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Abstract— We consider the problem of estimating a constant
or piecewise constant vector of unknown parameters for a
linear dynamical system. Using a hybrid systems framework,
a hybrid algorithm that achieves finite-time convergence of the
parameter estimate to the true value is proposed. Sufficient
conditions that guarantee convergence of the parameter esti-
mate are provided. Robustness of the proposed algorithm with
respect to measurements noise is analyzed, and examples are
provided showing the merits of the proposed approach.

I. INTRODUCTION

Accurate estimation of a system’s unknown parameters
is critical in many engineering applications [1]. One such
application is the classical model-reference adaptive control
problem, which has been studied since the 1960s [2] and
has experienced a recent resurgence with the advent of
machine learning applications [3]. This estimation algorithm
computes online an estimate of the unknown parameters by
exploiting the available input signals and information about
the structure of the system [4], [5]. In the case of linear
time-varying systems, analyzing the convergence rate of the
parameter estimate can be translated into showing exponen-
tial stability of the origin [1], [5]. A persistence of excitation
condition is necessary and sufficient for exponential stability
of linear time-varying systems [6].

Motivated by the recent results on finite-time parame-
ter estimation for linear regression models [7], this paper
presents a hybrid estimator for linear dynamical systems
that guarantees convergence of the parameter estimate to the
true value in finite time. In Section III-A, we show that,
for the case of a constant unknown parameter, the parameter
estimate converges to the true value after one jump. Then, in
Section III-B, we generalize this result to piecewise constant
unknown parameters by allowing the algorithm to jump
multiple times. Robustness of the proposed algorithm to
measurement noise is discussed in Section IV, and simulation
results are presented in Section V.

Our approach is related to the ones in [7], [8] – both
results provide a finite-time estimator using a hybrid system
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framework. In comparison to our work, the approach in [8] is
different in two aspects. First, we use a different estimation
algorithm based on the use of two coupled estimators.
Second, while the results in [8] rely on a persistence of
excitation condition to ensure that their hybrid system is
well defined and to guarantee completeness of solutions,
we impose a condition related to the invertibility of the
solution components and show, using a numerical example,
that our algorithm is capable of converging in finite time
when the regressor is exciting over only a finite time interval.
Moreover, our work differs from the one in [7] in three
aspects. First, the authors of [7] deal with a linear regression
model while we deal with a dynamical model. Second, the
construction of the update law is different from the one in
[7]. Finally, the analysis of the convergence properties of the
system is more complicated for dynamical models than for
linear regression models. Indeed, while the authors in [7]
rely on a quadratic Lyapunov function, our analysis requires
a more involved Lyapunov function so as to account for the
coupling between the state and parameter estimators. Due to
space constraints, the proofs of some results are sketched or
omitted and will be published elsewhere.

II. PRELIMINARIES

A. Notation

We denote the set of real, nonnegative, positive, and
natural numbers (including zero) as R, R≥0, R>0, and N,
respectively. The matrix I denotes the identity matrix of
appropriate dimension. The set of symmetric positive definite
matrices of dimension n×n is dentoed Sn++. The Euclidean
norm of vectors and the induced matrix norm is denoted | · |,
and the infinity norm is denoted |·|∞. The distance of a point
x to a nonempty set S is denoted |x|S = infy∈S |y − x|.
Given a set-valued mapping M : Rm ⇒ Rn, the domain
of M is the set domM = {x ∈ Rm : M(x) 6= ∅}. A
continuous function α : R≥0 7→ R≥0 is a class-K∞ function
(denoted α ∈ K∞) if α is zero at zero, strictly increasing,
and unbounded.

B. Parameter estimation

A classical model-reference adaptive (closed-loop) control
system is given by

ẋ = A0x+B(t)θ (1)

where x ∈ Rn is the known state vector, t 7→ B(t) ∈ Rn×p
is the known regresson matrix, the matrix A0 ∈ Rn×n is
known, and θ ∈ Rp is an unknown vector of parameters.



