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Abstract— This paper proposes a duality approach to guar-
antee set invariance for nonlinear dynamical systems. Building
from the so-called mirror descent algorithm from the optimiza-
tion literature, we develop a new version of the given nonlinear
system such that the desired set is forward (pre-)invariant. Such
new version of the model is constructed using duality between
the given system — called the primal system — and a new
system — called the dual system. By appropriately mapping
the dual system back to the original space, the resulting system
— called the modified primal system — has the desired set
forward pre-invariant. The power of the approach is illustrated
in several applications pertaining to constrained optimization
and feedback control under constraints. Academic examples are
provided to illustrate the approach and utility of the results.

I. INTRODUCTION

Forward invariance of a set for a dynamical system is
the property that solutions from the set remain in the set
for all time. Approaches to ensure such property that do
not require to explicitly compute the solutions to the system
are essential for systems that are nonlinear, in particular,
when safety is the property to be certified. One of the
first results guaranteeing forward invariance of a set without
computing the solutions to the system is credited to Nagumo;
see [1]. In this article, sufficient conditions for forward
invariance of a set are given in terms of the contingent
cone and the right-hand side of the system. Due to the
imposed regularity properties, these conditions only need to
be checked on the boundary of the set to render forward
invariant. The Nagumo Theorem has been extended to many
settings, in particular, to differential inclusions in [2], to
impulse differential inclusions in [3], and to hybrid inclusions
in [4].

An alternative approach to those involving contingent
(or tangent) cone conditions just mentioned consists of
employing energy-like functions – much like Lyapunov
functions – and check that their variation along the solution
is nonincreasing around the set to render forward invariant.
Such functions, typically called barrier functions, give rise
to infinitesimal conditions that depend on some form of
gradient of the function and the right-hand side of the system.
Sufficient conditions for forward invariance of a set, as well
as safety, using barrier functions for continuous-time systems
appeared in [5] and for hybrid systems in [6], to just list a
few related references. While barrier functions are powerful
as they play the same role for forward invariance and safety
as Lyapunov functions play for asymptotic stability, they are
also typically hard to find to certify forward invariance of a
set.

In this paper, motivated by difficulties in finding barrier

functions, we develop a method to certify forward invariance
of a set that, rather than requiring checking conditions involv-
ing contingent cone or barrier functions, exploits ideas from
constrained optimization. Specifically, our approach builds
from the so-called mirror descent algorithm for optimization
formulated in [7] (see also [8]) to solve the constrained
optimization problem

min g(x)

s.t. x ∈ X
via duality. To solve this problem using the mirror descent
algorithm, one constructs a dual map and applies the gradient
descent method in dual space, rather than in primal space,
and then one maps the result back to the primal space.
Our idea is to exploit this approach to certify forward (pre-
)invariance of a set as follows. Given a dynamical system

ẋ = f(x) x ∈ Rn, (1)

which we refer to as the primal system on the primal space
Rn, and a set X ⊂ Rn to render forward invariant, we
construct a strongly convex function ψ with domain X given
by

ψ(x) = φ(x) + δX (x) ∀x ∈ Rn. (2)

Let ψ∗ be the convex conjugate of ψ. Then the gradient of
ψ∗, namely, ∇ψ∗, which we call the dual map, is a map that
provides a bridge from the dual space to the primal space.
The dual map enables us to construct a dual system, which,
conveniently, is unconstrained, as well as a new version of
the primal system called the modified primal system, which
under appropriate conditions, has the set X forward pre-
invariant. More precisely, we show that when φ in (2) is
lower semicontinuous, strongly convex, X is closed and
convex, and the right-hand side in (1) is locally Lipschitz,
we have that solutions to the dual system map to solutions to
the modified primal system that remain in X . Furthermore,
when the dual map is differentiable, we can further show that
the set X is forward (pre-)invariant for the modified primal
system. We illustrate the power of the proposed method in
several applications and academic examples.

