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Explaining the “mystery” of periodicity in
inter-transmission times in two-dimensional

event-triggered controlled systems
Romain Postoyan, Ricardo G. Sanfelice, W.P.M.H. (Maurice) Heemels

Abstract— Motivated by scenarios where the communi-
cation or the computation resources are limited, event-
triggered control consists of transmitting data between the
plant and the controller according to the actual system
needs, and not the elapsed time since the last transmission
instant as in traditional sampled-data control, so that the
desired control objective is achieved. A range of tech-
niques are nowadays available to design event-triggered
controllers. However, we generally have only very little
information about the actual behaviour of the transmission
instants and thus about the amount of transmissions being
actually generated, though this is a key feature of the
design. In this paper, we analyse the inter-event times, i.e.,
the times between two successive transmission instants,
when the plant is modeled as a two-dimensional linear time-
invariant system. The controller is a state-feedback law and
the triggering rule is the relative threshold policy, which is
allowed to be time-regularized. One of the main results in
this paper is the explanation of the oscillatory behaviour of
the inter-event times when the constant used to define the
threshold is small relative to 1, a phenomenon commonly
observed in simulations but never explained so far. More
generally, the presented results help to understand the
behaviour of the inter-event times, instead of solely relying
on numerical simulations, and thereby can be exploited to
rigorously evaluate the performance of the considered trig-
gering condition in terms of (average) inter-transmission
times.

Index Terms— Event-triggered control, sampled-data, hy-
brid systems

I. INTRODUCTION

Event-triggered control is a transmission paradigm, which
consists in generating communications between the plant and
the controller using a state-dependent criterion that is con-
tinuously monitored [22]. The basic idea is to adapt plant-
controller communication based on the current system needs,
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and not the time elapsed since the last transmission as in
traditional time-triggered control. Event-triggered control is
relevant in scenarios where the control system is subject to
communication or computation constraints, as in networked
control systems or embedded systems see, e.g., [23], [25], [50].

While various event-triggered control techniques are avail-
able in the literature, very little is known about the actual
behaviour of the inter-event times, i.e., the time between two
successive transmission instants. This is problematic as the
inter-event times directly relate to the amount of transmissions
generated and is therefore of primary importance in view of
the raison d’être of event-triggered control. In most cases, the
analysis of the inter-event times only ensures the existence
of a dwell-time also sometimes called “minimum inter-event
time”, that is a (uniform) strictly positive amount of time be-
tween any two successive transmissions. This property allows
avoiding the Zeno phenomenon and is required by practical
hardware limitations. Besides the existence of a dwell-time,
we generally do not know how the inter-event times behave.
Numerical simulations are thus often carried out to get an
idea of it. Exceptions exist though. The work in [46] provides
conditions under which the inter-event times approximately
converge to a constant value when the triggering rule satisfies
a homogeneity property and when zero-order hold devices
are used to implement the controller. This reference also
analyses stability properties of the inter-event times assuming
it exhibits a periodic pattern. Similarly, conditions for the
inter-event times function to exhibit continuity and periodicity
properties have been very recently proposed in [38] for two-
dimensional linear time-invariant systems. The works on/based
on discrete-time systems in, e.g., [4], [10], [11], which rely
on model predictive control techniques, provide analytical
guarantees regarding the average inter-event times. When the
plant dynamics evolve in continuous-time and smart actuators
are available, properties on the inter-event times can be derived
when using model-based holding functions [34], as advocated
in [5], [27] for fixed threshold policies, even in the presence
of stochastic disturbances. Interestingly, in the absence of
disturbances, model-based implementations [34] can lead to
a single transmission to stabilize the system in the ideal state-
feedback control case. Also, some schemes ensure that inter-
event times grow larger or converge to a constant as the
solution converges to the origin [24], [32], and [37, Section
V.B], or as time grows [35]. Another recent relevant line of
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research is based on symbolic abstractions see, e.g., [18], [19],
[29]. The general idea is to partition either the state space
or the inter-event times and then to construct an automaton
that schedules transmissions with guaranteed properties on
(the long term behaviour of) the inter-event times. Lastly, it
has to be noted that several works on event-triggered control
under bit-rate constraints and also on event-triggered stochastic
estimation analyse the inter-event times, see, e.g., [28], [31],
[33] and, e.g., [21], [30], [45], [48], respectively.

Besides the aforementioned works, our understanding of the
inter-event times remains limited, while it is a key charac-
teristic of the event-triggered controlled system. Phenomena
such as when the inter-event time describes a periodic-like
pattern, which is often seen in simulations (see, e.g., [6,
Figure 3], [8, Figure 3], [40, Figure 4], [44, Figure 1], [49,
Figure 4]), remain unexplained. Interestingly, inter-event times
oscillations were observed in one of the earliest works in the
field: more than twenty years ago in [7] it was stated that
“Several interesting phenomena have been observed during the
simulations. One example is limit cycles in the actual sampling
interval”, which is still not elucidated as far as we know.
More generally, understanding the behaviour of the inter-event
times is essential to appreciate the features of the considered
triggering technique and to evaluate its performance in terms
of transmissions.