The unknown parameter θ can be estimated using an
update law of the form [1]

˙̂
θ = γB>(t)P (x− x̂)

˙̂x = A0x+B(t)θ̂ −A(x− x̂)
(2)

where θ̂ ∈ Rp is the estimate of the unknown parameter θ,
x̂ is the estimate of the state x, A ∈ Rn×n is a user-selected
Hurwitz matrix, P = P> ∈ Rn×n is a positive definite
matrix that solves A>P + PA = −Q, where Q = Q> ∈
Rn×n is a user-selected positive definite matrix, and γ > 0
is a design parameter that modifies the convergence rate.

Denote the parameter estimation error as θ̃ := θ − θ̂ and
the state estimation error as x̃ := x − x̂. Then, the error
dynamics can be written as

˙̃x = Ax̃+B(t)θ̃,
˙̃
θ = −γB>(t)Px̃. (3)

The convergence properties of (3) are typically analyzed
using a quadratic Lyapunov function of the form V (x̃, θ̃) =
x̃>Px̃ + γ−1θ̃>θ̃ whose time derivative satisfies V̇ (x̃, θ̃) ≤
−µ(Q)|x̃|2. It can be shown using Barbalat’s Lemma [4]
that t 7→ x̃(t) converges to zero as time t goes to infinity.
In order to show convergence of θ̂ to θ as t goes to
infinity, a persistence of excitation condition [1], [5], [9] is
required (see Definition 2.2 below for a formal definition of
persistence of excitation).

The objective of this paper is to estimate the unknown
parameter vector θ in finite time using hybrid systems tools.
For this reason, we review some preliminaries on hybrid
systems in the following section.

C. Preliminaries on hybrid systems

In this paper, a hybrid system H is defined as in [10] by
(C,F,D,G) as

H =

{
ξ̇ = F (ξ, u) (ξ, u) ∈ C

ξ+ = G(ξ, u) (ξ, u) ∈ D
(4)

where ξ ∈ Rn is the state, u ∈ Rm is the input, F : Rn ×
Rm → Rn is the flow map defining a differential equation
capturing the continuous dynamics, and C ⊂ Rn defines the
flow set on which flows are permitted. The mapping G :
Rn ×Rm → Rn is the jump map defining the law resetting
ξ at jumps, and D ⊂ Rn is the jump set on which jumps are
permitted.

A solution ξ to H is a hybrid arc that is parameterized by
(t, j) ∈ R≥0 × N, where t is the elapsed ordinary time and
j is the number of jumps that have occurred. The domain of
ξ, denoted dom ξ ⊂ R≥0 × N, is a hybrid time domain,
in the sense that for every (T, J) ∈ dom ξ, there exists
a nondecreasing sequence {tj}J+1

j=0 with t0 = 0 such that
dom ξ ∩ ([0, T ]× {0, 1, . . . , J}) =

⋃J
j=0 ([tj , tj+1], {j}) . A

solution ξ to H is called maximal if it cannot be extended
further. A solution is called complete if its domain is un-
bounded.

D. Excitation conditions

We employ the following notions of excitation for time-
varying signals [4].

Definition 2.1: Given t ≥ 0 and η1 > 0, a signal t 7→ B(t) ∈
Rn×p is exciting over the finite interval [t, t + η1] if there
exist constants η2, bM > 0 such that∫ t+η1

t

B> (s)B (s) ds ≥ η2I (5)

and ess sup {|B(t)|∞, |Ḃ(t)|∞ : t ≥ 0} ≤ bM .

Definition 2.2: Given η1 > 0, a signal t 7→ B(t) ∈ Rn×p is
persistently exciting if there exist constants η2, bM > 0 such
that, for all t ≥ 0,∫ t+η1

t

B> (s)B (s) ds ≥ η2I (6)

and ess sup {|B(t)|∞, |Ḃ(t)|∞ : t ≥ 0} ≤ bM .

III. HYBRID FINITE-TIME CONVERGENT ALGORITHM

In this section, we present a hybrid parameter estimator
for finite-time convergence with respect to constant and
piecewise constant unknown parameters. We first focus on
the case of constant unknown parameters.