The rest of the paper is organized as follows. In Section
II, we recap concepts from optimization and dynamical
systems. In Section III, the main results about duality for
set invariance are introduced. Applications and examples are
presented in Section IV. Due to space constraints, proofs will
be published elsewhere.

Notation. Let R be the set of real numbers, and R≥0 =
[0,∞). For x, y ∈ Rn, 〈x, y〉 denotes the inner product



between x and y. For A,B ⊂ Rn, A \B denotes the subset
of elements of A that are not in B. The set R indicates
the extended real line, i.e., R = [−∞,∞]. For a function
f : Rn → R, dom f represents the domain of f , gph f
indicates graph of f , and ∇f : Rn → Rn denotes the
gradient of f . The set Sn++ denotes the set of all n × n,
symmetric and positive definite matrices. The 2-norm is
denoted by |x|, and |x|K := infy∈K |x − y| is the distance
from x to the nonempty set K. We denote the closed unit
ball centered at the origin as B. The interior, the boundary,
and the closure of the set S are denoted as
operatornameint(S), ∂S, and cl(S), respectively. I denotes
the identity matrix with appropriate dimension.

II. PRELIMINARIES

Here, we present basic definitions and concepts, which are
needed in our approach.

A. Basic Definitions and Results
The following definitions are based on [9], [10] and [8].

Definition 1. (Strong convexity) A proper function f : E →
R is strongly convex if there exists a constant σ > 0 such
that

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)− 1

2
σλ(1−λ)|x−y|2

for all x, y ∈ dom f and all λ ∈ (0, 1).

Definition 2. (Convex conjugate) For any convex function
f : E → R, the convex conjugate function f∗ : E∗ → R is
defined by

f∗(z) = sup
x∈dom f

{〈z, x〉 − f(x)} ∀z ∈ dom f∗ (3)

Note that dom f∗ ⊂ E∗, where E∗ is dual space of E. The
domain of f∗ consists of points z ∈ E∗ such that f∗ is finite,
i.e., dom f∗ = {z ∈ E∗ : f∗(z) <∞}.

Based on [9], a set-valued map F : X ⇒ Z maps points
in X to subsets of Z, is represented by the double arrow ⇒.
The graph of F is defined as

gphF = {(x, z) ∈ X × Z : z ∈ F (x)}.

Definition 3. (Lower semicontinuous) The function f : E →
R is lower semicontinuous (lsc) at x̄ ∈ E if

lim inf
x→x̄

f(x) = f(x̄).

The function f is lower semicontinuous on E if it is lower
semicontinuous for every x ∈ E.

Proposition 1. [9, Proposition 11.3] For any proper, lsc,
convex function f , ∂f , subgradient of f , and ∂f∗ are
inverses of each other, i.e.,

z̄ ∈ ∂f(x̄) ⇔ x̄ ∈ ∂f∗(z̄) ⇔ f(x̄) + f∗(z̄) = 〈x̄, z̄〉

whereas f(x)+f∗(z) ≥ 〈x, z〉 for all x, z. Hence, the graph
of ∂f is closed and

∂f(x̄) = arg max
z∈dom f∗

{〈x̄, z〉 − f∗(z)}, (4)

∂f∗(z̄) = arg max
x∈dom f

{〈z̄, x〉 − f(x)}. (5)

�

The following theorem states properties of strong convex
functions and its dual ones.

Theorem 1. [10, Theorem 4.2.1] Assume that f : Rn → R
is strongly convex with constant σ > 0 on Rn. Then,
dom f∗ = Rn and ∇f∗ is Lipschitz continuous with Lip-
schitz constant 1

σ on Rn.

Definition 4. (Coercive, [9, Definition 3.25]) A function f :
Rn → R is said to be coercive if it is bounded below on
bounded sets and lim inf |x|→+∞

f(x)
|x| = +∞.

Remark 1. Any proper, lsc, strongly convex function is
coercive. Indeed, this property follows from the fact that any
strongly convex function f can be written as f̂ + µ

2 | · |
2 for

some proper, lsc, convex function f̂ and µ ∈ R>0. Since f̂ is
convex and it has a global underestimator hyperplane [11],
Definition 4 implies that f is coercive.

