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ABSTRACT2

Stationary motorized cycling assisted by functional electrical stimulation (FES) is a popular3
therapy for people with movement impairments. Maximizing volitional contributions from the4
rider of the cycle can lead to long-term benefits like increased muscular strength and cardiovas-5
cular endurance. This paper develops a combined motor and FES control system that tasks the6
rider with maintaining their cadence near a target point using their own volition, while assistance7
or resistance is applied gradually as their cadence approaches the lower or upper boundary, re-8
spectively, of a user-defined safe range. Safety-ensuring barrier functions are used to guarantee9
that the rider’s cadence is constrained to the safe range, while minimal assistance is provided10
within the range to maximize effort by the rider. FES stimulation is applied before electric motor11
assistance to further increase power output from the rider. To account for uncertain dynamics,12
barrier function methods are combined with robust control tools from Lyapunov theory to de-13
velop controllers that guarantee safety in the worst-case. Because of the intermittent nature of14
FES stimulation, the closed-loop system is modeled as a hybrid system to certify that the set of15
states for which the cadence is in the safe range is asymptotically stable. The performance of16
the developed control method is demonstrated experimentally on five participants. The barrier17
function controller constrained the riders’ cadence in a range of 50±5 RPM with an average18
cadence standard deviation of 1.4 RPM for a protocol where cadence with minimal variance19
was prioritized and used minimal assistance from the motor (4.1% of trial duration) in a separate20
protocol where power output from the rider was prioritized.21

Keywords: Functional Electrical Stimulation (FES) Cycling, Barrier Function, Safety-critical, Euler-Lagrange, Control Design22

1 INTRODUCTION
Stationary cycling assisted by functional electrical stimulation (FES) can lead to long-term benefits for23
people with movement impairments due to neurological conditions such as stroke, spinal cord injury,24
traumatic brain injury, cerebral palsy, multiple sclerosis, and others Johnston et al. (2008); Ferrante et al.25
(2008); Hooker et al. (1992); Janssen et al. (2008); Trevisi et al. (2012). Individuals with neurological26
conditions can exhibit varying degrees of muscle control. For people with little to no volitional control,27
the FES cycling therapy must be supported by an electric motor, which provides additional torque about28
the pedal crank to maintain a beneficial cadence, as in studies such as Cousin et al. (2020); Hooker et al.29
(1992); Bellman et al. (2017); Duenas et al. (2020); Trevisi et al. (2012). When possible, electric motor30
support should be minimized in lieu of torque produced by the rider’s muscles via either FES or their31
own volition, which leads to higher intensity training by increasing the rider’s heart rate and oxygen up-32
take Hooker et al. (1992). Higher intensity training is a key factor in attaining long-term outcomes like33
increased muscular strength, cardiovascular endurance, bone mineral density, and caloric consumption34
Ouellette et al. (2004); MacKay-Lyons and Makrides (2002); Mohr et al. (1997). In the rehabilitation35
literature outside of cycling, various assist-as-needed approaches such as Asl et al. (2020); Dao and Ya-36
mamoto (2018); Pehlivan et al. (2015); Ding et al. (2014) encourage volitional contributions from the user.37
Relatively few works have investigated FES- and motor-assisted cycling programs where the primary ob-38
jective is to encourage volitional contributions Harrington et al. (2012); Rouse et al. (2020); Johnston and39
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Wainwright (2011). The objective of this work is to design controllers for both the electric motor and40
FES stimulation that facilitate volitional cycling by minimizing machine assistance while ensuring that41
the rider’s cadence is constrained to a user-defined range.42

The kinematics of the rider’s legs during stationary cycling are such that applying FES to their muscles43
produces non-negligible torque only in certain regions of the crank cycle. To maximize torque produc-44
tion, stimulation patterns often feature discontinuous jumps triggered as a function of the crank angle by45
discrete logic variables. The interaction of the resulting continuous-time and discrete dynamics results46
in a hybrid control system. Barrier functions, or control barrier functions (CBF), can be used to design47
controllers for hybrid systems that ensure safety by rendering sets of states either forward invariant or48
asymptotically stable Ames et al. (2019); Maghenem and Sanfelice (2021); Glotfelter et al. (2017). This49
technique builds on ideas from the theory of control Lyapunov functions (CLF). CLFs are used to enforce50
particular constraints on the control input that result in a decrease in a Lyapunov function for states outside51
of the safe set Freeman and Kokotovic (1996); Sanfelice (2013). However, CLF-based approaches have52
typically not provided constructive methods for designing the control input at states in the safe set. Recent53
developments regarding CBFs have filled this gap by providing a systematic approach for extending the54
input constraints onto the safe set in a way that reduces the control effort on the interior of the set Ames55
et al. (2016). A popular approach for implementing CLF- or CBF-induced input constraints is with point-56
wise optimal control laws which, for certain classes of dynamics, take the form of quadratic programs57
(QP). Compared to past assist-as-needed control schemes, which have used methods such as deadzone58
functions Asl et al. (2020) or impedance control Ding et al. (2014), barrier functions can constrain the59
state within a broader class of safe sets. Moreover, the cost function in the accompanying pointwise op-60
timal control law is customizable, leading to a range of possible controllers. Our preliminary work in61
Isaly et al. (2020) integrated zeroing CBFs with robust control tools from Lyapunov theory to synthesize62
a QP for an uncertain, continuous-time, motor-only cycling system. The controller in Isaly et al. (2020)63
constrains the rider’s cadence within a user-defined range while encouraging volitional pedaling by using64
minimal motor control effort. However, the more complex case where the rider is also stimulated by FES65
was not considered.66

In this work, we extend the development of Isaly et al. (2020) to account for the hybrid dynamics67
introduced by adding FES stimulation. The resulting controller applies assistance based on the rider’s per-68
formance. FES assistance is only applied when the cadence cannot be maintained at a target value through69
volitional effort alone. Similarly, assistance from the electric motor is applied only when the combined70
FES and volitional efforts are insufficient. The controller accommodates a broad range of functional im-71
pairments and volitional ability by featuring customizable parameters, including nominal control inputs72
and tunable width of the safe range. Moreover, the rider’s safety is assured because the electric motor con-73
strains the rider’s cadence to a uniformly globally asymptotically stable set through a continuous feedback74
controller. The continuity of the motor control law is an improvement upon the breakthrough strategy in75
Rouse et al. (2020) for encouraging volitional pedaling. In that work, no control effort was applied within76
a user-defined region, while the electric motor and FES were turned on discontinuously at the boundary77
of the region. Outside the region, assistive control effort switched discretely between FES and electric78
motor assistance to ensure that the electric motor did not prevent FES from inducing power output by the79
rider. In contrast, we decouple the motor and FES controllers and use more sophisticated design tools to80
develop a motor control law that is a continuous function of the cadence tracking error. The result is more81
comfortable training for the rider, while the staggered application of FES before motor effort still allows82
power output from the rider to be prioritized.83