Recall the update laws for x̂ and θ̂ in (2) and denote
z := (x, θ) and Γ := (A, γ,Q). Then, given t 7→ B(t),
we express the dynamics of ẑ := (x̂, θ̂) in a compact form
as

˙̂z = h(x, ẑ,Γ, B(t)) :=

[
A0x+B(t)θ̂ −A(x− x̂)

γB>(t)P (x− x̂)

]
. (7)

Next, we express the error dynamics in (3) as

˙̃z = Ψ(Γ, B(t))z̃ (8)

where z̃ := (x̃, θ̃) and the functional Ψ is given by

Ψ(Γ, B(t)) :=

[
A B(t)

−γB>(t)P 0

]
(9)

where Γ denotes explicitly the dependence of Ψ on (A, γ,Q).
The continuous evolution of z̃ between times t0 and t with
0 ≤ t0 < t is given by z̃(t) = Ω(t, t0)z̃(t0) where, given Γ
and t 7→ B(t), Ω is the state transition matrix for (8).

A. Constant unknown parameter

We extend the finite-time parameter estimation approach
in [7] to classes of continuous-time systems whose solutions
satisfy (1). We begin by explaining the intuition behind the
algorithm before providing a formal statement of the result.
The algorithm is expressed as a hybrid system, denoted
H, and operates as follows. Given Γ1 := (A1, γ1, Q1) and
Γ2 := (A2, γ2, Q2) where A1, A2 ∈ Rn×n, γ1, γ2 > 0, and
Q1, Q2 ∈ Sn++ are design parameters, denote the state of H
as ξ = (x, ẑ1, ẑ2,Φ1,Φ2, q), where
• x is the plant state, with dynamics given in (1);
• ẑ1, ẑ2 ∈ Rn+p are estimates of z, with dynamics



˙̂z1 = h(x, ẑ1,Γ1, B(t)), ˙̂z2 = h(x, ẑ2,Γ2, B(t))

where h is given in (7). The dynamics of the errors
z̃1 := z − ẑ1 and z̃2 := z − ẑ2 are given by

˙̃z1 = Ψ(Γ1, B(t))z̃1, ˙̃z2 = Ψ(Γ2, B(t))z̃2 (10)

where Ψ is given in (9);
• Φ1,Φ2 ∈ R(n+p)×(n+p) have dynamics

Φ̇1 = Ψ(Γ1, B(t))Φ1, Φ̇2 = Ψ(Γ2, B(t))Φ2

where Ψ is given in (9). Hence, when initialized as the
identity matrix, Φ1 and Φ2 are equivalent to the the
state transition matrices Ω1 and Ω2 for, respectively,
the systems in (10);

• q ∈ {0, 1} is a logic variable.
Next, let (t, j) 7→ ξ(t, j) be a solution to H – hence,

defined on a hybrid time domain – and consider the initial
interval of flow I0, where Ij := {t : (t, j) ∈ dom ξ },
with initial conditions Φ1(0, 0) = Φ2(0, 0) = I , and
ẑ1(0, 0) = ẑ2(0, 0) arbitrary. At any time t ∈ I0, the
solutions components Φ1 and Φ2 satisfy

z̃1(t, 0) = Φ1(t, 0)z̃1(0, 0), z̃2(t, 0) = Φ2(t, 0)z̃2(0, 0).

Then, if there exists a positive time t1 ∈ I0 such that the
matrix Φ1(t1, 0)−Φ2(t1, 0) is invertible, resetting ẑ1 and ẑ2

to the value of the function R(ξ) := K1(ξ)ẑ1 + K2(ξ)ẑ2,
where

K1(ξ) := −Φ2

(
Φ1 − Φ2

)−1
, K2(ξ) := I −K1(ξ) (11)

leads to, for each i ∈ {1, 2},

ẑi(t1,1)=R(ξ(t1,0))=K1ẑ1(t1,0)+K2ẑ2(t1,0)

=K1(z̃1(t1,0)+z(t1,0))+K2(z̃2(t1,0)+z(t1,0))

=K1z̃1(t1,0)+K2z̃2(t1,0)+(K1 +K2)z(t1,0)

=K1(z̃1(t1,0)− z̃2(t1,0))+ z̃2(t1,0)+z(t1,0)

=K1

(
Φ1(t1,0)−Φ2(t1,0)

)
z̃2(0,0)

+Φ2(t1,0)z̃2(0,0)+z(t1,0)

=Φ2(t1,0)
(
− z̃2(0,0)+ z̃2(0,0)

)
+z(t1,0)=z(t1,0)

(12)

where the argument of K1 and K2 is omitted for readability.
Hence, we have finite-time convergence of ẑ1 and ẑ2 to z.