Corollary 1. [10, Corollary 4.2.10] Let f : Rn → R
be convex, twice differentiable, and coercive. Assume that
∇2f(x) is a positive definite matrix for all x ∈ Rn. Then
f∗ has the same properties and

∇2f∗(s) = [∇2f(∇f−1(s))]−1 for all s ∈ Rn. (6)

�

Definition 5. (Normal Cone) Given a closed convex set X ⊂
Rn, the normal cone of X is given by

NX (x) =

{
{f̂ ∈ Rn : f̂>(y − x) ≤ 0 ∀y ∈ X} if x ∈ X
∅ if x 6∈ X .

Definition 6. Given f : Rn → Rn, the range of f is given
by

rge f = {y ∈ Rn : ∃x ∈ Rn y = f(x)}.

Definition 7. (Convex Indicator Function) Given a convex
set X ⊂ Rn, the convex indicator of X , denoted δX , is
defined as

δX (x) =

{
0 if x ∈ X ,
+∞ otherwise.

(7)

B. Autonomous Dynamical Systems

Consider a differential equation of the form

ẋ = f(x) x ∈ Rn (8)

where f : Rn → Rn. A locally absolutely continuous
function, t 7→ x(t) is a (nontrivial) solution to (8), starting
from x0 ∈ Rn, if domx = [0, tmax) for tmax ∈ R>0∪+∞,
and dx

dt (t) = f(x(t)) for almost all t ∈ domx. Based on
[12], a solution x is complete if its domain is unbounded,
and it is maximal if there does not exist another solution y
such that domx is a proper subset of dom y and x(t) = y(t)
for all t ∈ domx.



Definition 8. (Forward pre-invariance) The set K ⊂ Rn is
said to be forward pre-invariant for (8) if for every x0 ∈ K,
every solution t 7→ x(t) from x0 satisfies x(t) ∈ K for all
t ∈ domx.

When K is forward pre-invariant for (8) and every maxi-
mal solution from K is complete, we say that K is forward
invariant for (8).

III. DUALITY FOR SET INVARIANCE

A. Outline of approach

Given system (8), a set X ⊂ Rn, and a function ψ, suppose
ψ is a strongly convex function with domain X and convex
conjugate ψ∗. We define the dual system (with respect to (8))
as

ż = f(∇ψ∗(z)) (9)

where ∇ψ∗ : Rn → X is the gradient of ψ∗, which is a map
from the dual space to the primal space, which we refer to
as the dual map. Based on Theorem 1, if ψ is proper, lsc,
and strongly convex, then ψ∗ is defined on Rn, and ∇ψ∗ is
a Lipschitz continuous function and is given by

∇ψ∗(z) = arg max
x∈domψ

{〈z, x〉 − ψ(x)} (10)

as illustrated in Proposition 1. Therefore, if f is locally
Lipschitz, the dual system (9) has a unique solution t 7→ z(t)
for each z0 ∈ Rn. Accordingly, this solution can be mapped
to the primal space Rn, namely, to the state space of (8)
which plays the role of primal system as follows:

x(t) = ∇ψ∗(z(t)) ∀t ∈ dom z. (11)

As we show in Lemma 1, the range of the dual map is
X . Then, for each x0 ∈ X , there exist z0 such that x0 =
∇ψ∗(z0). The resulting solution t 7→ z(t) to the dual system
(9) from z0 and t 7→ x(t) from (11) define a solution to a
system of the form

ṡ = 〈∇2ψ∗(z), f(∇ψ∗(z))〉
= 〈∇2ψ∗(z), f(s)〉.

(12)

We refer to this system as the modified primal system. In
the following, we show that every solution t 7→ x(t) to the
modified primal system from X stays in X , implying that X
is forward pre-invariant.

