m > 0, there existsy > 0 and a compact set parallel Luenberger observers with hybrid dynamics

P j i j ;Wi = ~ .

f{+§<}1%msz?8 ;f;aé, Iffor alli > 4o, (£, ) € domg; with Ty = ATy + Bu+ Li(y — C7y)

The study of nominally well-posed hybrid dynamical sys- %2 = AZ2> + Bu + La(y — CZ2) £cCi (63
tems has one major advantage over other system models with + = 1
impulsive dynam|cs_: locally eve_ntually bounded convetgen 7t = Hi#) + Hos
sequences of solutions to nominally well-posed hybrid sys-

&= Ax+ Bu, y=_Cuz,

tems converge to solutions of the hybrid system. Ty = %1 + Halp §eDy  (6b)
Definition 2. A hybrid system is called nominally well- Tr=0

posed if the following property holds: for every graphwhere¢ := (z,Z1,%2,z.,7) € Z := R x [0,7] is the
ically convergent sequencéo;}°, of solutions to [(l) full state,z1,72, € R" are observer stateg); := =, Dy :=
with lim; .o ¢;(0,0) = ¢ for some ¢ € RP, 1) if {{ € E:7 =7}, 7€ [0,7] is a timer state that triggers
the sequence(¢;}2°, is locally eventually bounded thenupdates ofz; and Z, with period 7 > 0, Ly, Ly € R™*F
the sequence{length(dom ¢;)}° := {sup;dom¢; + are observer gainsil,, Hy € R"*" are given byH, :=
sup jdom ¢;}2°, is either convergent or properly di-(I—e e~ =7)" with F; := A—L,C for eachi € {1,2},
vergent to oo and ¢ = gph-lim, , ¢; is a solu- andz. € R" is a memory variable that stores the information
tion to (@) with ¢(0,0) = ¢ and length(dom¢) = onz; and is updated at events according to the dynamics:

lim;_, o length(dome;); 2) if the sequence is not locally i =0 €€y ={€Z: |71 — 2| <3} (7a)
eventually bounded, then there exists a number- 0 for - N
which there exist(t;,5;) € domg;, i € N\{0} such that rf =71 (e€Dy={(€=: |71 —x]>d} (7b)
lim; 0 |#i(ti,5i)] = oo and ¢ = gph-lim, , ¢i|t+j<m In order to guarantee that the finite-time observer works
is a maximal solution to[{1) withength(dom¢) = m and as intended, the parametefs, L, € R"** and7 > 0 are
lim¢—ssup , dom ¢ |@ (£, sup j dom ¢)| = 4o0. chosen such tha; and F; are Hurwitz andl — ef17e— 27
Usina the previous definitions. we are able to state t|s |nvert_|ble._ln qrder er the observdr] (6) to achieve finite
’Sing prey . ' 'fﬁ‘ne estimation, it requires at most two updatespindzs,
main result of this section. thus, for each solutio = (x,z1,Z2, 2., 7) to the closed-
Theorem 1. If (T) is nominally well-posed and if there existdoop system, there must bg, j) € dom¢ such thatt >
a bounded solutiony to (@) with vanishing time between27 — 7(0,0). Note that the jump set and jump map of the
jumps, then there exists a complete discrete solutiofilfo closed-loop systems are given By:= D;UD, andG(§) :=

Proof. Let ¢; be given by[(b) for each € N. Note that, for GLE) U G2(¢) f(ir eacthe D \iv'th ~

eachi € N, ¢; is a solution to[{L), since it is a tail of the G1(§) := (v, H1Z1 + H2Z2, H171 + HaZ2,2.,0) VE € Dy,
solution¢. Moreover,{¢;}:<, is locally eventually bounded Gy (¢) := (z,71, 22, 71, 7) VE € Do,
becausep is bounded and it has a subsequeres, i, hence the conditioid7(D) N D = ) is not verified, because

that is graphically convergent because it does not escap .
the horizon (c.f. [[11, Theorem 5.7]). Since there existserglog € D1ND, we haveGs(€) C Dy. However, since there

subsequence ofé: 1, that is locally eventually bounded are no complete discrete solutions and the closed-looprsyst

. ; . satisfies[[1l1, Assumption 6.5], it follows from TheorEm 1ttha
and graphically convergent, it follows from nominal WeII'there are no bounded solutions with vanishing time between
posedness of[1) that its limit is a solution fd (1). 9

Since¢ has vanishing time between jumps, it follows fronjumPS (c.f. RemariER). It follows from Lemmal2 that

Lemmall thatlom ¢;, converges ta0} x N as’k tends to all bounded complete solutions to the closed-loop system
~. which concludesZkthe Droof, O satisfy sup; dom ¢ = +oo > 27 — 7(0,0), thus by proving

that all solutions are bounded (using Lyapunov analysis, fo
If a hybrid system[{ll) does not have complete discreexample), one is able to prove that there are no solutions
solutions, but it is not nominally well-posed, then the imwith vanishing time between jumps.