There is a simple reason for our limited understanding of
the inter-event times: the question is notoriously challenging
technically. In this paper, we focus on plant dynamics given by
two-dimensional continuous-time linear time-invariant systems
and we will see that the problem becomes quickly technically
involved. The controller is a static state-feedback law imple-
mented using zero-order hold devices. The triggering rule is
the one in [42], which is one of the pillars of the literature
that has been used and extended in various contexts see, e.g.,
[2], [13], [15], [17], [40], [47]. This triggering law relies on
the condition |x ´ x̂| ě σ|x|, where x is the current plant
state, x̂ is the plant state at the last transmission instant and
σ P Rą0 is a tunable parameter. Our results also apply for
a time-regularized version of [42], in the sense that a given
minimum time is enforced between any two transmissions, see,
e.g., [1], [9], [14], [16], [39], [41], [43]. This is relevant when
we want to have a direct control on the minimum inter-event
time as well as for robustness reasons, see [2], [8], [9], [12],
[14]. The idea of including time-regularization is to check the
condition above once T ě 0 units of times have elapsed since
the last transmission instant: if it is satisfied, a transmission
between the plant and the controller is triggered. We only
talk of time-regularization when T ą 0, as, for T “ 0, the
“classical” relative triggering law of [42] is obtained.

Our results require σ to be small relative to 1, which is
typically the case to ensure the stability of the origin of the
closed-loop system, see, e.g., [1], [14], [41], [42]. We will
see that accurate results are obtained on examples even when
σ is taken close to its maximum admissible value ensuring
stability. We first establish key properties of the inter-event
times functions, which apply to system of any dimension,
not only two-dimensional ones. In particular, we provide an
expression of the inter-event time, which allows to derive new

lower and upper bounds; this result has its own interest and
could be exploited for scheduling purposes for instance. We
then specialize to two-dimensional systems and distinguish
different cases depending on the nature of the eigenvalues
λ1 and λ2 of the state matrix of the continuous-time closed-
loop system in the absence of sampling. In summary, when
λ1 and λ2 are complex conjugates, we show that the inter-
event times oscillate with a period close to π

β , where β is
the absolute value of the imaginary parts of λ1 and λ2. This
provides for the first time, as far as we know, an explanation
of the oscillatory nature of the inter-event times. In addition,
we demonstrate that the values taken by the inter-event times
over any time interval of length longer than π

β are almost
insensitive to the considered initial condition. This result has
important implications: not only the periodicity of inter-event
times is explained and analysed, but this means that a single
simulation over a time interval of length π

β is enough to
rigorously know the behaviour of the inter-event times for
all initial conditions and all times. Compared to [46, Section
IV] where periodic patterns of the inter-transmission times are
mentioned, (i) we do prove the existence of such patterns,
instead of assuming it, (ii) we provide an easy-to-compute
expression of the period and (iii) we analyse the impact of the
initial conditions on the inter-event times, while [46] assumes
exact periodicity, which cannot occur in general as we show,
and studies the stability properties of the inter-event times. On
the other hand, when λ1 and λ2 are real, the inter-event times
either converge to a neighborhood of max

!

σ
|λ1|

, T
)

as time

tends to infinity or lies in a neighborhood of max
!

σ
|λ2|

, T
)

for all positive times. The only case that we do not treat is
when λ1 “ λ2 and the corresponding geometric multiplicity
is equal to one because significant technical difficulties arise
in this case as we explain. We conjecture that the inter-
event times converge to max

!

σ
|λ1|

, T
)

in this case, which
is confirmed by simulations. These results are consistent with
[46, Proposition 1] where non-time-regularized homogeneous
triggering rules are discussed. We go further here as (i) we
carefully analyse the impact of σ (and T ) on the inter-event
times, (ii) we prove that the inter-event times are close to
given values for all positive times in some cases, instead of
providing asymptotic properties only, (iii) we address time-
regularization. Compared to [38], we provide constructive and
easy-to-compute estimates on the behaviour of the inter-event
times, we reveal the relationship between these properties and
the eigenvalues of the closed-loop state matrix and we analyse
the impact of the initial conditions on the inter-event times.
The provided simulation results confirm and show the strength
of the obtained theoretical guarantees.

Compared to preliminary version of this work [36], the main
novelty is the time regularization of the triggering law of [42],
which is important as the relative threshold strategy of [42]
is known to be non-robust [8] as mentioned above. We also
present several new results, including new lower and upper-
bounds on the inter-event times (see Lemma 1), discussions
about the application or the extension of the results to other
classes of systems (see Section V), as well as new examples
including a nonlinear one (Section VI).
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The remainder of the paper is organized as follows. The
problem is formally stated in Section II. Then, key properties
of the inter-event time function are established in Section III.
The main results are given in Section IV. Discussions on
the extension of the results are proposed in Section V. The
results are confronted to numerical simulations in Section VI.
Section VII provides conclusions. Finally, lengthy proofs are
presented in the appendix.