B. Assumptions and Supporting Results

Lemma 1. Suppose ψ : Rn → R is a proper, lsc, and
strongly convex function with domain equal to X ⊂ Rn,
and ψ∗ is the convex conjugate of ψ. Then, the range of
∇ψ∗ is X . �

Given a convex set X , a function ψ with domain X can be
written as in (2). The following Assumption is required for
the function ψ in (2) to satisfy the assumptions of Proposition
1 and Theorem 1.

Assumption 1. Given X ⊂ Rn and φ : Rn → R
• X is a nonempty, closed, and convex set, and

• φ is proper, lsc, strongly convex, and twice continuously
differentiable on Rn.

Remark 2. Consider ψ defined in (2) such that X and φ
satisfy Assumption 1. Then, follows directly that ψ is proper,
lsc, and strongly convex.

The function ψ in (2) is differentiable in the interior of X
and its subdifferential mapping, which is a map from primal
space to the dual space, is given as follows.

Lemma 2. Suppose X and φ satisfy Assumption 1. Let ψ be
defined as in (2), where δX is the convex indicator function
of X . Then, the subdifferential mapping ∂ψ : X ⇒ Rn of ψ
is given by

∂ψ(x) =


∇φ(x) if x ∈ int(X ),

∇φ(x) +NX (x) if x ∈ ∂X ,
∅ if x 6∈ X .

(13)

�
The conjugate function of ψ in (2) is differentiable and

its gradient is a map from dual space to the primal space.
Using Lemma 1, we show that its range is equal to X .

Lemma 3. Suppose X and φ satisfy Assumption 1. Let ψ be
defined as in (2) for each x ∈ Rn, where δX is the convex
indicator function of X , and let ψ∗ be the convex conjugate
of ψ, then the range of ∇ψ∗ is equal to X . �

Remark 3. Suppose φ satisfies Assumption 1. Remark 1
and Corollary 1 imply that φ∗ is twice differentiable. Using
∂ψ(x) = ∇φ(x) for each x ∈ int(X ), and the fact that

∇2ψ∗(∇φ(x)) = ∇2φ∗(∇φ(x)) ∀x ∈ int(X ),

we conclude that ∇2ψ∗ exists at least on int(X ). Further-
more, since ∇ψ∗ is Lipschitz continuous, Rademacher’s The-
orem [13, Theorem 3.1.2] implies that ∇2ψ∗ exists almost
everywhere.

Based on Remark 3, we introduce the following assump-
tion.

Assumption 2. The Hessian of the convex conjugate function
ψ∗, where ψ is defined in (2), is piecewise continuous on Rn.

The following lemma is exploited to define the modified
primal system as function of s only.

Lemma 4. Consider ψ defined as in (2) for each x ∈ Rn,
where X and φ satisfy Assumptions 1 and 2. Then, for each
x ∈ X and each z ∈ ∂ψ(x), ∇2ψ∗(z) = ∇2ψ∗(∇φ(x)). �

C. Construction of the modified primal system

In light of Lemma 4, using ψ in (2) and ∇ψ∗ in (10), we
have

∇ψ∗(∇φ(x)) =

{
∇φ∗(∇φ(x)) if x ∈ int(X ),

g(∇φ(x)) if x ∈ Rn \ int(X ).
(14)

Therefore, x 7→ ∇ψ∗(∇φ(x)) is a piecewise function. Using
Corollary 1, we conclude that ∇2φ∗ exists and is continuous.



Moreover, Assumption 2 implies that g is continuously
differentiable. Then, following (12), the modified primal
system is defined on Rn as

ṡ = 〈∇2ψ∗(∇φ(s)), f(s)〉

=

{
〈∇2φ∗(∇φ(s)), f(s)〉 if s ∈ int(X ),

〈∇g(∇φ(s)), f(s)〉 if s ∈ Rn \ int(X ).

(15)

D. Main result

Next, we show that X is forward pre-invariant for the
modified primal system (15).