To ensure the existence of a jump time (t1, 0), we choose
A1 and A2 such that ẑ1 is convergent but ẑ2 is divergent.
To avoid the solution components ẑ2 and Φ2 from growing
unbounded, for all (t, j) ∈ dom ξ satisfying t ≥ t1 and
j ≥ 1, we assign ẑ2 the dynamics of ẑ1 and Φ2 the dynamics
of Φ1. After the jump, we have ẑ2(t1, j) = ẑ1(t1, j) and
Φ2(t1, j) = Φ1(t1, j), and thus ẑ2(t, j) = ẑ1(t, j) and
Φ2(t, j) = Φ1(t, j) for all t ≥ t1 and j ≥ 1.

We implement the estimation scheme outlined above as
a hybrid algorithm, denoted H, whose jump map computes
ẑ1 and ẑ2 as in the first line of (12). The hybrid system H
has state ξ := (x, ẑ1, ẑ2,Φ1,Φ2, q) ∈ X := Rn × Rn+p ×
Rn+p × R(n+p)×(n+p) × R(n+p)×(n+p) × {0, 1}, input B :
R≥0 7→ Rn×p, and data

H=

{
ξ̇=F (ξ,B(t)) ξ∈C
ξ+ =G(ξ) ξ∈D

(13)

where

F (ξ,B(t))=


A0x+B(t)θ

h(x,ẑ1,Γ1,B(t))
(1−q)h(x,ẑ2,Γ2,B(t))+qh(x,ẑ2,Γ1,B(t))

Ψ(Γ1,B(t))Φ1

(1−q)Ψ(Γ2,B(t))Φ2+qΨ(Γ1,B(t))Φ2

0


G(ξ)=(x,R(ξ),R(ξ),I,I,1)

and
C := {ξ ∈ X : |det(Φ1 − Φ2)| ≤ ε}
D := {ξ ∈ X : |det(Φ1 − Φ2)| ≥ ε, q = 0} .

The logic variable q is used to ensure that the algorithm
jumps only one time, when q = 0, and to prevent the solution
components ẑ2 and Φ2 from growing unbounded.

The following proposition provides sufficient conditions
for the invertibility of the matrix Φ1 − Φ2.

Proposition 3.1: Given a hybrid system H with data as in
(13) where the matrices A1 and −A2 are Hurwitz, γ1, γ2 >
0, and Q1, Q2 ∈ Sn++, suppose the regressor t 7→ B(t) is
persistently exciting as in Definition 2.2. Then, there exists
a time T > 0 such that for each maximal solution ξ to H
from ξ(0, 0) ∈ {ξ ∈ X : Φ1 = Φ2 = I, q = 0 }, the gains
K1 and K2 are well defined at hybrid time {T} × {0}, and
there exists ε > 0 such that |det(Φ1(T, 0)−Φ2(T, 0))| = ε.

Sketch of Proof: The proof is sketched in Appendix I.

Remark 3.2: The persistence of excitation condition imposed
in Proposition 3.1 is sufficient for the existence of a time T
such that the matrix Φ1(T, 0)−Φ2(T, 0) is invertible, but it is
not necessary. Indeed, Section V-A shows an example where
finite-time convergence of the parameter estimate is achieved
using the proposed hybrid algorithm when the regressor
is exciting on only a finite time interval, in the sense of
Definition 2.1. A formal study of the invertibility of the
matrix Φ1 − Φ2 under relaxed excitation conditions is left
as future research.

Next, we study the stability properties induced by the
proposed estimator. To this end, we define the following set:

A := {ξ ∈ X : ẑ1 = z } . (14)

Theorem 3.3: Given a hybrid system H with data as in (13)
where the matrices A1 and−A2 are Hurwitz, γ1, γ2 > 0, and
Q1, Q2 ∈ Sn++, suppose the regressor t 7→ B(t) is such that
there exists a time T > 0 when |det(Ω1(T, 0)−Ω2(T, 0))| =
ε, where Ω1 and Ω2 are the state transition matrices for,
respectively, the systems in (10). Then, there exist α1, α2 ∈
K∞ such that each solution ξ to H from ξ(0, 0) ∈ X0 :=
{ξ ∈ X : ẑ1 = ẑ2, Φ1 = Φ2 = I, q = 0 } satisfies

|ξ(t, j)|A ≤ α−1
1 ◦ α2(|ξ(0, 0)|A) (15)

for all (t, j) ∈ dom ξ. Moreover, ξ(t, j) ∈ A for all (t, j) ∈
dom ξ satisfying t ≥ T and j ≥ 1.