Notation. Let R be the set of real numbers, Rě0 :“ r0,8q,
Rą0 :“ p0,8q, Ră0 :“ p´8, 0q, Z be the set of integers,
Zě0 :“ t0, 1, 2, . . .u and Zą0 :“ t1, 2, . . .u. Given a set E Ď
Rn with n P Zą0, we use E‹ to denote Ezt0u. We denote
the set of unit norm vectors of Rn with n P Zą0, as Sn, i.e.,
Sn :“ tx P Rn : |x| “ 1u where | ¨ | stands for the Euclidean
norm. The notation px, yq stands for rxJ, yJsJ, where x P
Rn and y P Rm. For f : Rě0 Ñ Rn right continuous and
t ě 0, we write fpt`q to denote limt1Ót fpt

1q. We use I to
denote the identity matrix of appropriate dimension according
to the context. For a matrix A P Rnˆn with n P Zą0, we
respectively denote its maximum and minimum singular values
as ςmaxpAq :“

a

λmaxpAJAq and ςminpAq :“
a

λminpAJAq,
where λmaxpA

JAq and λminpA
JAq are the maximal and the

minimal eigenvalues of AJA, respectively. The argument1 of
x “ px1, x2q P R2,‹ is defined as

arg : R2,‹Ñr´π, πs

x ÞÑ argpxq :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

arctanpx2

x1
q, when x1 ą 0

arctanpx2

x1
q ` π,

when x1 ă 0 and x2 ě 0
arctanpx2

x1
q ´ π,

when x1 ă 0 and x2 ă 0
π
2 , when x1 “ 0 and x2 ą 0
´π

2 , when x1 “ 0 and x2 ă 0

By argument, we mean here the angle of the two-dimensional
vector x, which, without loss of generality, is treated as a
complex number.

II. PROBLEM STATEMENT

Consider the plant model

9x “ Ax`Bu, (1)

where x P Rn is the state with n P Zą0, u P Rm is the control
input with m P Zą0, and pA,Bq is stabilizable. We restrict n
to be equal to 2 later, in Section IV. The control input u is
given by the feedback law

u “ Kx, (2)

where the matrix K P Rmˆn is such that A`BK is Hurwitz;
such a matrix does exist since pA,Bq is stabilizable.

We study the scenario where controller (2) is implemented
on a digital platform and communicates with system (1) at
time instants ti, i P I with I :“ t1, 2, . . . , Nu X Zě0 with
N P Zą0Yt8u; this will be clarified in Section III. Between
two successive transmission instants, the control input is held

1Often, the argument is defined as argpxq “ arctanpx2
x1
q, but this is

only true when x1 ą 0.

constant using a zero-order hold device, and it is updated at
every ti, i P I, which leads to

u “ Kx̂ (3)

with x̂ being given by the solution to

9̂xptq “ 0 for all t P pti, ti`1q

x̂pt`i q “ xptiq.
(4)

We also introduce the clock variable δ P Rě0 to measure the
time elapsed since the last transmission instant. This variable
is needed when the triggering law is time-regularized. Its
dynamics are given by

9δptq “ 1 for all t P pti, ti`1q

δpt`i q “ 0.
(5)

The overall system is

9xptq “ Axptq `BKx̂ptq
9̂xptq “ 0
9δptq “ 1

,

.

-

for all t P pti, ti`1q

xpt`i q “ xptiq
x̂pt`i q “ xptiq
δpt`i q “ 0

,

.

-

for all i P I.

(6)
To obtain a solution to (6) in the Carathéodory sense, for each
i P I, the latter flows on rti, ti`1q and experiences a jump
at ti`1, and so on. Also, by a solution, we mean a maximal
solution, i.e., one that cannot be extended.

The sequence of transmission instants ti, i P I, is defined
implicitly by a state-dependent triggering rule. In particular,
we consider the law in [42], possibly time-regularized, to
define these instants as proposed in, e.g., [1], [14], [16]. Hence,
a transmission occurs whenever

|x̂ptq ´ xptq| ě σ|xptq| and δptq ě T, (7)

where σ ą 0 and T ě 0 are design parameters. We only talk
of time-regularization when T ą 0 as mentioned in Section
I, and we note that, when T “ 0, the second condition in
(7) is always verified. The first inequality in (7) guarantees
that the error |x̂ ´ x| induced by sampling is smaller than
σ|x| as in [42], after T units of times have elapsed since the
last transmission; otherwise a transmission is triggered. On the
other hand, the inequality δptq ě T in (7) enforces a minimum
time between successive transmissions of at least T units of
time, which we design, whenever T ą 0. Constants σ and
T are selected to ensure that the origin of system (6)-(7) is
uniformly globally exponentially stable, as formalized next.