Theorem 2. Consider
• f : Rn → Rn locally Lipschitz continuous, and
• ψ defined in (2), where X ⊂ Rn and φ satisfy Assump-

tions 1 and 2.
Suppose t 7→ z(t) is a solution to the dual system ż =
f(∇ψ∗(z)) from z0. Then, t 7→ s(t) defined as s(t) =
∇ψ∗(z(t)) for each t ∈ dom z is a solution to the modified
primal system in (15) from s0 = ∇ψ∗(z0). Furthermore, the
set X is forward pre-invariant for the modified primal system
in (15).

In the following section, we illustrate our results with
applications.

IV. APPLICATIONS

A. Forward Invariance via Modification of f

Consider system (8) and X ⊂ Rn. We want to find f̃
that is as close as possible to f such that X is forward pre-
invariant for ẋ = f̃(x). To do that, we consider φ quadratic.
We have the following result.

Proposition 2. Suppose
• f : Rn → Rn in (8) is a locally Lipschitz continuous

function,
• ψ is defined in (2), where X ⊂ Rn and φ satisfy

Assumptions 1 and 2, and φ is the quadratic function,
φ(x) := 1

2x
>Px with P ∈ Sn++.

Then, the modified primal system is given by

ṡ = f̃(s) =

{
f(s) if s ∈ int(X )

〈∇g(Ps), Pf(s)〉 if s ∈ Rn \ int(X ),
(16)

and the following hold:
• X is forward pre-invariant for the modified primal

system in (16).
• Suppose t 7→ s(t) and t 7→ x(t) are solutions to ṡ =
f̃(s) and to ẋ = f(x), respectively, both from s0 ∈ X .
Then, s(t) = x(t) for all t ∈ domx such that x(t) ∈ X .

�

In the following example, we illustrate how to use the
proposed method to include constraints in the heavy ball
algorithm for optimization (see, e.g. [14]).

Example 1. Given the dynamical system{
ẋ1 = x2

ẋ2 = −ax2 − b∇L(x1)
(17)
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Fig. 1. State trajectories for the system in Example 1, from thirty initial
points in X = {x ∈ R2| |x| ≤ 1}, with φ(x) = 1

2
x>Px.

where L(x1) = 1
2x

2
1 and constants a, b are positive and

given the set X = {x ∈ R2 | |x| ≤ 1}, we want to find f̃
such that the set X is forward invariant. The system in (17)
corresponds to the heavy ball algorithm which typically does
not handle constraints. We show how to handle constraints
using the approach proposed in this paper.

Let φ(x) := 1
2x
>Px with P ∈ Sn++, We use ψ in (2) and

(10) to obtain the dual map

∇ψ∗(z) =


P−1z if |P−1z| < 1,

P−1z

|P−1z|
if |P−1z| ≥ 1.

(18)

Because P−1 is positive definite, P−1z is zero only when
z = 0 which does not happen when P−1z ≥ 1.

Next, the Hessian of ψ is given by

∇2ψ∗(z) =


P−1 if |P−1z| < 1,(

I

|P−1z| −
(P−1z)(P−1z)>

|P−1z|3

)
P−1 if |P−1z| ≥ 1,

and since ∇φ(x) = Px, we have

∇2ψ∗(∇φ(x)) =


P−1 if |x| < 1,(
I

|x| −
xx>

|x|3

)
P−1 if |x| ≥ 1

(19)

Therefore, the right-hand side of the modified primal system
is

f̃(s) =


f(s) if |s| < 1,(
I

|s|
− ss>

|s|3

)
f(s) if |s| ≥ 1

(20)

Since the right-hand side of the system in (17) is Lipschitz,
Proposition 2 implies that X is forward pre-invariant for
ṡ = f̃(s). The trajectories resulting for 30 random initial
points in the unit disc are shown in Figure 1, where P =(

5.2 0.7
0.7 8

)
, and a = b = 0.5. �



B. Controlled Forward Invariance
Consider a nonlinear control system given by

ẋ = f(x, u) x ∈ Rn, u ∈ Rp (21)

and X ⊂ Rn. The following result allows us to design a
control law x 7→ κ(x) such that X is forward pre-invariant
for ẋ = f(x, κ(x)).