Sketch of Proof: For each solution ξ to H from X0, we
have by assumption that the regressor t 7→ B(t) is such that
|det(Ω1(T, 0) − Ω2(T, 0))| = ε, and, since Φ1 and Φ2 are
initialized as the identity matrix, it follows that ξ(T, 0) ∈
D. Then, at the jump, according to the jump map, we have
that ẑ1(T, 1) = z from (12). Thus, the set A is finite-time
attractive from X0 for H.

To show stability of A, consider the Lyapunov function

V (ξ) = x̃>1 P1x̃1 + 1
γ1
|θ̃1|2

where P1 ∈ Sn++ solves the equation A>1 P1 +
P1A1 = −Q1 with Q1 ∈ Sn++. It can be shown that
〈∇V (ξ), F (ξ,B(t))〉 ≤ 0 for all ξ ∈ C. Furthermore, for all
ξ ∈ D, we have from (12) that V (ξ(t, j+1))−V (ξ(t, j)) =
−V (ξ(t, j)) ≤ 0. Hence, it follows that there exist α1, α2 ∈
K∞ such that (15) is satisfied.

Theorem 3.3 states that if the unknown parameter θ
is constant, then the proposed estimator converges to the
exact value θ after one jump. Proposition 3.1 shows that
the persistence of excitation condition in Definition 2.2 is
sufficient to ensure the existence of a time T such that
|det(Ω1(T, 0)− Ω2(T, 0))| = ε.

B. Piecewise constant unknown parameter

When the unknown parameter θ is piecewise constant, it
is also possible to estimate it in finite time. However, one
jump is not sufficient for the estimate to converge. Hence,
we consider the following adaptation law, denoted H, with
state ξ := (x, ẑ1, ẑ2,Φ1,Φ2) ∈ X := Rn × Rn+p × Rn+p ×
R(n+p)×(n+p)×R(n+p)×(n+p), input B : R≥0 7→ Rn×p, and
data

H=


ξ̇=


A0x+B(t)θ

h(x,ẑ1,Γ1,B(t))
h(x,ẑ2,Γ2,B(t))
Ψ(Γ1,B(t))Φ1

Ψ(Γ2,B(t))Φ2

=:F (ξ,B(t)) ξ∈C

ξ+ = (x,R(ξ),R(ξ),I,I) =:G(ξ) ξ∈D

(16)

where
C := {ξ ∈ X : |det(Φ1 − Φ2)| ≤ ε}
D := {ξ ∈ X : |det(Φ1 − Φ2)| ≥ ε} .

The new structure of the set D makes it possible to have mul-
tiple jumps, which are necessary to estimate the piecewise
constant parameter.

The following theorem states the stability properties in-
duced by H in (16) for a piecewise constant unknown
parameter.

Theorem 3.4: Given a hybrid system H with data as in (16)
where the matrices A1 and −A2 are Hurwitz, γ1, γ2 > 0,
and Q1, Q2 ∈ Sn++, suppose that the following conditions
hold:

1. The regressor t 7→ B(t) is such that there exists a
sequence of time instants {τk}k∈N>0

such that, for all
k ∈ N>0, 0 ≤ τk < τk+1 and |det(Ω1(τk+1, τk) −
Ω2(τk+1, τk))| = ε, where Ω1 and Ω2 are the state
transition matrices for, respectively, the systems in (10).

2. The unknown parameter θ is piecewise constant, where
the time instants at which the value of θ changes are
defined by a sequence of times {δi}i∈N>0

satisfying 0 ≤
δi < δi+1 for all i ∈ N>0.

Then, for each solution ξ to H from ξ(0, 0) ∈
{ξ ∈ X : Φ1 = Φ2 = I } and each i, k ∈ N>0 such that

I. [τk, τk+2]× {k, k + 1} ⊂ dom ξ;
II. δi ∈ [τk, τk+1];

III. (τk+1, τk+2) ∩ {δi}i∈N>0 = ∅,

the following property holds: ξ(t, j) ∈ A for all (t, j) ∈
dom ξ satisfying t ∈ [τk+2, δi+1) and j ≥ k + 2.