Experimental trials were performed on five able-bodied participants to demonstrate the effectiveness84
and versatility of the developed control system. The barrier function controller was shown to effectively85
constrain the cadence to a range of 50±5 RPM for all but a negligible amount of time, and to outperform86
the controller in Rouse et al. (2020) and uncontrolled volitional pedaling for a protocol where minimal87
cadence variation was prioritized. The barrier function controller had a lower cadence standard deviation88
(Avg. 1.4 RPM) and constrained the cadence to a smaller range relative to the comparison cases, but89
generally produced more assistive torque from the motor than the controller in Rouse et al. (2020). To90
show how motor assistance can be reduced to prioritize power output from the rider, an alternative protocol91
was designed where the customizable parameters were configured with a wider safe range and a nominal92
amount of resistance from the motor. In the alternative trial, the motor was producing assistive torque for93
only 4.1% of the entire trial duration.94
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2 DYNAMIC MODEL
2.1 Hybrid Systems95

The development in this work is based on the hybrid systems framework described in Goebel et al.96
(2012). A hybrid system H = (C,F,D,G) with state x ∈ X ⊂ Rn is modeled by97

H :

{
ẋ ∈ F (x) x ∈ C
x+ ∈ G (x) x ∈ D.

(1)

When the state is in the flow set C ⊂ Rn, it is allowed to evolve continuously according to the set-valued98
flow map F : Rn ⇒ Rn. When the state is in the jump set D ⊂ Rn, it is allowed to change discretely99
according to the jump map G : Rn ⇒ Rn. When x ∈ C ∩D, either behavior is possible. The notion of a100
solution to H is defined precisely in Goebel et al. (2012, Def. 2.6). Briefly, a solution to H is a function101
(t, j) 7→ φ (t, j) defined on a hybrid time domain domφ ⊂ R≥0×N and is parameterized by the ordinary102
time variable t ∈ R≥0 and the discrete jump variable j ∈ N. The set-valued mappings F and G map103
points in Rn to subsets of Rn so that, for example, the inclusion x+ ∈ G (x) represents the fact that if a104
trajectory jumps from the state φ (t, j), then its state φ (t, j + 1) at the next discrete time instant is a point105
in the set G (φ (t, j)).106

Remark 1. Previous results (cf. Rouse et al. (2020); Bellman et al. (2017); Rouse et al. (2021)) have107
analyzed the dynamic model in the subsequent section using switched-systems tools. The decision to use108
a hybrid model here was motivated by the fact that forward invariance via barrier functions is not well109
characterized for switched systems, nor are many results available regarding the stability of noncompact110
sets. Hybrid systems can model broad classes of switched systems Goebel et al. (2012, Sec. 2.4).111

2.2 Open-Loop Dynamics112
Analogous to (1), one can also consider hybrid systems with inputs Sanfelice (2013). We use such a113

system to describe the control design but present our stability analysis in terms of a closed-loop system114
with the form in (1). The open-loop cycle-rider system is modeled as a continuous-time system Hu =115
(Cu, Fu). Subsequently, discrete dynamics will be introduced due to the design of the controller. Adapting116
the model from our previous work in Bellman et al. (2017) and Isaly et al. (2020), the cycle’s Euler-117
Lagrange dynamics are modeled using the flow map118

ż ∈
[

z2
M−1 (z1) [τu (z, u)− τF (z)]

]
, Fu (z, u) , (2)

and flow set Cu , R2 × U . In (2), the state is z ∈ R2, where z1 denotes the cycle’s measurable119
crank angle, and z2 is the calculable angular velocity (equivalently, the rider’s cadence). The system120
has control inputs1 u , (ue, uM ), where ue ∈ R is the current input to the cycle’s electric mo-121
tor, and uM ∈ R6 is a vector of the electrical stimulation intensity inputs um ∈ R, for each muscle122
m ∈ M , {LQ,LG,LH,RQ,RG,RH}. The elements of M indicate the quadriceps femoris (Q),123
gluteal (G), and hamstring (H) muscle groups for the left and right legs, respectively. The control inputs124
take values in the set U , R×UM , where UM , [0, ū]6 ⊂ R6 indicates that the muscle control inputs are125
bounded by the constant ū > 0 for the rider’s safety and comfort. The continuously differentiable func-126
tion M : R → R>0 denotes the inertial forces from the cycle and rider’s legs. The set-valued mapping127
τF : R2 ⇒ R defines the dynamics of the system as128

τF (z) , τb (z2) + Vp (z) z2 +G (z1) + P (z) + Td + Tvol, (3)

where τb : R → R denotes the unknown torque due to viscous damping in the cycle, and Vp : R2 → R,129
G : R → R, and P : R2 → R are the unknown centripetal-Coriolis, gravitational, and passive viscoelastic130
tissue forces, respectively, applied by the combined human-cycle system. The aforementioned functions131
are continuous according to the dynamic models in Bellman et al. (2017) and Idsø (2002). According to132
the model in Bellman et al. (2017), the centripetal-Coriolis term is related to the mass and cadence by133

1 For vectors x ∈ Rn, y ∈ Rm, (x, y) ,
[
xT , yT

]T .
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Vp (z) = 1
2∇M (z1) z2. In (3), Tvol ⊂ R and Td ⊂ R are sets used to model all of the possible values134

of the rider’s volitional effort and other unknown disturbances, respectively2. The continuous function135
τu : R2 × U → R describes the torque produced by the control inputs and is defined as136

τu (z, u) , ceue + τFES (z, uM ) ,

where ce > 0 is the known electric motor control constant relating input current to output torque. The137
torque generated from FES inputs to the rider’s muscles τFES : R2 × UM → R is given by138

τFES (z, uM ) ,
∑
m∈M

gm (z)um, (4)

where the continuous functions gm : R2 → R denote the uncertain control effectiveness of each muscle.139
For each m ∈ M, let the closed set Qm ⊂ R denote the portion of the crank cycle when a particular140
muscle m is stimulated, which is selected based on a minimum threshold for the torque transfer ratio of141
each muscle group. In particular, there exist kinematic deadzones in the crank cycle where no muscle is142
able to produce useful torque Cousin et al. (2020).143

The following properties of the cycle-rider system in (2) are derived from a detailed dynamic model, as144
discussed in Bellman et al. (2017).145

Property 1. The inertial term is upper- and lower-bounded as cI ≤ M (z1) ≤ cI for all z1 ∈ R, where146
cI , cI > 0 are known constants.147

Property 2. The centripetal-Coriolis parameter is upper-bounded as |Vp (z)| ≤ cV |z2| for all z ∈ R2,148
where cV > 0 is a known constant.149

Property 3. The torque generated by gravity is upper-bounded as |G (z1)| ≤ cG for all z1 ∈ R, where150
cG > 0 is a known constant.151

Property 4. The torque generated by the rider’s viscoelastic tissues is upper-bounded as |P (z)| ≤ cP1 +152
cP2 |z2| for all z ∈ R2, where cP1, cP2 > 0 are known constants.153

Property 5. The torque due to viscous damping is upper-bounded as |τb (z2)| ≤ cb |z2| for all z2 ∈ R,154
where cb > 0 is a known constant.155