Proposition 3. Given system (21), where f is locally Lips-
chitz in both arguments, suppose ψ is defined in (2) for each
x ∈ Rn, where X ⊂ Rn and φ satisfy Assumptions 1 and 2.
If there exists a control law κ : Rn → Rp that is piecewise
locally Lipschitz on Rn and a function fz : Rn → Rn such
that ∇2ψ∗(∇φ(s))fz(s) = f(s, κ(s)), then X is forward
pre-invariant for ẋ = f(x, κ(x)). �

The following example illustrates Proposition 3 in a simple
control system to highlight the proposed approach.

Example 2. Given ẋ = u such that x ∈ R2, and u ∈ R2,
and X = {x ∈ R2 |x>P1x ≤ 1}, where P1 is symmetric
positive definite matrix, we want to find a control law κ to
make the set X forward pre-invariant. We define φ(x) :=
1
2x
>Px, where P = αP1 and α > 0 for simplicity. Let

fz(x) := λ(x)−1v(x) where λ(x) and v(x) are the largest
eigenvalue and corresponding eigenvector of ∇2ψ∗(∇φ(x)),
respectively. Defining the control law κ(x) = v(x), for each
x ∈ R2, we have

ẋ = ∇2ψ∗(∇φ(x))fz(x)

= ∇2ψ∗(∇φ(x))λ(x)−1v(x)

= κ(x).

Then, using Proposition 3, we conclude that the set X is
forward pre-invariant for the system ẋ = κ(x). Next, we
synthesize κ.

Using that ∇2ψ∗(z) = ∇2φ∗(z) = P−1 in the interior
of X , we conclude that the eigenvectors corresponding to
∇2ψ∗(∇φ(x)) are constant. As a consequence the control
law can be arbitrary in the interior of X . However, at
other points, the control law is defined as the eigenvector
corresponding to the largest eigenvalue of the Hessian of
ψ∗. Therefore, the control law is defined as follows

κ(x) =

{
κ0(x) ifx>P1x < 1,

βv(x) ifx>P1x ≥ 1
(22)

where β ∈ R>0 and κ0 : Rn → Rn is any arbitrary locally
Lipschitz function. Then, κ is piecewise locally Liptschitz on
Rn and meets the requirement of Proposition 3.

To specify x 7→ v(x), we use ψ in (2) and (10) to obtain
the dual map

∇ψ∗(z) =


P−1z if z>P−1z < α,

√
α

P−1z√
z>P−1z

if z>P−1
1 z ≥ α.

(23)

Next, using ∇φ(x) = Px, we have

∇2ψ∗(∇φ(x)) =


P−1 if x>P1x < 1,

√
α
x>PxP−1 − xx>

(x>Px)
3
2

if x>P1x ≥ 1.
(24)
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Fig. 2. The trajectory results of Example 2, for thirty initial points in the
ellipse.
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Fig. 3. State trajectories for the system in Example 2, for thirty initial
points in the unit ball.

Let P−1 =

(
q11 q12
q21 q22

)
. The largest eigenvalue of ∇2ψ∗(∇φ(x)) is

λ =

√
α

2

 q11 + q22

(x>Px)
1
2

−
x21 + x22

(x>Px)
3
2

+

√√√√( q11 − q22
(x>Px)

1
2

−
x21 − x22
(x>Px)

3
2

)2

+4

(
q12

α(x>Px)
1
2

−
x1x2

(x>Px)
3
2

)2
 .

The corresponding eigenvector is given by

v(x) =

(
√
α

(
q12

(x>Px)
1
2

− x1x2

(x>Px)
3
2

)

, λ−
√
α

(
q11

(x>Px)
1
2

+
x21

(x>Px)
3
2

))>
Suppose κ0 in (22) is given by κ0(x) := (−x1 +4x2,−x1−
x3

2)>. Since κ0 and v are continuous, the control law κ
satisfies the regularity condition of Proposition 3.

