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Abstract— Model predictive control (MPC) is a valuable tool
to deal with systems that require optimal solutions and con-
straint satisfaction. In the case of systems with uncertainty, the
formulation of predictive controllers requires models which are
capable to capture system dynamics, constraints and also system
uncertainty. In this work we present a formulation for a set-
valued model predictive control (SVMPC) where uncertainty
is represented in terms of sets. The approach presented here
considers a model where the state is set-valued and dynamics
are defined by a set-valued map. The cost function associated
to the proposed MPC associates a real-valued cost to each
set valued (or tube-based) trajectory. For this formulation, we
study conditions that can yield the constrained optimal control
problem associated to the set-valued MPC formulation feasible
and stable, thus extending existing stability results from classic
MPC to a set-based approach. Examples illustrate the results
along the paper.

I. INTRODUCTION

Model predictive control (MPC) represents a valuable tool
to deal with systems that are required to satisfy physical con-
straints and to optimize a criterion, such as position error or
fuel consumption. Applications with these requirements are
common in the area of cyber-physical systems, in particular
in autonomous vehicles, where a timely response is often
also a requirement. An additional challenge associated to
the implementation of autonomous systems control is the
presence of uncertainty, which arises often from model error,
and sensor or process uncertainty. To properly deal with this
uncertainty, predictive controls require models which are able
to capture system dynamics, constraints, and also uncertainty.

The problem of developing predictive controllers which
can satisfy state and control constraints for all realizations
of uncertainty, or Robust MPC (RMPC), has been studied
extensively in the literature [1], [2], where main challenges
are associated to accounting for the propagation of possible
trajectories generated by uncertainty. To take into account
uncertainty effects, often set-theoretical methods are em-
ployed [3], [4]. Although several approaches currently exist
in the literature, representations based on tubes are the most
common [4]. These Tube-based MPC (TMPC) approaches
consider in general a setting with dynamics given by set-
valued maps. However, a nominal (singleton) trajectory is
considered, for which the predictive controller defines a
strategy that keeps the state within a sequence of invariant
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sets or tubes [5] [6]. The cost is then characterized as a
function with the nominal trajectory as argument.

In this work we propose a model predictive control struc-
ture which incorporates a set-based approach building on
the works in [7], [8] and [9]. The systems considered for
our MPC formulation have set-valued states which evolve
in discrete time, with (possibly nonlinear) dynamics defined
by set-valued maps. This leads to solutions being described
as sequences of sets, or tubes, as in TMPC, but that are not
necessarily associated to a nominal trajectory. This represen-
tation is useful since it allows to capture system variability
and system constraints in a common framework. In this work
we formalize the approach in [9] and provide a framework
for set-based predictive control. In our proposed setting,
since the state trajectory is set-valued, the cost functional
uses set-to-points maps to characterize the cost associated to
each (set valued) trajectory. For this formulation, we study
conditions that can yield the constrained optimal control
problem associated to the set-based MPC formulation feasi-
ble and stable, thus extending existing stability results from
classic MPC formulations into a set-based approach.

This paper is structured as follows. Section II presents a
framework for the set dynamical systems considered in this
paper. Section III presents the formulation for proposed the
set-valued predictive controller. Basic assumptions associated
to this set valued MPC are presented in Section IV, which are
later used in Section V to establish conditions for feasibility
and stability of the optimal control problem. Section VI
describes implementation options for the proposed controller.
General conclusions and future works associated are pre-
sented in Section VII.

II. PRELIMINARIES
A. Notation

The following notation is used throughout this paper. The
set of natural numbers including 0 is denoted as N, i.e., N =
{0,1,...}. The set of real numbers is referred as R; Rxg
denotes the nonnegative real numbers and the n-dimensional
Euclidean space is denoted as R™. Given a vector z € R",
|z|, denotes the o-norm, with ¢ € [1,00]. Given a closed
set A C R™ and x € R"™, we define the distance |z|4 :=
infyc 4 |z — y|. Given a map V its domain of definition is
denoted as dom V. A function o : R>9 — R>( belongs to
class-XC if it is continuous, strictly increasing, and a(0) = 0.
If « is also unbounded then it is said to be of class-K .. For
a given pair of sets S, Se, the notation S; C Sy indicates
that S; is a subset of Sy. We will refer to sets of subsets of
R™ as collections (of sets). Given a set S, the notation P(S)
denotes the collection all of nonempty subsets of S, namely