Property 6. The torques generated by system disturbances are bounded so that Td = [−cd, cd], where156
cd > 0 is a known constant.157

Property 7. Due to physical limitations of the rider, the volitional muscle torque is bounded so that158
Tvol = [−cvol, cvol], where cvol > 0 is a known constant.159

Property 8. For each m ∈ M, the muscle control effectiveness is upper-bounded so that |gm (z)| ≤ c̄m160
for all z ∈ R2, where c̄m > 0 is a known constant.161

Property 9. The set-valued mapping Fu : R2 × U ⇒ R2 is outer semicontinuous, locally bounded, and162
convex-valued. These properties follow from continuity of the defining functions and from Properties (6)163
and (7).164

2 The addition of a point a ∈ R and a set B ⊂ R is defined as a+B , {a+ b : b ∈ B}.
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Figure 1. Illustration of the regions of applied control effort as a function of cadence. No control effort
is applied in the volitional range near the setpoint z2d. The electric motor control input increases when
the cadence approaches the boundaries defined by eH and eL, and the FES control signal does the same
near eFES . The size of each region is adjustable. The cadence range between eH and eL is rendered
asymptotically stable by the developed control system.

3 CONTROL DESIGN
Figure 1 shows a schematic of the staggered control regions for the developed system. The volitional165
range is a region near the setpoint z2d where the control inputs are zero, thereby forcing the rider to pedal166
on their own volition (optionally, a nominal amount of assistance or resistance can be provided based on167
the needs of the rider). When the cadence is slower than z2d, FES assistance is provided before assistance168
from the electric motor. When the cadence is faster than the setpoint, only the electric motor is used169
because creating resistive torque with FES by stimulating antagonistic muscles is undesirable. The rider170
or clinician can modify the amount of control effort provided and the size of the controlled regions using171
parameters adjusted for the specific individual.172
3.1 Control Objective173

To formalize the control objective, we define the tracking error e as the deviation of the cadence state z2174
from a constant setpoint z2d > 0,3175

e , z2 − z2d. (5)

The primary control objective is to guarantee a safe and effective therapy by constraining the rider’s176
cadence to the safe set S , {z ∈ R2 : eL ≤ e ≤ eH}, where eL < 0 < eH are user-defined constants.177
The FES control inputs attempt to constrain the rider’s cadence to the secondary set SFES , {z ∈ R2 :178
e ≥ eFES}. Because the FES inputs are only intermittently available and must be less than the comfort179
threshold ū, the cadence may not remain within SFES . However, this construction is useful for design180
purposes. To ensure that FES stimulation is active before torque is added by the electric motor, the design181
specifies that eL < eFES < 0.182

The goal is to synthesize, in a systematic way, controllers that render a given set of states uniformly183
globally asymptotically stable (UGAS) while using the minimum required effort inside the set of interest.4184
Combining ideas from CLF theory with recent developments regarding CBFs, this task is accomplished185
by using a QP to enforce a constraint on the control input that is induced by a candidate barrier function.186
The following lemma, presented in a more generic form than in our preliminary work in Isaly et al.187
(2020), gives conditions under which a QP-based control law with a single constraint is feasible and188
locally Lipschitz continuous. The closed-form solution of the QP in the absence of a nominal controller189
(but including the case of multiple control inputs) has also been presented in Freeman and Kokotovic190
(1996, Sec. 4.2.2) and was developed in detail in Xu et al. (2015, Thm. 8). In those works, the feasibility191
condition was guaranteed by assuming the existence of a CLF or CBF, respectively. Because the addition192
of a nominal controller is a minor extension of the available literature, we do not present a proof of the193
result. Lemma 1 applies to the control laws developed in the subsequent sections.194

3 Using the transformation in (5), we frequently use e in place of the cadence state z2.
4 A set that is UGAS is also forward invariant, meaning that trajectories starting inside the set remain in the set for all of time.
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LEMMA 1. Let the functions a : Rn → R, b : Rn → R, and unom : Rn → R be locally Lipschitz on195
Rn and satisfy the following feasibility condition:196

a (z) = 0 =⇒ b (z) < 0. (6)

Then the set-valued mapping Ū : Rn ⇒ R defined by Ū (z) , {u ∈ R : a (z)u+ b (z) ≤ 0} is non-empty197
for all z ∈ Rn and the controller198

u∗ (z) , arg min
u∈R

|u− unom (z)|2 (7)

s.t. a (z)u+ b (z) ≤ 0

is locally Lipschitz on Rn, and, for any point z∗ such that a (z∗) = 0, there exists a neighborhood N (z∗)199
such that u∗ (z) = unom (z) for all z ∈ N (z∗). Furthermore, the controller in (7) has a closed-form200
solution given by201

u∗ (z) =

{
− b(z)

a(z) a (z)unom (z) + b (z) > 0

unom (z) otherwise.
(8)

Note that there is no division by zero in (8) since (6) implies that u∗ (z) = unom (z) when a (z) = 0.202
Also note that the claim regarding the neighborhood about points for which a (z∗) = 0 does not hold in203
general if the inequality in (6) is changed to b (z) ≤ 0.204
3.2 Motor Control Design205

In this section, the electric motor control input is designed to ensure that the safe set S = {z ∈ R2 :206
eL ≤ e ≤ eH} is UGAS for a given z2d > 0. Our development is based on the design procedure described207
in Isaly et al. (2020) and the theoretical results for hybrid systems in Maghenem and Sanfelice (2021) and208
Goebel et al. (2012), where Maghenem and Sanfelice (2021) considers barrier functions specifically. The209
safe set S is encoded by the barrier function candidate Be : R2 → R defined as210

Be (z) ,
1

2
M (z1)

(
e2

β (e)
− 1

)
(9)

where211

β (e) ,

{
e2L e ≤ 0
e2H e > 0.

Equivalent to the original definition, we have S = {z ∈ R2 : Be (z) ≤ 0}. The barrier function is designed212
to be continuously differentiable while encoding the potentially asymmetric (about e = 0) boundary of213
the set S.214

While barrier functions are typically associated with forward invariance, they are naturally extensible215
to enforcing the stronger property of asymptotic stability. Asymptotic stability is beneficial for real-world216
applications since it guarantees robustness to perturbations from the safe set. For continuous-time systems,217
the stronger asymptotic stability condition is embodied in the definition of a zeroing CBF (ZCBF) Xu218
et al. (2015). Inspired by the ZCBF approach in our preliminary work in Isaly et al. (2020) and the work219
regarding CLFs for hybrid systems in Sanfelice (2013), we constrain the control input according to the220
so-called regulation map Ũ : R2 ⇒ U defined as221

Ũ (z) , {u ∈ U : ⟨∇Be (z) , f⟩ ≤ −γe (e) , ∀f ∈ Fu (z, u)} , (10)

where222

γe (e) , kb1

(
e2

β (e)
− 1

)
, (11)

and kb1 > 0 is a control gain. In the stability analysis of Section 4, we show that selecting a continuous223
controller from Ũ ensures that Be acts as a Lyapunov function for the closed-loop dynamics outside the224
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set S. In particular, the condition in (10) will be used to apply Proposition 3.27 of Goebel et al. (2012) to225
conclude that S, redefined to include some additional states, is UGAS.226