Sketch of Proof: From items II and III of Theorem 3.4,
we have that the value of the unknown parameter vector
θ changes in the time interval [τk, τk+1] and is constant
in the interval (τk+1, τk+2). By assumption, we have that
ξ(τk+1, k) ∈ D and at the jump, according to the jump
map, ξ(τk+1, k + 1) ∈ {ξ ∈ X : ẑ1 = ẑ2, Φ1 = Φ2 = I }.
Finally, ξ(τk+2, k + 1) ∈ D by assumption, and the result
follows from Theorem 3.3.

Theorem 3.4 shows that, each time the value of the
parameter θ changes, the proposed estimator converges to
the exact value θ after no more than two jumps. Let us also
mention that as in Theorem 3.3, the bound in (15) can be
established.

IV. ROBUSTNESS TO MEASUREMENT NOISE

In this section, we analyze the robustness of the proposed
hybrid parameter estimator with respect to bounded time-
varying measurement noise. For the sake of readability, we
focus on constant unknown parameters. However, the robust-
ness results can be generalized using the same approach to
deal with piecewise constant unknown parameters.

Starting from the noise-free hybrid estimator H in (13),
we denote our proposed estimator under the effect of the
state measurement noise t 7→ ν(t) ∈ Rn as a hybrid system,
Hν , with state ξν := (x, ẑ1, ẑ2,Φ1,Φ2, q) ∈ X := Rn ×
Rn+p×Rn+p×R(n+p)×(n+p)×R(n+p)×(n+p)×{0, 1}, input
B : R≥0 7→ Rn×p, and data

Hν =

{
ξ̇ν = Fν(ξν , B(t)) ξν ∈ Cν
ξ+
ν = Gν(ξν) ξν ∈ Dν

(17)

where Cν := C and Dν := D given below (13), and

Fν(ξν , B(t)) :=



A0x+B(t)θ
h(x+ν(t),ẑ1,Γ1,B(t))

(1−q)h(x+ν(t),ẑ2,Γ2,B(t))
+qh(x+ν(t),ẑ2,Γ1,B(t))

Ψ(Γ1,B(t))Φ1

(1−q)Ψ(Γ2,B(t))Φ2+qΨ(Γ1,B(t))Φ2

0


Gν(ξν) := (x,R(ξν), R(ξν), I, I, 1).

Next, we show that if the regressor is persistently exciting,
the noisy system Hν is input-to-state stable (ISS) for any



essentially bounded measurement noise t 7→ ν(t). The ques-
tion of establishing ISS properties under relaxed excitation
conditions is left as future research.

Proposition 4.1: Given a hybrid system Hν with data as in
(17) where the matrices A1 and −A2 are Hurwitz, γ1, γ2 >
0, and Q1, Q2 ∈ Sn++, suppose the regressor t 7→ B(t)
is persistently exciting as in Definition 2.2. Then, for any
solution ξν to Hν from ξν(0, 0) ∈ X0 := {ξν ∈ X :
ẑ1 = ẑ2, Φ1 = Φ2 = I, q = 0}, there exist constants
wM , T,ΦM > 0, σ1, σ2, σ3 > 0 with σ1 ≤ σ2, and υ > 0
such that, for all (t, j) ∈ dom ξν ,

|ξν(t, j)|A ≤ ρ(j)(β(|ξν(0, 0)|A, t) + α1(|ν|∞))

+ (1− ρ(j))(α2(|ν|∞) + α1(|ν|∞))
(18)

where ρ(0) = 1 and ρ(j) = 0 for j ∈ N>0,

β(s, t) =
√

σ2

σ1
exp(− σ3

2σ2
t)s, α1(s) =

√
σ2

σ1

2σ2

σ3
wMs,

α2(s) =
(

(1−κυ)−1
(√

σ2

σ1

2σ2

σ3
+ΦM

)
+ΦM

)√
σ2

σ1
wMs

with κ = β(1, T ).

V. EXAMPLES

In this section, we present simulation results that demon-
strate the practicality of the proposed algorithms. Simulations
are performed using the Hybrid Equations Toolbox [11].