P(S) = {51, Sa, ...}, where for each i, S; is a nonempty
subset of S. The collection of all nonempty compact subsets
of S is denoted as P¢(.S). For a given pair of collections of
sets C1, Co, the notation C; C C» indicates that C; is a subset
of the collection Cy, namely, it indicates that every element
of C; is an element of Cy. We denote the intersection between
Cy and Cy as C1NCy which corresponds to a collection. Given
a set C' and a collection of sets C, notation C € C indicates
that C' is an element in the collection C. In general we refer
to collections of sets simply as collections. For a variable x
evolving in discrete-time, we denote by x™ the value of z
after a discrete-time step. Discrete time is also denoted by
j € N and for a given function j — z(j) of discrete time
j € N, we use the notation z; to represent x(j).

B. Basic Definitions

Definition 2.1 (Hausdorff distance): Given two closed
sets A;, Ay C R™ the Hausdorff distance is given by

dH(.Al, AQ) = Imax

Given sets A;, Ay and dy as in Definition 2.1,
dp (A1, Az) = 0 if and only if A; = A,.

Definition 2.2 (distance from a set to a collection):
Given a set X € Pc(R™) and a collection
A C Pc(R™), the distance from X to A is given by
d(X, A) = ianC.A dH(X, A)

The definition of d above extends the notion of distance
from a point x to a set .4, which is denoted |z| 4 in Section
II-A, to the case when the point x is replaced by a set X
and the set A is replaced by a collection. Note also that the
distance between a set X and a collection A is only equal to
zero in the case where the set X coincides with an element
of the collection A, i.e., if X € A.

Definition 2.3 (Set-valued maps): [7] Let G be a set-
valued map, mapping sets in P(R™) x P(R™) to sets in
P(R™). Given sets X € Pc(R™), and U € Pc(R™),
G(X,U) is defined as

U G(z,u)
zeX ,uel
={(2",v) € G(z,u) : x € X,u e U}
Definition 2.4 (inner and outer limit): [10] For a se-
quence of sets {7;}32, in R™:

SUPgec A, |‘r‘A27supz€A2 |Z|-A1 .

G(X,U) =

o The inner limit of the sequence {T;}°,, denoted
liminf;_, . T}, is the set of all x € R™ for which there
exist points x; € T3, ¢ € N, such that lim;_, ., z; = x.

o The outer limit of the sequence {T;}$°,, denoted
lim sup;_, o, T3, is the set of all x € R™ for which there
exist a subsequence {T;, }7°, of {T;}52, and points
2k € 15, , k € N, such that limy_, x5, = 2.

The limit of the sequence exists if the outer and the inner
limit sets are equal, namely lim; .., T; = liminf; ., T; =
lim sup;_, o, T;

The inner and outer limit of a sequence of sets always
exist and are closed, although the limit itself might not exist.
When the limit of the sequence {T;}5°, exists in the sense
of Definition 2.4, and is equal to 7', the sequence of sets

{T;}2, is said to converge to the set 7. In the remaining
of this work we denote sequences of sets with boldface
to distinguish them from the notation used to refer to a
single set in the sequence. Hence, the sequence {7;}2,, is
represented as T, and a set within this sequence is denoted
Definition 2.5 (continuity of a set-valued map): [10] A
set-valued map S : R™ == R™ is outer semicontinuous at
Z if lim,_,z sup S(z) C S(Z), and inner semicontinuous at
Z if lim,_z sup S(x) D S(Z). It is continuous at T if it is
both outer semicontinuous and inner semicontinuous at .

C. Set dynamical systems

In this work, we propose a set-based predictive control
scheme for discrete-time systems with solutions given by
sequences of sets. This framework follows the ideas in [7],
[8], and [11] where the evolution of the state of a system is
represented by a sequence of sets

Xo, X1, X9, ... Xj C R"™ @))

where j € {0,1,2,...} and X; is the initial set. The
sequence of sets in (1) defines a state trajectory (or tube-
based trajectory). Such a trajectory defines the sequence of
sets X, indexed by j € [0, J], J € N. These solutions can
be generated when incorporating uncertainty and the effects
of several possible inputs in a “classical” dynamical system
given by 27 = g(z,u), with z € R and v € R™. We refer
to these systems as set dynamical systems.
We consider set dynamical systems defined by

Xt =GX,U)

(X,U) €D @

where X is the set-valued state and U/ is the set-valued input,
G : P(R™) x P(R™) =% P(R™) is a set-valued map defining
the evolution of the set-valued state, and the collection D =
D x D5, with collections Dy C P(R™) and Dy C P(R™),
defines constraints that the state and the inputs must satisfy.
The collection D can be useful for instance to specify safety
constraints, which can define regions in the state space where
the system is safe to operate.