Remark 2. The definition of a ZCBF requires that γe (z) , α (Be (z)) for an extended class K function227
α Xu et al. (2015). However, requiring dependence of γe on the barrier function candidate can be restric-228
tive, and is not necessary to obtain theoretical guarantees. Because the value of the function M in Be229
is unknown and cannot be implemented in a control law, we use γe instead of the typical ZCBF-based230
selection when defining Ũ in (10). For both ZCBFs and the choice of γe in (11), the mapping in (10)231
enforces asymptotically stabilizing conditions on the barrier function at states outside the safe set.232

The regulation map in (10) is not directly useful for design purposes because uncertainty in the dynamics233
prevents computation of the inequality (i.e., constraint) used to define Ũ . In the rest of this section, we234
develop a new regulation map based on a computable constraint that is implementable in a QP like (7).235
The resulting QP-based controller is a locally Lipschitz selection of Ũ . To compensate for the uncertainty236
introduced in (10) by Fu, we employ Lyapunov-based robust control techniques to develop a worst-case237
upper bound of the inner product in (10). For any (z, u) ∈ Cu and f ∈ Fu (z, u),238

⟨∇Be (z) , f⟩ ∈
1

2
∇M (z1) z2

(
e2

β (e)
− 1

)
(12)

+
1

β (e)
e (τu (z, u)− τF (z)) .

The product 1
β(e)eτF (z) contains the term 1

β(e)eVp (z) z2 = 1
β(e)e (Vp (z) e+ Vp (z) z2d), leading to a239

cancellation with the term 1
2∇M (z1) z2

(
e2

β(e)

)
since 1

2∇M (z1) z2 = Vp (z). Using Properties 2-7, it can240

then be shown that the unknown terms in (12) are upper bounded, for some constants c1 − c3, as241

⟨∇Be (z) , f⟩ ≤ Ce (e) +
1

β (e)
eτu (z, u) , (13)

for each (z, u) ∈ Cu and each f ∈ Fu (z, u), where242

Ce (e) , c1 + c2 |e|+ c3e
2.

In (13), the function τu depends on the motor control input ue and the muscle control inputs uM . Because243
the value of the subsequently designed muscle control input will jump at discrete instances, it is desirable244
to decouple the motor input from the muscle input to ensure the continuity of the motor controller. A245
continuous motor controller will be more predictable and comfortable for the rider. Using Property 8,246
there exists a constant cM > 0 such that247

1

β (e)
eτu (z, u) =

1

β (e)
e (ceue + τFES (z, uM )) (14)

≤ ce
β (e)

eue + cM |e| ,

for all z ∈ R2, ue ∈ R, and uM ∈ UM . Using the definition of UM in Section 2, (14) applies to any248
muscle controller for which the inputs are bounded by the positive constant ū. One can then define249

Ke (e) , k1 + k2 |e|+ k3e
2. (15)

Selecting5250
k1 ≥ c1, k2 ≥ c2 + cM , k3 ≥ c3, (16)

5 While the gain conditions in (16) will be needed to guarantee that the cadence is constrained to the set S, uniform global asymptotic stability ensures that
the cadence remains nearby S even if the conditions do not hold (see Section 5.4).
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implies that251

Ce (e) +
1

β (e)
eτu (z, u) ≤ Ke (e) +

ce
β (e)

eue (17)

for all z ∈ R2, ue ∈ R, and uM ∈ UM . Since (17) is an upper bound for (13), we define a new regulation252
map Ūe : R ⇒ R as253

Ūe (e) ,

{
ue ∈ R : Ke (e) +

ce
β (e)

eue ≤ −γe (e)

}
. (18)

The following result summarizes the preceding development and explains the utility of Ūe.254

PROPOSITION 1. Assume k1, k2, and k3 satisfy the gain conditions in (16) and z2d > 0. Then, for any255
z ∈ R2 and uM ∈ UM , if ue ∈ Ūe (e), it follows that (ue, uM ) ∈ Ũ (z).256

The constraint used to define Ūe in (18) can be written in the generic form of Lemma 1. Addition-257
ally, since the terms in (18) are no longer uncertain, the constraint can be enforced with the following258
implementable QP:259

u∗e (e) , arg min
ue∈R

|ue − unome (e)|2 (19)

s.t. Ke (e) +
ce

β (e)
eue ≤ −γe (e) ,

where unome : R → R is any locally Lipschitz nominal controller. According to Lemma 1, with b (z) =260
Ke (e) + γe (e), the controller is feasible if e = 0 implies that261

Ke (0) + γe (0) = k1 − kb1 < 0. (20)

Since the parameters in (20) are user-selected, they can be designed to ensure the inequality holds. Given262
this gain condition, the controller has the properties described in Lemma 1, in particular, it is continuous.263
The closed-form solution to (19) can be developed from (8). The controller is implementable in either264
form but the closed-form solution is computationally faster and does not require an optimization package.265
Note that the piecewise linear function e 7→ (ce/β(e)) e is locally Lipschitz, from which we derive local266
Lipschitz continuity of the controller.267

Remark 3. During the experiments in Section 5, we investigated constant nominal controllers unome , u0268
for some u0 ∈ R. When u0 = 0, the controller is a minimum norm controller and the motor is off269
whenever possible while still ensuring safety. When the rider requires additional assistance, selecting a270
positive u0 leads to the motor being biased to assist, while a negative u0 leads to additional resistance and271
a more challenging training program. However, there is no theoretical obstacle to using a more complex272
nominal controller (e.g., one that tracks power).273

3.3 FES Design274

To describe the FES control input, we define a concatenated state vector x , (z, σM , τ) ∈ X , where275

σM ∈ {0, 1}6 is a vector of switching signals σm ∈ {0, 1} defined for each muscle m ∈ M, τ ∈ R is a276

timer variable, and X , R2 × {0, 1}6 × R is the state space. The stimulation input to the rider’s muscle277
groups u∗M : X → R6 is defined for each muscle as6278

u∗m (x) , sat+ū (σmu∗FES (e)) , (21)

where u∗FES : R → R will be defined subsequently. The switching signals are updated at jumps according279
to the rule280

σ+m =

{
1 z1 ∈ Qm

0 z1 /∈ Qm,
(22)

6 The positive saturation function sat+ū : R → R is defined as sat+ū (u) = 0 if u < 0, sat+ū (u) = u if u ∈ [0, ū], and sat+ū (u) = ū if u > ū.
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where Qm was defined in Section 2. The update rule specifies that the rider’s muscles are stimulated in281
regions where they are able to produce positive torque. The rule for σm and the timer variable τ will be282
used to define a hybrid system in Section 4.283

As discussed in Section 3.1, it is generally not possible to maintain the cadence in the set SFES =284
{z ∈ R2 : e ≥ eFES} because the stimulation input u∗m is limited in magnitude and only intermittently285
available. The function u∗FES in (21) represents a selection of the input that would render the set SFES286
asymptotically stable in the absence of these obstacles (and subject to some gain conditions). The devel-287
opment of u∗FES is very similar to the one in Section 3.2 and is therefore omitted to avoid redundancy.288
Moreover, we do not make claims in the forthcoming stability analysis regarding SFES . The FES input is289
defined by the following QP:290

u∗FES (e) , arg min
uFES∈R

|uFES − unomFES (e)| (23)

s.t. KFES (e) +
1

β2 (e)
euFES ≤ −γFES (e) .

where unomFES : R → R is any locally Lipschitz nominal controller,291

KFES (e) , k4 + k5 |e|+ k6e
2,

292

γFES (e) , kb2

(
e2

β2 (e)
− 1

)
,

and293

β2 (e) ,

{
e2FES e ≤ 0
e2H e > 0.