A. Constant parameter

Consider a scalar system with dynamics as in (1), where
A0 = −0.5, θ = −2, and

B(t) =


0 if t < 1,

1 if t ∈ [1, 2],

0 if t > 2,

with measurement noise ν(t) = 4 sin(30t) added to the state.
Note that B does not satisfy the persistence of excitation
condition imposed in Lemma 3.1. Instead, B is exciting over
only a finite time interval, in the sense of Definition 2.1, with
η1 = 1 and η2 = 1.

The proposed finite-time parameter estimation algorithm
H in (13) is applied to estimate θ, with parameters A1 =
−A2 = −1, γ1 = γ2 = 1, Q1 = Q2 = 1, and ε = 1,
which verifies the conditions of Theorem 3.3. The system
is simulated from initial conditions x(0, 0) = 1, ẑ1(0, 0) =
ẑ2(0, 0) = (0, 0), Φ1(0, 0) = Φ2(0, 0) = I , q(0, 0) = 0,
producing the results in Figure 1 (only the trajectory of z̃1

is shown).1 Due to the fact that B is zero over the interval
[0, 1), the dynamics of θ̃1 are zero until t = 1, followed by
finite-time convergence of the state and parameter estimates
in accordance with Theorem 3.3.

1 Code at https://github.com/HybridSystemsLab/MRAC FT Estimator
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Fig. 1: The projection onto t of the state estimation error
x− x̂1 and parameter estimation error θ − θ̂1.

B. Piecewise constant parameter

Consider the following frequency estimation problem:
given a signal t 7→ ζ(t) = Υ sin(ωt) where Υ ∈ R>0 is
the magnitude and ω ∈ R>0 is the frequency, estimate ω
from measurements of ζ. To formulate this problem as the
problem of estimating a parameter θ of a model as in (1),
let x = (x1, x2) be such that x1 = ζ and ẋ1 = x2, and Υ is
related to the initial condition. Note that a similar problem
was studied in [12]. Then, we obtain the following parametric
form:

ẋ = A0x+B(x)θ (19)

where A0 =
[

0 1
−1 0

]
, B(x) =

[
0
−x1

]
, and θ = ω2 − 1.

Then, with η1 = π
ω , it can be shown that for all t ≥ 0,∫ t+η1

t
B>(x(s))B(x(s))ds = πΥ2

2ω . Hence, B is persistently
exciting in the sense of Definition 2.2 with η2 = πΥ2

2ω . The
unknown parameter θ is piecewise constant, with a value of
θ = 3 if t ∈ [0, 2) and θ = 1 if t ≥ 2, and measurement
noise ν(t) =

[
sin(50t) cos(50t)

]>
is added to the state.

The proposed estimation algorithm H in (16) is applied
to estimate θ in (19), with parameters A1 = −A2 = −I ,
γ1 = γ2 = 10, Q1 = Q2 = I , and ε = 0.5, which verifies
the conditions of Theorem 3.4. The system is simulated from
initial conditions x(0, 0) = (1, 0), ẑ1(0, 0) = (0.5, 0, 0),
ẑ2(0, 0) = (0, 0,−0.2), Φ1(0, 0) = Φ2(0, 0) = I , producing
the results in Figure 2.1 The estimation errors x̃1 and θ̃1

converge to zero first at t = 1.6 and, after the value
of θ changes at t = 2, converge again at t = 3.23 in
accordance with Theorem 3.4. The figure also illustrates
the robustness of the proposed estimator to time-varying
measurement noise.
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Fig. 2: The projection onto t of the state prediction error
|x− x̂1| and the parameter estimation error θ − θ̂1.