The next definition formalizes the notion of solution pairs,
which will be used when defining sequences of set-valued
states generated by a sequence of inputs.

Definition 2.6 (Solution pair to a set dynamical system):
[11] A solution pair for the set dynamical system in (2) is
given by a sequence of compact nonempty sets X defining
the state trajectory, and a sequence of closed nonempty sets
U representing the input. The first entry of the solution,
Xy, is the initial set for the state. The sequence (X, U) is
a solution to (2) if

Xjt = G(X;,U;)
(X;,U;) €D
for all j € dom(X, U), where the domain of definition of the

solution dom(X, U) is given by the set {0,1,2,...,J} NN
with J € NU {oco}. A solution pair that has J = 0 is said
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Fig. 1. Variables and parameters in Dubin’s representation in Example 2.1

to be trivial. If the solution pair has J > 0 is nontrivial,
and if it has J = oo, it is complete. Given an initial set
Xo € D1 C Pe(R™), S(Xo) denotes the set of all possible
solution pairs (X, U) with initial set X.
Note that depending on the input sequence U we can have
different solutions X from the same X;. The idea of a control
input set can be useful when analyzing reachability for a
given set of possible inputs.

Example 2.1: Consider a ground vehicle represented by
the Dubins model. An exact discretization for this system
with step size 7' is given in [9] by

a1+ ur 2 cos(f0+uz) sin(usz)

+ _
- q2 + uq

25in(0+u“é)sin(u2) (3)

9+2U2

T g(z,u) =

where the state is given by = := (q1,q2,0) ", with (g1, g2)
being the vehicle Cartesian coordinates, 6 is the heading
angle, angular velocity associated to heading given by w = 0,
and v = (u1,us)’ = (v,Tw/2)7 is the input, where v
represents the speed. A diagram with the associated variables
is presented in Figure 1. For this system, consider the case
where there is uncertainty in the vehicle position (g1, ¢2).
We capture such uncertainty by defining the initial set X as
the set of all possible vehicle positions for the initial time.
We can represent the dynamics of this system by defining a
system such as (2), where G(X,U) = U,cx uey 9(7, ),
D = P(R?) x P(R?). For a given input u € U, the
state trajectory for this system is given by a sequence of
sets X. The state trajectory for of this system from X, =
{(¢1,q2,0) € P(R?) : o™ < g < o™, 08" < ¢o <
o 0 = 0}, with an applied singleton input sequence U is
depicted in Figure 2 up to time J = 9.

D. Set dynamical systems under Static State-Feedback
Given the map x : Pc(R™) = P(R™), let
X+ = Gu(X) = GIX, /(X)) )
(X,k(X)) eD
A solution pair (X, U) = (X, k(X)) is said to be generated

by the feedback k. For the system in (4), we define the
following notion of invariance
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Fig. 2. Set-valued trajectory for the system in Example 2.1 from Xo =
{(a1,92,0) € P(R?): 0 < q1 < 04,0 < g2 <0.25,0 = 0}

Definition 2.7 (forward and backward invariance for (4)):
A collection M C P(R™) is said to be forward invariant
for (4) if for every set T' € M N Dy, we have G.(T) € M
with T such that G.(T') is nonempty and it satisfies the
constraints in (4). A collection M C P(R") is said to be
backward invariant for (4) if for every set T" € M N D; for
which there exists a set T with the property 77 = G (T),
we have T' € M for every such set 7. A collection
M C P(R™) is said to be invariant if it is both forward and
backward invariant.

ITII. SET-VALUED MODEL PREDICTIVE CONTROL

In this section we propose a set-valued model predictive
control (MPC) scheme for discrete-time systems with solu-
tions given by sequences of sets. Given a dynamical system
where variability can be captured by the representation in
(2), the predictive controller is implemented by measuring
the set-valued state of the plant in (4) and finding a solution
pair which minimizes a cost functional, subject to constraints.
As with classic moving horizon implementation for MPC,
at each measurement instant, the algorithm computes an
optimal control sequence of sets, from which commands are
applied to the plant until the next measurement is available.
Unlike other formulations for robust MPC, such as tube-
based approaches [2], where the optimal control problem is
designed to constraint singleton trajectories to sequences of
sets or tubes, but cost is evaluated in terms of a nominal
(classic) state trajectory, the cost function considered here
assigns a real-valued cost to each set-valued solution pair.