Standing Assumption 1 (SA1): There exist d1 ě 1,
d2, σ

‹, T ‹ ą 0 such that for all pσ, T q P p0, σ‹q ˆ r0, T ‹q,
for all solutions px, x̂, δq to (6)-(7) and t ě 0, |pxptq, x̂ptqq| ď
d1e

´d2t|pxp0q, x̂p0qq|. l

Various techniques are available in the literature to compute
the bounds σ‹ and T ‹ to ensure SA1, see2, e.g., [1], [14], [16],
[39], [41], [42], [42], [43].

2Although the work in [42] does not consider time-regularized triggering
laws, SA1 does hold by taking T ‹ “ τ where τ is given in [42, Corollary
IV.1].
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We assume that t0 “ 0, which means that the initial time t “
0 is a sampling time. We therefore concentrate on solutions
to (6)-(7) initialized at time 0 with initial state of the form
px0, x0, 0q where x0 P Rn, since after a sampling instant x̂ is
equal to x and δ to 0. The first inter-transmission time is the
time, greater than or equal to T , such that |x̂ ´ x| is larger
than or equal to σ|x|. Since t0 “ 0, and xp0q “ x̂p0q “ x0,
this time only depends on x0, and is parameterized by σ and
T , we therefore denote it τσ,T px0q. The first inter-transmission
time is defined as, given x0,

τσ,T px0q :“ inf tη ě T : |x0 ´ φpη;x0q| ě σ|φpη;x0q|u ,
(8)

where φpη;x0q denotes the solution3 to 9x “ Ax ` BKx0
at time η ě 0, initialized at time zero at state x0. By
induction, we denote the ith inter-transmission time, with i P I,
as τσ,T pxptiqq, which only depends on xptiq, as xpt`i q “
x̂pt`i q “ xptiq and δpt`i q “ 0. The mathematical definition
of τσ,T pxptiqq is given by (8) by simply replacing x0 by4

xptiq. Noting that x̂ptq “ xptiq for t P pti, ti`1q in view of
(6), we can write τσ,T pxptiqq “ τσ,T px̂ptqq.

Problem Statement: The objective is to analyse the proper-
ties of τσ,T px̂p¨qq along solutions to the hybrid system (6)-(7)
initialized at px0, x0, 0q for some x0 P Rn when n “ 2 and
for σ small relative to 1. l

The only guarantee on the inter-event times we find in the
literature for the triggering condition (7) is the existence of a
minimum inter-event time. More precisely, when T “ 0, we
know from [42] that there exists ε ą 0 such that τσ,T px0q ě ε
for any x0 P Rn,‹, and, when T ą 0, τσ,T px0q ě T for any
x0 P Rn, which directly follows from (7). We aim at going
further in the analysis of the function τσ,T : we want to provide
analytical characterizations of the behaviour of t ÞÑ τσ,T px̂ptqq
along the solutions to (6)-(7). In that way, we would be able
to rigorously quantify the amount of transmissions generated
by the triggering rule.

For this purpose, we view system (6)-(7) as a family of
systems parameterized by σ and T , and the presented results
apply for small σ in (7), which we justify as follows. First, σ
typically needs to be small for the closed-loop system in (6)-
(7) to exhibit stability properties, see SA1. Second, our line of
analysis exploits properties of the limit case when σ Ñ 0. This
allows us to derive simple and accurate properties on the inter-
event times, which are corroborated by numerical simulations
in Section VI even when σ is taken close to σ‹ defined in
SA1.

The next section establishes preliminary instrumental prop-
erties of the map τσ,T .

III. PROPERTIES OF THE MAP τσ,T

We first need to make sure that τσ,T cannot be equal to 8.
In other words, we want to guarantee that τσ,T pRnq Ď r0,8q.
This is ensured by the next proposition.

3We abandon in the following the notation φ to denote a solution, and
use instead directly x (or x̂).

4We can still consider the time from η “ T in (8) in this case, and
not from η “ ti ` T , as system (6)-(7) is time-invariant and satisfies the
semi-group property.

Proposition 1: For any x0 P Rn, σ P p0, σ‹q and T P

r0, T ‹q where σ‹ and T ‹ come from SA1, τσ,T px0q P r0,8q.
l

Proof: Let σ P p0, σ‹q and T P r0, T ‹q. We first note that
τσ,T p0q “ T in view of (6), (7) and (8). To prove that τσ,T
takes finite values on Rn,‹, we proceed by contradiction and
we suppose that there exists x0 P Rn,‹ such that τσ,T px0q “
8. This means that the solution px, x̂, δq to system (6)-(7)
initialized at px0, x0, 0q never jumps. By SA1, xptq is defined
for all positive times and converges to zero as t tends to
infinity. On the other hand, |x̂ptq ´ xptq| “ |x0 ´ xptq| ă
σ|xptq| for any t ě T since no jump occurs. By taking the
limit as tÑ8 on both sides of the latter inequality, we obtain
|x0| ď 0, which is impossible since x0 ‰ 0. This proves the
desired result. �

Proposition 1 implies that I “ Zě0 as introduced in Section
II, for any x0 P Rn and any pair pσ, T q, which satisfies SA1.