APPENDIX I
SKETCH OF PROOF FOR PROPOSITION 3.1

To prove Proposition 3.1, we first provide the following
auxiliary result:

Lemma A.1: Consider the system given by

˙̃x = Ax̃+B(t)θ̃,
˙̃
θ = −γB>(t)Px̃. (20)

Suppose the regressor t 7→ B(t) is persistently exciting as in
Definition 2.2. Denote z̃ = (x̃, θ̃) and let Ω(t, t0) be the state
transition matrix of the system (20) describing the continuous
evolution of the state between t0 and t with t ≥ t0 ≥ 0. Then,
we have the following:

1. If the matrix A is Hurwitz and γ > 0, then there exist
constants σ1, σ2, σ3 > 0 with σ2 ≥ σ1 such that, for
each solution t 7→ z̃(t) to (20),

|Ω(t, 0)| ≤
√
σ2

σ1
exp

(
− σ3

2σ2
t

)
∀ t ≥ 0. (21)

2. If the matrix −A is Hurwitz and γ > 0, then there exists
υ > 0 such that, for each solution t 7→ z̃(t) to (20),

|Ω−1(t, 0)| ≤ υ ∀t ≥ 0. (22)

Sketch of Proof: To show item 1 of Lemma A.1, let the
matrix A be Hurwitz and γ > 0. Then, inspired by [13], we
consider the function

V (z̃, t) = cV1(z̃) +W1(z̃, t) +
1

4
W2(z̃, t) (23)

where c > 0 is a design parameter, V1(z̃) := x̃>Px̃+ 1
γ |θ̃|

2,
W1(z̃, t) := −x̃>B(t)θ̃, and W2(z̃, t) := −θ̃>M(t)θ̃, where
P ∈ Sn++ solves the equation A>P + PA = −Q with Q ∈
Sn++ and M(t) :=

∫∞
t

et−sB>(s)B(s)ds
By analyzing the decrease in V and using the fact that

t 7→ B(t) is persistently exciting as in Definition 2.2, it can
be shown that, for each solution t 7→ z̃(t) to (20), there exist
constants σ1, σ2, σ3 > 0 with σ2 ≥ σ1 such that

|z̃(t)| ≤
√
σ2

σ1
exp

(
− σ3

2σ1
t

)
|z̃(0)| ∀ t ≥ 0.

Hence, (21) holds.
To show item 2 of Lemma A.1, let the matrix −A be

Hurwitz and γ > 0, and recall V1 given below (23). Since
−A is Hurwitz, there exists P ∈ Sn++ that solves the
equation −A>P − PA = −Q with Q ∈ Sn++. Then, it
can be shown that, for each solution t 7→ z̃(t) to (20), there
exist constants υ1, υ2 > 0 such that

|z̃(t)| ≥
√
υ1/υ2|z̃(0)| ∀ t ≥ 0.

Hence, (22) holds with υ :=
√
υ2/υ1.

Next, we recall the following lemma from [14].

Lemma A.2: Given a matrix A, if |A| < 1 then (I − A) is
invertible and |(I −A)−1| ≤ (1− |A|)−1.

We now have all the ingredients to sketch a proof of
Proposition 3.1.

Sketch of proof for Proposition 3.1: First, from Lemma
A.1, the fact that B satisfies Definition 2.2 implies that
(21) and (22) are satisfied for all t ≥ 0. Since the state
variables Φ1 and Φ2 are initialized as the identity matrix, at
any time t ∈ I0, where Ij := {t : (t, j) ∈ dom ξ }, they
are equivalent to the state-transition matrices Ω1 and Ω2 for,
respectively, the systems in (10). Then, from the invertibility
of the state transition matrix Ω2, for all t ∈ I0, we have

|Φ1(t, 0)Φ−1
2 (t, 0)| ≤ υ

√
σ2

σ1
exp

(
− σ3

2σ2
t

)
. (24)

Next, let T > 0 be such that T > 2σ2

σ3
ln
(
υ
√

σ2

σ1

)
.

Therefore, there exists s > 0 such that T = (1 +

s) 2σ2

σ3
ln
(√

σ2υ2
σ1υ1

)
. Substituting T into t in (24) yields

|Φ1(T, 0)Φ−1
2 (T, 0)| ≤ exp

(
−s2σ2

σ3
ln

(
υ

√
σ2

σ1

))
< 1.

Finally, we rewrite K1 using the Woodbury matrix identity as
K1(ξ(T, 0)) =

(
I − Φ1(T, 0)Φ−1

2 (T, 0)
)−1

and, in view of
Lemma A.2, the matrix (I−Φ1(T, 0)Φ−1

2 (T, 0)) is invertible.
Hence, there exists ε > 0 such that |det(Φ1(T, 0) −
Φ2(T, 0))| = ε.
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