Next, we describe the formulation of set-valued MPC,
where, as in the case of classic MPC strategies, the controller
considers a prediction horizon N > 1, a control horizon
1 < M < N, a terminal constraint collection of sets
Xv C Pc(R™), a stage cost £, and a terminal cost V5.

A. Finite Horizon Set-valued Optimal Control

In this section we present the main elements in the
formulation of the proposed set-valued predictive controller.



1) The Cost Functional: Given a solution pair (X, U) of
(4) with terminal time N, a stage cost ¢, and a terminal cost
V}, we define the cost J associated to the solution pair as

N—1
J(X,U) =Y UX;,Uy) + Vi(X) (5)
j=0
where ¢ : Pc(R") x P(R™) — R>g and Vy : Pc(R") —
R>g. Note that the maps £ and V; assign a cost to every
nonempty closed subset in Pc(R™) x P(R™) and Pc(R™),
respectively.

2) The Constrained Optimal Control Problem: The opti-
mal control problem to be solved is defined next.

Problem 1: Given the prediction horizon N > 1, stage
cost ¢, terminal cost V, terminal constraint collection Xy,
constraints defined by the collection of sets D, dynamics
described by the map G, and initial state X

min  J(X,U) (6)
(X, U)eS5(Xo)
subject to Xy € Xy
For this problem the optimization is performed over solution
pairs of (2), with initial condition X, and terminal state X n
belonging to the terminal constraint collection Xy . Note that
the decision variables are the input sequences, which are sets.
State-input constraints associated to (2) along with typical
MPC constraints can be captured by D. Note that the system
dynamics is also a constraint in Problem 1.

A solution pair is said to be feasible if it satisfies the
constraints of (6) for some Xjy. We also refer to a given
sequence of inputs U as feasible if along with its associated
state trajectory X, they correspond to a feasible pair. We
define the feasible collection X as the collection of all sets
X, such that there exists a feasible pair (X, U) € S(Xo).

The value function J* : X — R>q is defined as

T (Xo) = inf
(X,U)eS(Xo)
XNeXy

If the infimum is attained by a feasible (X, U) € 5(Xo),
then the pair (X, U) is said to be optimal and it is denoted
(X*,U*). Note that in general, solutions to this problem
may not always exist and may not be simple to compute
numerically. We focus first on the properties of the resulting
predictive control algorithm, and we discuss later possible
computationally feasible implementations for this controller.

JX,U) ¥XoeX (D)

B. Set-valued MPC algorithm

Given a prediction horizon N and a control horizon M,
the set-valued MPC algorithm operates by measuring the
initial state, solving the optimal control problem described
in Problem 1 to find a solution pair (X*, U*). The optimal
control sequence U* = {Us, U5, ... . U5} is then applied
to the system in (4) until time step M at which point the
process in repeated for a new initial condition given by
the current state measure. Note that this process defines an
implicit control law given as a function of the initial state
Xo. This process is summarized in Algorithm 1. Note that

in Algorithm 1 ¢ tracks time and j is associated to the
application of the optimal control. Additionally, in line 10,
the state X corresponds to the state which was used as a
starting point of the optimization.

Note that by the execution of Algorithm 1, the resulting
trajectories generated by the set-valued MPC correspond to
concatenations of truncated optimal solutions. This notion is
formalized in the next definition.

Definition 3.1 (solution pair generated by SVMPC): A
solution pair (X, U) is said to be generated by the set-valued
MPC algorithm if it is the concatenation of a sequence
of solution pairs (X, U) where for each j € dom(X,U),
(X,U) in the sequence of sets is the truncation of an
optimal solution pair (X*, U*).

Algorithm 1 Set-valued predictive control
1: Obtain initial state X
2: Set Xg=X,i=0, N, M.
3: while True do
Solve Problem 1, obtain (X*, U*)
Set 5 =0
for j < M —1do
Xiy1 = X7, = G(X},07)
i=i+1,j=7+1
end for
10: Set Xo = X3y,
11: end while

B A A

IV. BASIC ASSUMPTIONS FOR SET-VALUED MPC

In this section we present assumptions associated to
Problem 1 to ensure feasibility and stability properties.
These assumptions resemble the stabilizing conditions for
constrained problems in classic MPC formulations, such as
the ones summarized in [12].

Assumption 4.1: For each Xy € X, there exists an optimal
solution pair (X*, U*) € S(Xj).