Second, we state a homogeneity property of τσ,T , which is
established in [3, Theorem 4.11 and Remark 4.12] for the case
where T “ 0. The proof directly follows when T ą 0, and is
therefore omitted.

Proposition 2: For any x0 P Rn,‹, µ P R‹, σ P p0, σ‹q and
T P r0, T ‹q, τσ,T px0q “ τσ,T pµx0q. l

Proposition 2 states that τσ,T is constant along lines passing
through the origin, excluding the origin.

Third, we derive an approximate expression of τσ,T on Rn,‹
for small σ. We distinguish two cases for this purpose whether,
given m ą 0, the pairs pσ, T q belong to the set

Smpσ‹, T ‹q :“
!

pσ, T q : σ P p0, σ‹q, T P r0,min tmσ, T ‹uq
)

(9)
or not. While the set Sm imposes no extra condition on σ
compared to SA1, it requires that, when σ is small, so is T
(which implies that T depends on σ). Note that, when no time-
regularization mechanism is implemented, T “ 0 and any pair
pσ, 0q belongs to Smpσ‹, T ‹q. The next proposition provides
approximate expressions of τσ,T on Rn,‹ for small σ in the
general case first, and then provides additional expressions
when the pairs pσ, T q belong to Smpσ‹, T ‹q for a given m ą 0.

Proposition 3: There exist r1 : Rn ˆ p0, 1q Ñ R, c1r ą 0
and σ‹

1

1 P p0,mint1, σ‹uq such that for any σ P p0, σ‹
1

1 q,
T P r0, T ‹q and any x0 P Rn,‹, τσ,T px0q “ T ` r1px0, σq
and |r1px0, σq| ď c1rσ. Moreover, for any fixed m ą 0,
there exist r : Rn ˆ p0, 1q Ñ R, cr ą 0 and σ‹1 P

p0,mint1, σ‹uq such that for any pσ, T q P Smpσ‹1 , T ‹q,
τσ,T px0q “ max

!

σ |x0|

|Acx0|
` rpx0, σq, T

)

and |rpx0, σq| ď
crσ

2, where Ac :“ A`BK. l

Proposition 3 states that τσ,T px0q can be written as T
plus a term of the order of σ when pσ, T q is selected as in
SA1 and σ is small compared to 1. This result implies that
when T is “big” compared to σ, we essentially have periodic
sampling as τσ,T px0q is then well approximated by T for all
x0 in this case, since r1px0, σq, which is of the order of σ,
is negligible compared to T . Because of that, we concentrate
on the case where the pairs pσ, T q belong to Smpσ‹1 , T ‹q for
a given fixed m ą 0 in the remainder of the paper. In this
case, Proposition 3 states that τσ,T px0q is well approximated
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by max
!

σ |x0|

|Acx0|
, T

)

for small σ ą 0, for any x0 P Rn,‹,
which is of the order of σ, while the error term rpx0, σq is of
the order of σ2. The fact that the constant cr, which appears
in the upper-bound of the norm rpx0, σq, is independent of
x0 and pσ, T q (but does depend on m), is crucial in the
following. We will see via examples in Section VI that the
forthcoming analytical guarantees on the inter-event times may
provide accurate estimations even when σ and T are taken
close to their respective maximal admissible values σ‹ and
T ‹ according to SA1.

Interestingly, Proposition 3 can be used to derive a new
lower bound as well as an upper bound on τσ,T px0q, which
have their own interest.

Lemma 1: Given m ą 0, for any pσ, T q P Smpσ‹1 , T ‹q
with T ‹ from SA1 and σ‹1 from Proposition 3,
and any x0 P Rn,‹, τσ,T ď τσ,T px0q ď τσ,T

where τσ,T :“ max
!

σ
ςmaxpAcq

´ crσ
2, T

)

, τσ,T :“

max
!

σ
ςminpAcq

` crσ
2, T

)

and cr as in Proposition 3. l

Proof: Let m ą 0, x0 P Rn,‹ and pσ, T q P

Smpσ‹1 , T ‹q. In view of Proposition 3, τσ,T px0q “

max
!