When e = 0, the feasibility condition (6) in Lemma 1 requires that294

KFES (0) + γFES (0) = k4 − kb2 < 0, (24)

under which the function u∗FES has the properties described in the lemma. Similar to the previous section,295
the parameters in (24) are user-selected and can be designed to ensure the inequality holds.296

When the nominal controller in (23) is set to unomFES , 0, then from the closed-form solution in (8) it can297
be determined that u∗FES (e) ≤ 0 for all e ≥ 0. In this case, because of the use of the saturation function298
in (21), it follows that u∗m (x) = 0 for all x ∈ X such that e ≥ 0. The inclusion of a nominal controller in299
the QP defining u∗FES gives the operator flexibility to provide stimulation at points where e ≥ 0. When300
using a nominal controller with unomFES (e) > 0 for e ≥ 0, FES stimulation produces torque to increase301
the cadence above the setpoint z2d. However, it is always the case that u∗FES (e) → 0 as e → eH . By302
combining nominal assistance from FES with nominal resistance from the electric motor, a more intense303
training program can be designed where the rider must work against resistive torque from the electric304
motor to stay near the setpoint. We provide experimental results for a higher intensity configuration of the305
control system in Section 5.306

4 STABILITY ANALYSIS
We model the closed-loop system as a hybrid system H = (C,F,D,G) with state x = (z, σM , τ) ∈ X ,307
where the state space X was defined in Section 3.3. The hybrid system will periodically update the muscle308
switching signals σm according to the rule in (22). The timer variable τ increases at a constant rate until309
reaching a dwell-time τD > 0, at which point a jump occurs and each signal in σM is updated. Governing310
jumps by a dwell-time prevents multiple jumps from occurring in the same time instant, and models a311
computational implementation of the switching signals, where the values of the logic variables would be312
updated periodically at a fixed sampling frequency. In practice, the dwell-time τD will be the sampling313
frequency.314
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The hybrid system H is defined as follows. The flow map F : X ⇒ X is315 [
ż
σ̇M
τ̇

]
∈

[
Fu (z, u

∗ (x))
0
1

]
, F (x) ,

where u∗ (x) ,
(
u∗e (e) , u

∗
M (x)

)
and Fu is defined in (2). The flow set is316

C , {x ∈ X : τ ∈ [0, τD]} .

Jumps occur when the timer state τ grows to τD,317

D , {x ∈ X : τ = τD} .

The jump map G : X ⇒ X is defined component-wise as G (x) , (z,Gσ (x) , 0), where the state z does318

not change at jumps (z+ = z), the timer τ resets to zero at jumps (τ+ = 0), and Gσ : X ⇒ {0, 1}6 is319
the outer semicontinuous Krasovskii regularization of the map in (22) Goebel et al. (2012, Def. 4.13). For320
each m ∈ M, the corresponding component of Gσ is equal to321

Gσm (x) =

1 z1 ∈ Qm

{0, 1} z1 ∈ ∂Qm

0 otherwise.
(25)

The set-valued case in (25) indicates that if τ reaches τD when the state z1 is precisely on the boundary322
of Qm, the signal σm may or may not jump. Performing such a regularization leads to some robustness323
properties due to the fact that H is a well-posed hybrid system Goebel et al. (2012, Ch. 6).324

Remark 4. The gain conditions in (20) and (24) must be satisfied because they lead to the feasibility of325
the QP-based controllers. The conditions are restated here for emphasis:326

k1 < kb1, k4 < kb2.

THEOREM 1. Consider the closed-loop cycle-rider system H. Assume the control gains satisfy the327
conditions in (16), (20), and (24), and z2d > 0. Then the safe set S̃ , {x ∈ C ∪D : eL ≤ e ≤ eH} is328
UGAS for H. Additionally, H is a well-posed hybrid system.329

PROOF. Since Be in (9) is such that S̃ = {x ∈ C ∪D : Be (z) ≤ 0}, the function Be is a valid barrier330
function candidate Maghenem and Sanfelice (2021, Def. 3). Using Lemma 1, the gain conditions in (20)331
and (24) guarantee that the controllers in (19) and (21), respectively, are feasible. By design, u∗e (e) ∈332
Ūe (e) for all e ∈ R and u∗m (x) ∈ UM for all x ∈ X . Proposition 1 then shows that u∗ (x) ∈ Ũ (z) for all333
x ∈ X . It follows from the definition of Ũ in (10) that334

⟨∇Be (z) , f⟩ ≤ −γe (e) , (26)

for all x ∈ C and each f ∈ F (x). Moreover, the jump map is such that335

Be

(
z+

)
= Be (z) , (27)

for all x ∈ D and each
(
z+, σ+M , τ+

)
∈ G (x). The barrier function does not decrease at jumps, but there336

is sufficient flow time to guarantee an overall decrease along solutions. More specifically, the dwell-time337
τD ensures that for any solution φ to H, if (t, j) ∈ domφ, then t ≥ τD (j − 1). Thus, for any T ≥ 0 and338
(t, j) ∈ domφ, if t + j ≥ T then t ≥ (τD/(1+τD)) (T − 1). We use this bound on the flow time to apply339
Proposition 3.27 of Goebel et al. (2012).340

The conditions in (26) and (27), and the fact that G (x) ⊂ C ∪ D for all x ∈ D allow us to apply341
Theorem 1 of Maghenem and Sanfelice (2021) to conclude that the set S̃ is forward pre-invariant for342
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H. Furthermore, the barrier function Be is a Lyapunov function for the restricted hybrid system Hr =343
(Cr, F,Dr, G) with Cr , C ∩ I and Dr , D ∩ I, where I , {x ∈ X : Be (z) ≥ 0}, which is the344
restriction of H to the zero superlevel set of Be. It can be shown that there exists7 a continuous, positive345
definite function ρ : R≥0 → R≥0 such that ρ