Let P1 =

(
1 0.9

0.9 3

)
, α = 1 and β = 1, the trajectories

for thirty random initial points in the ellipse defined by X
are illustrated in Figure 2. The result when X is the unit
ball, namely, when P1 = I , with the same κ0, α = 2, and
and β = 1 is depicted in Figure 3.
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In the next example, we illustrate how to ensure forward
invariance of a set and asymptotically stability of the origin.

Example 3. Given the system

ẋ = u x ∈ R2, u ∈ R2, (25)

the set X = {x ∈ R2 |x2
2 + x1 − 1 ≤ 0}, and the system

ẋ = f(x, u1) =

[
−x1 − x2

x3
1 + x2u1

]
x ∈ R2, u1 ∈ R, (26)

we want to design a control law κ for the system in (25)
to make the set X forward pre-invariant and such that the
solutions to the resulting closed-loop system match with those
of system (26) in the interior of the set X and the origin is
asymptotically stable.

First, we design u1 such that the origin is asymptotically
stable for (26). Using control Lyapunov function V (x) =
1
4x

4
1 + 1

2x
2
2, the control law is given by κ1(x) = −1 for each

x ∈ R2. Next, κ can be defined by

κ(x) =

{
f(x, κ1(x)) if x ∈ int(X )

αv(x) otherwise
(27)

where v(x) is the eigenvector of the Hessian matrix
∇2ψ∗(∇φ(x)) and α ∈ R>0. We take φ(x) = 1

2x
>Px where

P ∈ Sn++, then ψ(x) = φ(x)+δX (x) and the dual map ∇ψ∗
is given as follows:

∇ψ∗(z) = arg min

{
1

2
x>Px− z>x

}
s.t. x1 + x2

2 − 1 ≤ 0

(28)

This can be written as a quadratically constrained quadratic
program with one constraint as follows:

∇ψ∗(z) = arg min

{
1

2
x>Px− z>x

}
s.t.

1

2
x>P1x+ q>1 x+ r ≤ 0

(29)

where P1 =

(
0 0
0 2

)
, q1 = (1, 0)>, and r = −1. The

convex optimization problem (29) can be solved using the
KKT conditions, which reduce to

(P + λ∗P1)x∗ + (λ∗q − z) = 0

1

2
x∗>P1x

∗ + q>1 x
∗ + r ≤ 0

λ∗ ≥ 0

λ∗
(

1

2
x∗>P1x

∗ + q>1 x
∗ + r

)
= 0

(30)

Then, the Hessian ∇2ψ∗(∇φ(x)) is calculated and the re-
sulting control law is equal to the eigenvector corresponding
the largest eigenvalue of the Hessian.

Let P =

(
9 1
1 4

)
. The trajectories to the system in (25),

with u = κ in (27) for thirty random initial points in X are
illustrated in Figure 4. Thus, we designed a control law to
ensure safety and stability for the system (25) and (26). �
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Fig. 4. State trajectories for the system in Example 3, from thirty initial
points inside the set defined by the rotated parabola.

V. CONCLUSION

This paper proposes an approach to certify set invariance
for nonlinear systems. Given a nonlinear (primal) system
and a set, we employ duality to build a dual system and
a modified primal system for which the desired set is
forward (pre-) invariant. Several applications are provided to
illustrate the proposed approach, in particular, for constrained
optimization as well as feedback control under constraints.
In future work, we will extend the ideas to differential
inclusions and hybrid systems.
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[10] J.-B. H. Urruty and C. Lemaréchal, Convex analysis and minimization
algorithms. Springer-Verlag, 1996.

[11] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[12] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems.
Princeton University Press, 2012.

[13] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of
functions. CRC press, 2015.

[14] D. M. Hustig-Schultz and R. G. Sanfelice, “A robust hybrid heavy ball
algorithm for optimization with high performance,” in 2019 American
Control Conference (ACC), pp. 151–156, IEEE, 2019.