σ |x0|

|Acx0|
`rpx0, σq, T u. On the other hand, |x0|

|Acx0|
ď

maxx10‰0
|x10|
|Acx10|

“ maxx10 s.t. |x10|“1
|x10|
|Acx10|

in view of Propo-

sition 2, and thus |x0|

|Acx0|
ď 1

ςminpAcq
. Consequently, since

rpx0, σq ď crσ
2, τσ,T px0q ď τσ,T with τσ,T defined in

Lemma 1. We follow similar lines to derive the lower bound
inequality on τσ,T px0q in Lemma 1. �

Lemma 1 provides a global lower-bound on the inter-
transmission times when σ is small. Compared to the exact
expression of the (global) minimum inter-event time we find
in [15, Theorem IV.1], which addresses non-time regularized
triggering conditions, i.e., T “ 0, the bound in Lemma 1 is
more conservative a priori but easier to compute. Indeed, we
can simply take it as max

!

σ
ςmaxpAcq

, T
)

as the term crσ
2 is

negligible compared to it for small σ. Lemma 1 also gives a
global upper-bound on the inter-event times, for the first time
as far as we know, which is similarly well-approximated by
max

!

σ
ςminpAcq

, T
)

. Both bounds of Lemma 1 may be very
accurate and even exact, as illustrated in Section VI-A.

Remark 1: To know lower and upper-bounds on the inter-
event times may be precious in practice, as it provides guaran-
tees on the window of time at which the transmissions occur,
which can be used for scheduling purposes when the plant and
the controller communicate over a shared digital network for
instance. l

On the other hand, Proposition 3 and Lemma 1 apply for
x0 P Rn,‹. The case where x0 “ 0 was ignored as some
of the above expressions above are not well-defined in this
case. Now, when x0 “ 0 and T “ 0, τσ,0p0q “ 0, which
means that an infinite number of jumps occurs in finite time
at the origin5. This potential issue is clarified when writing
the overall system using the hybrid formalism [20], see [15]

5We consider Carathéodory solutions in this work as mentioned in Section
I, which leads to a slight inconsistency because the solution initialized at the
origin is trivial, as it cannot flow. We nevertheless show in the following that
we can exclude the origin in the forthcoming analysis.

and [37, Section IV.B] for more details. On other hand, when
T ą 0, τσ,0p0q “ T and this implies that τσ,0px̂ptqq “ T
for all t ě 0 in view of (6)-(7). In other words, a solution
initialized at state p0, 0, 0q at time 0 experiences jumps every T
units of time: we have periodic sampling. These singularities
invite us to discard the case where x0 is equal to 0 in the
sequel. This is fine according to the next proposition, which
ensures the px, x̂q-component of any solution to system (6)-(7)
initialized at px0, x0q with x0 ‰ 0 will never reach p0, 0q. We
can therefore indeed exclusively consider x and x̂ on Rn,‹ in
the rest of this study.

Proposition 4: Given m ą 0, for any pσ, T q P Smpσ‹1 , T ‹q,
any solution px, x̂, δq to system (6)-(7) initialized at px0, x0, 0q
with x0 P Rn,‹ verifies xptq ‰ 0 and x̂ptq ‰ 0 for all t ě 0.
l

Proof: The proof relies on the next claims, whose proofs are
given in the appendix.

Claim 1: Given m ą 0, there exists ρ ą 0 such that for any
pσ, T q P Smpσ‹1 , T ‹q, any solution px, x̂, δq to system (6)-(7)
initialized at px0, x0, 0q with x0 P Rn,‹ verifies |x̂ptq´xptq| ď
σρ|xptq| for all t ě 0. l

Claim 2: Given m ą 0, for any x0 P Rn,‹, the solution x
to 9x “ Ax`BKx0 initialized at x0 satisfies xptq ‰ 0 for all
t P r0, τσ,T px0qs. l

The desired result follows by applying Claim 2 on each
inter-transmission interval, since x is not affected by jumps in
view of (6)-(7) and x̂ptq “ xptiq ‰ 0 for any t P rti, ti`1q and
any i P I. �

Remark 2: We recall that Proposition 4 applies in the
absence of exogenous perturbations; otherwise it may not be
true, see, e.g., [8], [12]. l

We end this section with a continuity-like property with
respect to time of τσ,T along the x-component of solutions to
(6)-(7).

Lemma 2: Given m ą 0, there exist ccont,1, ccont,2 ě 0 such
that for any pσ, T q P Smpσ‹1 , T ‹q with σ‹1 from Proposition
3, any x0 P Rn,‹, the x-component of the solution to
(6)-(7) initialized at px0, x0, 0q verifies for any t, t1 ě 0,
ˇ

ˇτσ,T pxptqq ´ τσ,T pxpt
1qq
ˇ

ˇ ď σccont,1|t´ t
1| ` σ2ccont,2. l

Lemma 2 implies that for close times, τσ,T pxq takes close
values. This result plays a key role in some of the forthcoming
proofs.