(
|x|S̃

)
≤ γe (e) for all x ∈ Cr. Using Property 1, there are346

class K∞ functions8 α1 and α2 such that α1

(
|x|S̃

)
≤ B (z) ≤ α2

(
|x|S̃

)
for all x ∈ Cr ∪Dr ∪ G (Dr).347

Thus, Proposition 3.27 of Goebel et al. (2012) can be applied to conclude that S̃ is uniformly globally348
pre-asymptotically stable (UGpAS) for Hr Goebel et al. (2012, Def. 3.6). That S̃ is UGpAS for the349
unrestricted system H follows from forward pre-invariance of S̃ for H, since for any solution φ to H, if350
φ (t, j) ∈ S̃ then |φ (t′, j′)|S̃ = 0 for all (t′, j′) ∈ domφ with t′ ≥ t, j′ ≥ j. Therefore, solutions to Hr351

that terminate on the boundary of S̃ can be extended as solutions to H that remain in S̃.352

To conclude that S̃ is UGAS9, it remains to show that each maximal solution to H is complete. Towards353
this end, we invoke Proposition 6.10 of Goebel et al. (2012). We first note that the dynamics satisfy354
the hybrid basic conditions Goebel et al. (2012, Asm. 6.5) because C and D are closed; G is outer355
semicontinuous and locally bounded; and F is outer semicontinuous, locally bounded, and convex-valued356
by Property 9 and Lemma 3.2 in Sanfelice (2013). It follows that H is a well-posed hybrid system Goebel357
et al. (2012, Thm. 6.30). Next, every point x ∈ ∂C\D has the component τ = 0. The fact that τ̇ = 1358
implies that F (x) ∩ TC (x) ̸= ∅ at any x ∈ ∂C\D, where TC (x) is the tangent cone to C at x. It is then359
straightforward to conclude that the condition (VC) in Proposition 6.10 holds for all x ∈ C\D. Moreover,360
G (D) ⊂ C ∪ D. Thus, Proposition 6.10 shows that a maximal solution is either complete or escapes in361
finite time by flowing.362

To eliminate the possibility that maximal solutions escape in finite time by flowing, we first let φ be a363
solution to H. From the definition of UGpAS in Definition 3.6 of Goebel et al. (2012), the distance of φ364
from S̃ is bounded. From the definition of S̃, the component of φ corresponding to the state e is bounded.365
Using this information, we conclude from continuity of e 7→ u∗e (e) and the use of the saturation function366
in the definition of u∗M in (21) that for the concatenated controller u∗, the set u∗ (rgeφ) is bounded, where367

rgeφ , {φ (t, j) : (t, j) ∈ dom φ}. Then, from boundedness of the e component of φ and Properties 2-7,368
it can be shown that the set F (rgeφ) is bounded. It follows that solutions do not terminate in finite time369
by flowing (cf. Kamalapurkar et al. (2020, Lem 3.3)). Thus, each maximal solution to H is complete, and370
S̃ is UGAS for H. �371

5 EXPERIMENTAL RESULTS
The developed barrier function controller was tested on five participants and compared against uncon-372
trolled volitional pedaling and the 3-Mode (3M) controller developed in Rouse et al. (2020, Sec. III). As373
described in Section 1, the main idea behind the 3M controller is to create a region near the setpoint z2d374
where no assistance is provided, with discontinuous control effort being applied on the boundary of the375
region. In contrast to the barrier function controller, the electric motor controller for the 3M controller is376
coupled with FES stimulation via the angular position state z1, so that the motor is inactive whenever FES377
is active, and vice versa.378

The barrier function controller can be configured for various purposes based on the needs of the rider.379
Generally, there is a trade-off where smaller user-defined cadence ranges lead to greater applied control380
effort. Protocol A was designed to investigate whether the controller can reduce the variance in the rider’s381
cadence by constraining their cadence within a small range. Such a trial provides a point of comparison382
with the 3M controller and uncontrolled volitional pedaling and generates data where the controller is383
more active. Protocol B was designed to show how assistance from the motor can be reduced by selecting384
a wider safe range, thereby encouraging more volitional contributions from the rider. In fact, Protocol385
B featured a nominal amount of resistance from the motor, making the program more challenging and386
requiring additional power output from the rider.387

7 While more general techniques can be developed, it is sufficient here to define ρ (s) , γe (s+ eH) if eH ≥ |eL| or ρ (s) , γe (eL − s) if eH < |eL|.
8 A function α : R≥0 → R≥0 is a class K∞ function if α is zero at zero, continuous, strictly increasing, and unbounded.
9 A set A is UGAS for a hybrid system H if it is UGpAS and every maximal solution to the system is complete, meaning the solution is defined on an
unbounded hybrid time domain.
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Table 1. Protocol A: Cycling Metrics During Steady-State Operation (140 Second Trial)
Participant Number

Controller Metric Average 1 2 3 4 5

Barrier Function

Avg. Cad. [RPM] 49.97 49.82 49.59 50.85 49.31 50.26
Cad. SD [RPM] 1.38 1.37 1.50 1.54 1.27 1.25

Min/Max Cad. [RPM] 46.2/54.7 46.6/54.2 45.7/54.0 46.5/55.3 45.4/55.1 46.9/54.2∫
(u∗

e)
+ dt (Assistive Torque) [A·s]* 24.82 18.64 15.83 2.79 67.72 19.12∫

(u∗
e)

− dt (Resistive Torque) [A·s]* -20.84 -10.25 -3.93 -33.39 -13.63 -42.99
FES Usage [% trial duration]† 27.33 39.34 33.61 15.77 31.77 16.18

Time Outside S [s]‡ 0.006 0 0 0.02 0.01 0

3-Mode

Avg. Cad. [RPM] 49.66 49.73 48.87 50.79 48.94 49.98
Cad. SD [RPM] 1.83 1.57 1.89 1.62 2.21 1.87

Min/Max Cad. [RPM] 43.2/55.1 44.6/55.5 40.7/53.3 46.3/55.1 40.7/56.1 43.9/55.6∫
u+
e dt (Assistive Torque) [A·s]* 5.87 1.73 14.4 0.22 10.49 2.52∫

u−
e dt (Resistive Torque) [A·s]* -20.32 -8.72 -3.41 -47.39 -16.98 -25.13

FES Usage [% trial duration]† 17.04 12.16 23.42 3.03 31.56 15.05
Num. Motor Switches** 493 335 414 530 636 549

Volitional
Avg. Cad. [RPM] 49.91 49.62 49.13 49.82 50.87 50.11
Cad. SD [RPM] 2.13 2.13 1.81 1.76 2.72 2.21

Min/Max Cad. [RPM] 42.0/56.0 42.4/55.2 40.5/54.8 43.3/54.3 42.0/59.2 41.6/56.6
* Indicates the postive or negative component of the integral, e.g.,

∫
u+
e dt ,

∫ tf
t0

max {ue (z (t)) , 0} dt.
† Quantifies the percentage of the trial duration that FES was active at non-negligible pulse-width values greater than 10 µs.
‡ Computed as the number of recorded cadence values outside the set multiplied by the sampling time of 0.001 s.
** Quantifies the number of discontinuities in the motor control signal as a function of time.