IV. COMPLETEDISCRETESOLUTIONS IMPLY complete discrete solutions. However, Theorem 2 demon-
ARBITRARILY SMALL SEPARATION BETWEENJUMPS strates that, if such ETC systems have Krasovskii solutions

By definition, Krasovskii solutions to a hybrid systemthat are complete and discrete, then there are admissible
H := (C,F,D,G) are solutions of the Krasovskii regular-State perturbations that induce arbitrarily fast samplimg

ization of #, which is a hybrid systerﬂ? — ((j’ﬁ’ﬁ’ @) _the presence of arbitra_lrily small state perturbationssii
given by illustrated in the following example.

fe 13(5) — ﬂ c(coF((z+6B)NC)) €€ c (8a) Example .2. Let us consider thg stabilization of the_ integrator
# = u with statex € R and inputu € R following the
~ ~ approach of [[1]. In this direction, we define the nominal
§E€G(E) = ﬂ cl(G((z +dB) N D)) €D (8D) feedback lawk(z) = —x for eachz € R and use it to
>0 R define the following event-triggered controller:
where the flow and jump sets are given By := cl(C) P ~ . ~ 2. ~
and D := cl(D), respectively. The regularized systemh (8) is Au (=, 3) €C:= {(”“i) < R2 e, Z) < 0
nominally well-posed and, if it does have complete discrete = k(xz) (z,u) € D:={(z,u) € R*:y(z,u) > 0}
solutions, then arbitrarily small perturbations #&f induce with y(z,0) = [t — k(z)| — o|z| ando € (0,1). Let us

>0

arbitrarily small separation between jumps. consider a solutiow,, = (z,7) to the perturbed closed-loop
To be more precise, the perturbation &f is defined as system with initial conditionp,, (0,0) = (o, —x0) satisfying
follows: zo # 0 under the influence of an admissible state perturbation
EeF(E+n) E+neC (9a) ™ = (n1,n2) satisfyingn,(¢, j) = 0 and
§reGE+n) £+neD, (9b) ni(t, j) = =277 = Da(ty, 5)(t - t;) (12)

where n is an admissible state perturbation.e., domn for each(t¢,j) € dom¢,. It is possible to show that the
is a hybrid time domain and the functian— n(t,j) is intersampling time is given by, — t; = 1%# for
measurable odomnN(R.,x{;j}) foreachj € N. Thenext all j € N and that the magnitude of the noise signal is
result follows directly from the equivalence between solus . j .

y a (9] = @7 = 1) (5% ) 1554, for each(t,j) €

o (3) and solutions td.{8). dom ¢,,. We conclude that the jumps of the perturbed solution
Theorem 2. Given a hybrid systerit := (C, F,D,G) as accumulate at; := Z;.fg tj+1 —t; = 17 while the noise

in (@), suppose that’ and G are locally bounded. If there is signal [12) convergesta In particular, this implies that there

a Krasovskii solutiony, to (1) that is complete and discrete,does not exist a positive lower bound to the inter-sampling
then, for eache > 0 and eachJ € N\{0}, there exists an time in the presence of arbitrarily small noise.

admissible state perturbatian and a solutionp,, to (@) such
thatt; —t;_; < e for eachj € {1,...,J}, wheret; € R,
satisfiegt;, j—1), (t;,j) € dom ¢, for eachj € {1,...,.J}.
Moreover,

A similar result to Theoreni]2 is given in_[13, Theo-
rem IV.1], the main differences between the two being that:
the latter applies solely to linear event-triggered system
while the former applies to hybrid systems in general, and;

sup [n(t, )| — 0 (10) admissible state perturbations constitute a broader afss
(t.5)eE perturbations than those that are considered_in [13, Theo-
ase — 0, where E := dom ¢, N (R, x {0,...,J}) is a rem IV.1].
compact hybrid time domain.