Remark 3: In Proposition 3 (and Lemmas 1 and 2) as
well as in the forthcoming statements, the results rely on the
existence of some upper-bound on σ (σ‹1 in Proposition 3).
Estimates of these bounds can be derived from the proofs.
However, these estimates are typically subject to some con-
servatism and may not be easy to compute, which is the reason
why these are not provided explicitly. l

IV. MAIN RESULTS

From now on n “ 2. We distinguish different cases
according to the type of eigenvalues of Ac “ A`BK, which
are denoted by λ1 and λ2, under SA1. Note that the real parts
of λ1 and λ2 are strictly negative, otherwise SA1 would not
hold.
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A. When λ1 and λ2 are complex conjugates and non-real

We write λ1 “ λ ` iβ and λ2 “ λ ´ iβ where λ ă 0 and
β ą 0.

The next theorem explains the oscillatory behaviour of the
inter-event times often observed in simulations, see Section I
for references.

Theorem 1: Given m ą 0, when λ1 and λ2 are non-real,
complex conjugates, there exist σ‹complex P p0, 1s, ĉr ą 0,
ĉcomplex ě 0 such that for any initial condition px0, x0, 0q with
x0 P R2,‹, and any pσ, T q P Smpσ‹complex, T

‹q, the correspond-
ing solution px, x̂, δq to (6)-(7) verifies the next property. For

any t ě 0, there exist θ̂ptq P
„

π

β
´ ĉcomplexσ,

π

β
` ĉcomplexσ



and rcomplexpt, x0, σq such that

τσ,T px̂ptqq “ τσ,T px̂pt` θ̂ptqqq ` rcomplexpt, x0, σq,
(10)

and |rcomplexpt, x0, σq| ď ĉrσ
2. l

Theorem 1 implies that the inter-event time function t ÞÑ
τσ,T px̂ptqq describes an “almost” periodic pattern of period
π
β for any initial condition px0, x0, 0q with x0 P R2,‹, for
small enough σ ą 0 and T ą 0. Note that ĉcomplexσ, which
is the order of σ, is negligible with respect to π

β , as σ is
taken small. Also, rcomplexpt, x0, σq is of the order of σ2 and
is therefore negligible with respect to τσ,T px̂ptq` θ̂ptqq, which
is of the order of σ according to Proposition 3. Theorem 1 thus
explains why periodic patterns can arise when plotting the time
evolution of the inter-event times: because the eigenvalues of
Ac are complex, non-real, conjugates.

The next natural question is whether the values taken by the
inter-event times depend on the value x0. The next theorem
ensures that this is not the case, more precisely that x0 has a
negligible impact of the inter-event times.

Theorem 2: Given m ą 0, when λ1 and λ2 are non-
real, complex conjugates, for any x0, x

1
0 P R2,‹, there exist

cr,1, cr,2 ą 0 such that for any pσ, T q P Smpσ‹complex, T
‹q with

σ‹complex from Theorem 1, the solutions px, x̂, δq and px1, x̂1, δ1q
to (6)-(7) initialized at px0, x0, 0q and px10, x

1
0, 0q, respectively,

are such that for any t P r0, πβ ` ĉcomplexσs, there exists
r̂complexpt, x0, x

1
0, σq such that

τσ,T px̂ptqq “ τσ,T px̂
1pt` cr,1qq ` r̂complexpt, x0, x

1
0, σq, (11)

and |r̂complexpt, x0, x
1
0, σq| ď cr,2σ

2. l

Only the time interval r0, πβ`ĉcomplexσs is considered in The-
orem 2 as this suffices to study the values taken by the inter-
event times over any time interval of length π

β ` ĉcomplexσ in
view of Theorem 1. Hence, Theorem 2 implies that changing
the initial condition x0 essentially leads to a phase shift cr,1
of the inter-event times. As a result, different initial conditions
essentially gives the same inter-event times over any interval
of length of the order of π

β , for small enough σ ą 0 and
T ą 0 as cr,1 is of the order of σ, and thus for all positive
times in view of Theorem 1. As a consequence, the amount
of transmissions is almost the same for any x0 P R2,‹.

We derive from the above results that a single simulation
for a single value of x0 P R2,‹ over π

β units of time can be
run to accurately determine the inter-event times for all initial

conditions and all future times, and thus to estimate the av-
erage inter-transmission time. This average inter-transmission
time is defined as the limit of time t over the number of
triggering instants, which have occurred on the interval r0, ts,
as t goes to infinity, like in [19], [27]. This corresponds, for a
given solution px, x̂, δq to (6)-(7) initialized at px0, x0, 0q with
x0 P R2,‹, to

τ avg
σ,T px0q :“ lim

tÑ8

t

Npt, x0q
, (12)

where the number of triggering instants in the time window
r0, ts for t ě 0 is given by Npt, x0q :“ maxti P Zě0 : t ě tiu
with t0 “ 0 the initial time, and tk “ tk´1 ` τσ,T pxptk´1qq,
for any k P Zą0, the kth inter-event time.