Due to COVID-19 related difficulties in scheduling participants with neurological conditions, the trials388
for this demonstration were done with able-bodied subjects. Each participant gave written informed con-389
sent approved by the University of Florida Institutional Review Board (IRB201600881). Participants 1-3390
were male, participants 4 and 5 were female, and all ranged in age from 21-29 years old.391
5.1 Testbed392

The experimental testbed consisted of a stationary recumbent tricycle (TerraTrike Rover) with a 250393
W, 24 V motor (Unite Motor Co.) coupled to the drive chain as described in Bellman et al. (2017, Sec.394
V-A). To measure position and cadence, an optical encoder with an angular resolution of 20,000 pulses395
per revolution (US Digital H1) was mounted to the crank using spur gears. The motor was actuated396
using an Advanced Motion Controls10 motor driver and current-controlled power supply. Stimulation397
was delivered to the rider’s quadricep, hamstring, and gluteal muscle groups via self-adhesive electrodes398
provided compliments of Axelgaard Manufacturing Co., Ltd. A current-controlled stimulator (Hasomed399
Rehastim) delivered symmetric, rectangular, and bi-phasic pulses at fixed amplitude (90 mA, 80 mA, and400
70 mA for the quadriceps, hamstrings, and gluteals, respectively) and frequency (60 Hz), while the pulse401
width was used as the control input. A desktop computer running real-time control software (QUARC402
integrated with Simulink) was used to interface the controllers and hardware through a data acquisition403
board (Quanser QPIDe) with a sampling rate of 1000 Hz. For additional safety, an emergency stop switch404
was mounted on the cycle to allow the participant to end the experiment if required.405
5.2 Procedure406

The primary testing procedure (Protocol A) consisted of 180-second tests for each of the three config-407
urations (barrier function, 3M, and volition-only) under consideration. The volitional pedaling trial was408
always first, followed by a random selection of either the barrier function or 3M controller. The riders409
were asked to track a setpoint of z2d = 50 RPM. The safe set boundary for the barrier function controller410
was encoded by eL = −5 RPM and eH = 5 RPM, while eFES = −3 RPM. The inactive region for411
the 3M controller was 48-52 RPM, which is comparable to the range 50-55 RPM that was used for the412
experiments in Rouse et al. (2020). The rider was shown a live plot of their cadence featuring a visible413

10 Advanced Motion Controls supported the development of the testbed by providing discounts on their branded items.
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Figure 2. Cadence and motor control input for 30-second segments of the trials using Protocol A. Ran-
dom selection was used to choose which participants and time periods were plotted. The time axis is offset
to zero for readability. The dashed orange line in the barrier function cadence plot indicates the boundary
of the safe set S, which was not meaningful for the other two configurations.

indication of the setpoint. Due to differences between the barrier function and 3M controllers, participants414
were not shown the boundaries of the safe set11.415

The 180-second tests started with a 20-second ramp-up phase where the rider sat passively while the416
motor brought their cadence to the setpoint. To ensure that the presented data represented steady-state417
operation, the ramp-up and an additional 20 seconds after it was excluded from each dataset in post-418
processing. For each configuration, there was a separate warm-up run before the recorded session so the419
rider could become accustomed to the controller.420

Measurements of the position of the rider’s legs with respect to the cycle were used to determine the421
regions of effective torque transfer Qm for each muscle (see Bellman et al. (2017, Sec. V-B) for more422
details). The cycle was initially operated at 50 RPM and open-loop stimulation was applied to one muscle423
group at a time to determine the comfort limit ū for each muscle. The FES inputs are scaled by the comfort424
threshold in addition to being saturated12. The nominal controllers were unome = unomFES = 0. The control425
gains were adjusted by plotting the control inputs as a function of the cadence error, which produced a426
visualization of the regions of applied control effort. Small adjustments to the gains were made for each427
participant based on their preferences during the warm-up run, which is a cause for variation in the data428

11 In the 3M controller, the user defines a region where no control is applied. An asymptotically stable region will be induced by the selection of the control
gains, but it is not possible to compute this region explicitly. In the barrier function controller, the user defines the safe set boundary, while a computable region
of no-control is induced by the selection of the control gains, and guaranteed to exist by Lemma 1.
12 Practical improvements like muscle-dependent control gains are not included in the theoretical development for simplicity.
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Figure 3. Zoomed view of a five-second time period during a trial using Protocol A showing the cadence,
motor control input, and stimulation pulse-width (PW) for Participant 5. Random selection was used to
choose which participant and time period were plotted. The time axis is offset to zero for readability.
A pulse-width feedforward term of 10 µs was used to facilitate stimulation. The stimulation does not
significantly affect the participant at or below 10 µs.

between participants. Some detailed discussion about the effect of the barrier function controller gains on429
performance is provided in Isaly et al. (2020) (see Remark 1 and Section 5.4).430

Additional trials were conducted to highlight unique aspects of the barrier function controller, which431
were performed with only one participant. Protocol B was designed to prioritize power output from the432
rider over cadence tracking. For this alternative trial, the width of the safe range was larger, with eL =433
−12 RPM, eH = 10 RPM, and eFES = −6 RPM. Because the rider (Participant #2) was able-bodied,434
we chose to make the program more challenging by adding nominal controllers with unome < 0 and435
unomFES > 0, which means that near the setpoint the electric motor produced resistive torque while FES436
provided assistance. The boundaries eL and eH were displayed on-screen for this trial. In Protocol C,437
Participant #1 was asked to provide no volitional effort for both the 3M and barrier function controllers438
(Figure 4). Because of problems with the 3M controller for this trial, we did not proceed with testing the439
no-volition configuration on other participants.440
5.3 Results441

Table 1 shows relevant statistics for the three configurations tested for Protocol A, including the aver-442
age and standard deviation of the cadence, percentage of the trial duration for which FES was actively443
stimulating, and time spent outside of the safe set S. Two integrals of the electric motor input are given444
to distinguish resistive torque, for which the rider must pedal harder to compensate, and assistive torque,445
which implies work done by the motor and not the rider. The barrier function controller produced the446
lowest standard deviation in cadence for each participant and led to greater FES usage, but generally used447
more assistive torque from the motor than the 3M controller. The 3M controller produced less assistive448
torque because the electric motor was off in regions of the crank cycle where FES was active. The discrete449
switching between motor and FES, along with switching on the boundary of the inactive zone, caused450
numerous discontinuities in the 3M motor controller; Table 1 shows an average of 493 switches per trial.451
For all participants, the riders’ cadence took values in the range 40.7-56.1 RPM for the 3M controller,452
45.4-55.3 RPM for the barrier function controller, and 40.5-59.2 RPM for uncontrolled pedaling. The453
barrier function controller constrained each rider’s cadence to the user-defined range of 45-55 RPM for454
all but a negligible amount of time; an average of six sampled data points or approximately 0.004% of455
the trial duration. Segments of the trials for three randomly selected participants are shown in Figure 2. A456
zoomed view featuring the FES stimulation input for a single participant is shown in Figure 3.457

This is a provisional file, not the final typeset article 14



Isaly et al. Encouraging Pedaling with Barrier Functions

Figure 4. Cadence from a trial using Protocol C, where Participant #1 was asked to provide no volitional
effort. The 3M controller was problematic in this scenario due to switching between FES and motor
control. The shaded red regions in the 3-Mode plot correspond to times when the electric motor was
switched off.