Assumption 4.2: Given a collection A C Xy C Po(R™),
and a stage cost £ : Pc(R™) x P(R™) — R>¢, there exists
a class-K o, function « such that ¢(X,U) > a(d(X,.A)) for
every (X,U) € D.

Assumption 4.3: Given a terminal cost Vy, there exists
€ > 0 such that the following hold:

(BO) There exist class-K,, functions «; and as such that
a1(d(X,A)) < Vi(X) < as(d(X,A)) for all X €
Xyv N A, where the collection A, is defined as A, :=
{X € Pe(R™) : d(X,A) <€}

(B1) The inclusion A, N D; C Xy holds.

Assumption 4.4: There is a state feedback  : Po(R™) =
P(R™) such that the terminal constraint collection of sets
Xy is forward invariant for the system (4). Moreover, K
satisfies V(G (X)) — V§(X) < —U(X, k(X)) for all states
X € Xy such that (X, k(X)) € D.

V. PROPERTIES OF THE OPTIMAL CONTROL PROBLEM

In this section, the basic assumptions defined before are
used to characterize properties of the optimal control problem
formulated in Section III.



Proposition 5.1: Suppose Assumptions 4.2 and 4.4 hold.
Then, ¢(X, k(X)) = 0 for all (X,x(X)) € D such that
XeA

Proposition 5.2: Let (X, U) be a feasible solution pair
to the set dynamical system in (4). Suppose the terminal
constraint collection Xy, is forward invariant for the system
(4). Then, for any j € dom(X, U), there exists a feasible
pair (X', U’) € S(X,); i.e., X; € X forall j € dom(X, U).

The next results present properties analogous to the ob-
tained for classic MPC to establish the value function as a
candidate Lyapunov function.

Lemma 5.1: Suppose Assumptions 4.2, 4.3 and 4.4 hold.
Then, J7*(X) =0 for all X € AN Xy.

Lemma 5.2: Suppose Assumption 4.2 holds. Then, there
exists a class-K, function « such that the value function
satisfies 7*(X) > a(d(X, A)) for all X € X.

Lemma 5.3: Suppose Assumption 4.4 holds and Xy C
X. Then, J*(Xo) < V§(Xp) for all Xy € Xy

Lemma 5.4: Suppose Assumptions 4.2 and 4.4 hold. Let
(X*,U*) € 5(Xp) be an optimal solution pair to Problem
1. Then, for any j € dom(X*,U*), 7*(X;) < J*(Xo) —
S0 (X Us),

A. Asymptotic Stability of Set-valued MPC

We use the properties defined in the previous section for
the optimal control problem to find conditions that guarantee
stability for the set-valued MPC approach. We start by
providing a definition of stability for a collection of sets.

Definition 5.1 (stability of a collection): The set-valued
MPC algorithm is said to render the collection A C Pc(R™)
stable for the set dynamical system in (2) if the following
hold:

1) There exists 4 > 0 such that for every Xy € D;
satisfying d(Xy,.A) < 4, there exists a solution pair
(X,U) generated by the set-valued MPC algorithm
originating from Xj.

2) For every ¢ > 0, there exists § > 0 such that given a
solution pair (X, U) generated by the set-valued MPC
algorithm, d(Xo,.A) < ¢ implies d(X,,.A) < € for all
j € dom(X, U).

3) If, in addition to 1) and 2), every solution pair (X, U)
generated by the set-valued MPC algorithm satisfies
lim; o d(Xj,A) = 0, then the set-valued MPC algo-
rithm renders the collection A asymptotically stable.

Theorem 5.1: Suppose Assumptions 4.1, 4.2, 4.3, and

4.4 hold. Then, the set-valued MPC algorithm renders the
collection of sets .A asymptotically stable for the system (2).

VI. IMPLEMENTATION

The set-valued predictive control proposed in the previous
sections presents several challenges for its implementation,
given the need to properly generate and represent sets, and
to solve online the constrained optimization formulated in
Problem 1. These challenges, as discussed in [9], can be
summarized as below.

1) A suitable and computationally efficient representation

for the sets characterizing the dynamics must be found.

2) A solution for Problem 1 must be obtained, which
may be difficult given the presence of state and inputs
defined as sets, along with constraints formulated as
collections of sets.

3) The computational burden associated to the numerical
solution of Problem 1 may become intractable, similar
to the case of some robust formulations for MPC [13].

4) Presence of delays, perturbations on the set dynamical
system or unmodeled dynamics, can severely affect
the performance of the described set-valued MPC
implementation.