Proof. Sinceg, is a Krasovskii solution td{1), then it is also V. WHEN SOLUTIONS WITH VANISHING TIME BETWEEN

a Hermes solution td11) (c.f.[11, Theorem 4.17]). For each JUMPS AREUNAVOIDABLE
J € N\{0}, the restriction ofp. to The final result that we present in this paper reveals
dom ¢, N (Ryg x {0,...,J}) (11) a particularly pathological case that may happen in ETC

is a compact Hermes solution t6] (1) as in][11, Defim"§yStemS (see e.d. [21]).

tion 4.12]. Hence, there exists a sequefiggl;cn of hybrid Theorem 3. Suppose thatH in (@) is nominally well-
arcs and a sequenge; };cn of admissible state perturbationgposed and that there exists a compact suhdef RP
such thatp; is a solution to[(P) with admissible state pertursuch that each maximal solutiofy to # from A is com-
bationn; for eachi € N. Furthermore, for each > 0, there plete, discrete, and satisfiage o9 := {¢0(t,5) : (t,5) €
existsig € N, such that, for each > iy, ¢; is e-close to the dom ¢y} C A. Then each complete solutignto # satisfying
restriction of . to (I11). From the definition ot-closeness lim;{ ;. |¢(t,7)| 4 = 0 has vanishing time between jumps.

in [11, Definition 4.11], it follows thakup ; dom ¢; < e for Proof. Similarly to the proof of Theoremi]1, consider the

eachi > iy, thust; —t;_1 < e for eachj € {1,...,J}. oo . . .
The desired result follows from the fact that}10) hold b&equence{qbl =0 dgﬁned in [5). Since¢ converges to
by assumption, it follows from compactness df that

deifinition of a compact Hermes solution and because ., is locally eventually bounded, hence it has a

can choose,, = ¢; andn = n; with i > 1. . .
convergent subsequence that converges graphically. Since
It is often the case that ETC systems vedtyD)ND =0  lim; o |¢:(0,0)|, = 0, it follows from nominal well-
(see e.g.[[1] andL][6]), which precludes the existence pbsedness thafp;}5°, converges to a solution t@ from
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Fig. 1. Representation of the time between jumps for a sitionlaof the
system in ExamplE]3. [4]

A. Since all maximal solutions t@{ from .4 are complete
and discrete, we have thadom ¢, }°, converges tq0} x N.

It follows from Lemmdl thatp has vanishing time between
jumps. O

(5]

(6]

It follows directly from Theoreni13, that, ifd is attrac-
tive for H, then complete solutions converging # have
vanishing time between jumps, necessarily. We illustrai® t
phenomenon in an ETC system in the next example.

(7]

]
Example 3. Let us consider the single integrator system of
Example[2, but instead of stabilizing the origin, supposeg)
that we wish to track a referende— xz,(t) generated by
the system(z4,v4) = (vq, —xq) With (zg,v4) € S
{(zg,vq) € R? : |(xq,vq)| = 1}. Using the feedback law

K(zq,vq, x) ==

[20]

—(x —zq) +va Y(zg,va,x) €S X R, [11]

the closed-loop system is given iy (1) with data [12]

F(€) := (va, =4, 1,0) vEeC

[13]
G(&) = (Id,’Ud,ZC,IQ(ZCd,Ud,I)) v€ €D

and state has statg := (v4,v4,7,0) € = := S x R x [14]
R and flow set and jump set given by = {£ €
|U_H('rdavda )| < U|I_'rd|} D = {6 €=

|u — k(xg,va, )| >0 |:c - a:d|} It is possible to verify that [15]
={¢ € E: 2 = xq,u = k(xq,vq,x)} is globally

asymptotically stable. However, each maximal solutiomfro

A is complete and discrete, thus all solutions have vanishif§]

time between jumps (c.f. Fifl 1).

[17]
VI. CONCLUSION

Motivated by applications in Event-Triggered Control
(ETC), we analysed conditions for the existence of solstioft8
to hybrid dynamical systems with arbitrarily small sepinat
between jumps. In particular, we introduced the concept B8]
solutions with vanishing time between jumps — which are
solutions whose time between jumps converges to zero, —
and we demonstrated that, if a nominally well-posed hybrigo]
system does not have complete discrete solutions then gt doe
not have solutions with vanishing time between jumps. We
also demonstrated that the existence of Krasovskii saiatio21]
to a hybrid system that are complete and discrete impligs tha
there are admissible state perturbations that generatesarb
ily small separation between jumps. Finally, we proved that
hybrid systems with a compact set from which all solutions
are complete and discrete, the existence of solutions with
vanishing time between jumps might be unavoidable. These
results were illustrated with applications in ETC.
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