Figure 4 shows the trials using Protocol C, where Participant #1 provided no volitional effort. The458
barrier function controller was still able to keep the rider’s cadence within the safe set, while the 3M459
controller caused large oscillations; the mean±SD cadence for the 3M controller was 43.74±4.94 RPM.460
The cadence dropped as low as 31.54 RPM during the 3M trial because the electric motor was inactive461
in the shaded regions of Figure 4. When the motor was next switched on, it compensated using control462
action with a maximum magnitude of 17.74 A, which was relatively large compared to a maximum of463
8.13 A for the 3M controller during the Protocol A trials.464

The results for Protocol B, where there were nonzero nominal controllers and a wider safe range, are465
displayed in Figure 5 and Table 2. There was high utilization of the electric motor to produce resistive466
torque, but low assistive torque production. The assistive torque was smaller than the Protocol A average467
and, in particular, was smaller than Participant #2’s results. The resistive torque was large and FES was468
more active for Protocol B due to the design of the nominal controllers. The electric motor deviated from469
its nominal value for only 7.7% of the trial duration and was providing assistance for 4.1% of the trial.470
The cadence standard deviation was higher than uncontrolled volitional pedaling, which was most likely471
because the control inputs were actively pushing the rider away from the setpoint. The assistive torque472
from the barrier function controller in Protocol B was comparable to the 3M controller in the Protocol A473
trials.474
5.4 Discussion475

The results for Protocol A demonstrate that the barrier function controller can assist a rider in tracking476
the cadence setpoint while constraining their cadence within a user-defined range. Figure 3 shows that the477
control inputs ramp up before the cadence reaches the boundaries defined by eH , eL, and eFES , yet are478
inactive when the cadence is near the setpoint. Such a ramp-up is demonstrative of how barrier function479
methods can ensure a gradual transition from a nominal controller, which should be active on the interior480
of the safe set, to an invariance-ensuring controller on the boundary of the safe set. For Protocol A, the481
width of the nominal control range was fairly small, while the width was increased for Protocol B.482

In some situations, increasing the training intensity for the rider will be preferred over improved cadence483
tracking. The relevant statistics are the assistive and resistive torques produced by the electric motor.484
Higher assistive torque indicates that less power is being produced by the rider. The barrier function485
controller is versatile and can be tuned to provide more or less interference from the control inputs. Figure486
5 shows a trial using Protocol B where power output from the rider was prioritized by allowing larger487
cadence errors. The system’s operator can allow larger cadence errors by selecting a wider safe range,488
which also facilitates the design of a wider nominal control range. The use of nominal controllers for489
Protocol B intensified the training by providing more FES stimulation and resistance from the motor. The490
control inputs were at their nominal values for a significant portion of the experiment, validating that a491
wider safe range leads to less modification of the nominal inputs. The nominal inputs can alternatively be492
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Figure 5. Segment of a trial using Protocol B, where alternative parameters for the barrier function con-
troller were used. The safe set was much wider for this run, leading to less deviation of control inputs from
the nominal value. Nonzero nominal inputs were used to intensify the training. The data was collected
with Participant #2.

Table 2. Protocol B – Barrier Func-
tion Controller: Cycling Metrics
During Steady-State Operation (140
Second Trial)

Metric* Par. #2

Avg. Cad. [RPM] 49.87

Cad. SD [RPM] 2.80

Min/Max Cad. [RPM] 43.0/57.6∫
(u∗

e)
+ dt (Assistive Torque) [A·s] 4.76∫

(u∗
e)

− dt (Resistive Torque) [A·s] -119.01

FES on-time [%] 47.67

Time Outside S [s] 0
* See Table 1 for further descriptions of metrics.

designed so there is less resistance from the motor or less control input overall. The fact that the assistive493
torque from the barrier function controller was comparable to the 3M controller suggests that staggering494
FES assistance before motor assistance, as in the barrier function controller, is a viable alternative to495
discrete switching between FES and motor control, as in the 3M controller.496

A continuous motor controller is more comfortable for the rider. Continuity is the primary difference497
between the barrier function and 3M controller. The 3M controller is discontinuous whenever the cadence498
crosses the boundary of the inactive zone, or the angular position crosses the boundary of the FES stimula-499
tion regions Qm. The resulting large number of switches for the 3M motor controller is quantified in Table500
1. A particular advantage of the motor being active in the Qm regions is that the barrier function controller501
is effective even when the rider produces little or no volitional effort, as shown in the trials using Protocol502
C (Figure 4). The 3M controller caused large oscillations in the rider’s cadence during Protocol C due to503
the discrete switching between FES and motor control. Since FES cannot always produce enough torque504
on its own, the cadence dropped in the FES stimulation regions, which was then met with large control505
effort from the motor upon exiting the region.506
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There were some small deviations from the safe set because the asymptotic stability of S is contingent507
on the selection of control gains, which must be large enough to compensate for the rider’s volitional effort508
and other dynamic effects. In practice, designing the gains to account for large volitional contributions509
from the rider leads to overly constraining the rider during normal operation. Designing controllers for510
asymptotic stability, rather than the weaker property of forward invariance, helps mitigate these effects.511
A property known as input-to-state stability, which is a consequence of the UGAS result in Theorem 1,512
can be interpreted as guaranteeing that some nearby set is asymptotically stable despite unaccounted-for513
disturbances of bounded magnitude Xu et al. (2015); Cai and Teel (2009). Thus, the control gains can be514
relaxed to favor comfortable and effective therapy while still ensuring that the cadence remains nearby the515
safe set.516

6 CONCLUSION
This paper developed new FES and motor controllers that encourage the rider of a stationary cycle to517
provide volitional effort while constraining their cadence within a user-defined range. Using theoretical518
advances for barrier functions, the controllers are minimally invasive while transitioning gradually to a519
safety-ensuring controller on the boundary of the safe set. The control inputs are selected from regula-520
tion maps with sufficient regularity to ensure that optimal selections are locally Lipschitz functions of the521
cadence error. Robust control tools were used to develop the regulation maps, which are subsets of an522
original, uncertain map. The uniform global asymptotic stability of the user-defined safe set was certified523
with a hybrid system analysis. In the future, the performance of the controller can be improved by ex-524
tending the development to a more complete dynamic model which accounts for muscle activation effects525
such as electromechanical delay in the rider’s muscles.526

Experimental results showed that the control system improved the rider’s cadence tracking and effec-527
tively constrained their cadence within the safe set. The versatility of the controller was demonstrated with528
trials featuring two different objectives: improved cadence tracking or more power output from the rider.529
A significant next step is to perform more rigorous experiments on a set of participants with neurologi-530
cal conditions. These riders have a reduced ability to provide volitional contributions, so the results are531
expected to be significantly different from those of able-bodied riders, and would be of interest in more532
clinically focused literature.533
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