These challenges are not uncommon in classic MPC, such
as the need for accurate, fast optimization [14] and the need
to propagate and evaluate set-based trajectories, also found
in reachability problems [15]. Approaches to these issues
often consider over- or under-approximation of the dynam-
ics, in order to provide computationally tractable solutions.
These include the use of polytopes, zonotopes and support
functions, among others, as means to represent sets and to
maintain desirable computation properties [13]. We illustrate
next an implementation approach for the set-valued MPC
based on a approximations using polytopes, which allows
for the proposed controller to be computationally efficient.

Example 6.1 (Autonomous vehicle control): Consider the
problem of controlling an autonomous vehicle towards a
given target location Xr = P(Xr), while satisfying system
constraints. Here, X may represent a parking space as
the terminal state. Recalling the coordinates in Fig. 1, we
assume that there exists bounded uncertainty in the vehicle
coordinates (qi,g2) due to sensor noise, while 6 may be
determined more exactly due to visual feedback of parking
space lines: this motivates the set-valued framework. With
this the system, dynamics will be represented using an over
approximation, i.e. the dynamics will be contained in a set,
where the map G will be defined such that G(X,U) is a
compact convex polytope. Similar to the approach in [9] we
consider a selection of constraints for the system such that
the area of the set X given by its ¢; — g2 projection remains
constant. We present next the selection of a representation
and parameters to implement the set-valued MPC for this
problem.

1) Representation. We consider the system dynamics as in
(3), where the state satisfies © € [z1, za] X [23, 24] X [25]
with z; € R,7 = 1,...,5. With this, as the dynamics of
q1 and g9 are decoupled, the system can be described
in terms of the new variable z = [z1, 22, 23, 24, 25| by

21+ Ty 2 cos(z5+u2) sin(uz)

29 + TU1

z3+ Tuy

u2
2 sin(zs+u2) sin(u
24 + Tuy (25 u22) (u2)

zZ5 —+ 2’LL2

U
2 cos(z5+u2) sin(uz)

U
+ 2sin(z54ug) sin(uz)

27 =g(z,u) =

For consistency with real actuator commands, we will
consider the decision variable (U*) to be chosen from
subsets of R? consisting of a single element.
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Fig. 3. Set-valued trajectory for the system in Example 6.1

2) Constraint selection. Bounds associated to the state
and commanded inputs are governed by physical pa-
rameters of the vehicle and sensors. In particular we
consider here: D; = P(R? x R) and Dy = P(D,),
with Dy, = {(u1,u2) : 0 < w1 < Umax, 5 Pear < Uz <
%(bcar}, where Umax, @car represent the autonomous
vehicle allowable maximum speed and steering, re-
spectively, and where T is the sampling time.

3) Cost Function and terminal constraint selection. We
can represent the target collection as Xr = P(Xr),
where X7 can be defined by the physical dimensions
of the target location. In particular here we consider
X = [d1,ds] X [d3,d4] x R, where d; € R, with i =
1,...,4. We define the terminal constraint set Xy C
P(R™) to be such that Xy N P(Xr) is nonempty. In
order to steer the system towards the selected target,
we define ¢(X,U) = >0 | |zk|x,, where xy, with
k =1,...,p, represent the vertices of the set-valued
state X, which is considered to be a polytope. The
terminal cost is also defined in terms of the target as
Vf(X) = )\Zle ‘xk|XT’ with \ € RZO a weight
factor as in classic MPC.

Numerical simulation result associated is presented in Figure
3 where the selected parameters for the set-valued MPC are:
N =6, M = 1, A = 1, target location X defined as
[-0.75,—0.25] x [—0.7,—0.3] x R, and system parameters
Umax = 0.8, @car = §, vehicle length and width of 0.5m and
0.4m respectively, with sampling time 7" = 0.2s.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a formulation for a set-valued model
predictive controller where the state trajectory is represented
as a sequence of sets. This framework can be useful to
incorporate the effects of uncertainty or variability in the
MPC formulation. In the proposed setting, the cost associated
to state trajectories assigns a real-valued cost to solutions
given by sequences of sets. For the resulting optimal control
problem properties were presented and used to develop
recursive feasibility and stability results associated to the
set-valued MPC formulation. Even though the implementa-
tion of the proposed controller may be complex or require

high computational costs, as it is the case with other op-
timal control formulations, successful implementation can
be accomplished in particular cases, using computationally
efficient sets representations, such as polytopes. Future work
includes the development of practical applications where data
generated from multiple vehicle trajectories can be used
to obtain the characterization of the set-valued dynamics
considered in this approach.
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