We thus have a rigorous, numerical way to estimate the
amount of transmissions generated by the event-triggered
controller in this case as τ avg

σ,T px0q is well approximated by
π
β

1
Npπ{β,x0q

in view of Theorem 1, and this value is essentially
the same for all initial conditions according to Theorem 2,
which can thus be evaluated by performing a single simulation
as illustrated in Section VI-B.

B. When λ1 and λ2 are real and distinct

We assume without loss of generality that λ1 ą λ2.
Proposition 2 reveals an important feature of the inter-event
time function: it only depends on which line passing through
the origin the state x̂ lies and not on its actual value. To analyse
τσ,T px̂ptqq along the solutions to (6)-(7), we can therefore
study the argument of x̂ptq and then exploit the results of
Section III. The next proposition characterizes the (asymptotic)
behaviour of the argument of x̂ along the solutions to (6)-(7).

Proposition 5: Given m ą 0, when λ1 ą λ2, there exist
cdistinct ą 0 and σ‹distinct P p0, 1s such that for any initial
condition px0, x0, 0q with x0 P R2,‹, and any pσ, T q P
Smpσ‹distinct, T

‹q, the corresponding solution px, x̂, δq to (6)-
(7) verifies one of the following properties.

(i) There exists v1, a non-zero eigenvector
of Ac associated with λ1, such that
lim suptÑ8 | argpx̂ptqq ´ argpv1q| ď cdistinctσ.

(ii) There exists v2, a non-zero eigenvector of Ac associated
with λ2, such that | argpx̂ptqq ´ argpv2q| ď cdistinctσ for
all t ě 0. l

Proposition 5 approximately recovers the properties of the
argument of the solutions for the continuous-time closed-loop
system in the absence of sampling 9xc “ Acxc and xcp0q ‰
0, see [26, Chapter 2.1]. Indeed, when λ1 and λ2 are real
and distinct, the argument of xc converges to argpv1q for v1
some non-zero eigenvector of Ac associated with λ1 when
x0 is not in the eigenspace associated to λ2. Otherwise, it is
constant and equal to argpv2q at all times, with v2 some non-
zero eigenvector of Ac associated with λ2. Similar results are
recovered in Proposition 5 up to a perturbation of the order of
σ due to sampling.

Properties of τσ,T px̂q along solutions to (6)-(7) are estab-
lished in the next theorem.

Theorem 3: Given m ą 0, when λ1 ą λ2, there exist
c1, c2 ą 0 and σ‹distinct P p0, 1s such that for any initial
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condition px0, x0, 0q with x0 P R2,‹, and any pσ, T q P
Smpσ‹distinct, T

‹q, the corresponding solution px, x̂, δq to (6)-
(7) verifies one of the following properties.

(i) lim sup
tÑ8

ˇ

ˇ

ˇ

ˇ

τσ,T px̂ptqq ´max

"

σ

|λ1|
, T

*ˇ

ˇ

ˇ

ˇ

ď c1σ
2.

(ii)
ˇ

ˇ

ˇ

ˇ

τσ,T px̂ptqq ´max

"

σ

|λ2|
, T

*
ˇ

ˇ

ˇ

ˇ

ď c2σ
2 for all t ě 0. l

Theorem 3 means that, when the eigenvalues of Ac are real
and distinct, the inter-event time of system (6)-(7) either tends
to max

!

σ
|λ1|

, T
)

or it takes values close to max
!

σ
|λ2|

, T
)

for
all positive times, up to a perturbation of the order of σ2 in
both cases, which is negligible for small σ ą 0 (and T ą 0)
as, again, the inter-event time is of the order of σ according to
Proposition 3. As a result, τ avg

σ,T in (12) is well approximated

either by max
!

σ
|λ1|

, T
)

or max
!

σ
|λ2|

, T
)

.

C. When λ1 and λ2 are real, equal and of geometric
multiplicity two

The next theorem follows from Proposition 3 and the
properties of λ1 and λ2. Note that in this case Ac “ λ1I.

Theorem 4: Given m ą 0, when λ1 “ λ2 and their geomet-
ric multiplicity is two, there exist cr ą 0 and σ‹1 P p0, 1s such
that for any initial condition px0, x0, 0q with x0 P R2,‹, and
any pσ, T q P Smpσ‹1 , T ‹q, the corresponding solution px, x̂, δq

to (6)-(7) verifies τσ,T px̂ptqq “ max

"

σ

|λ1|
` rpx̂ptq, σq, T

*

with |rpx̂ptq, σq| ď crσ
2. l

Proof: Let m ą 0, x0 P R2,‹, pσ, T q P Smpσ‹1 , T ‹q,
px, x̂, δq be the solution to (6)-(7) initialized at px0, x0, 0q,
and t ě 0. In view of Proposition 3, τσ,T px̂ptqq “

max
!

σ |x̂ptq|
|Acx̂ptq|

` rpx̂ptq, σq, T
)

. Since λ1 “ λ2 and their
geometric multiplicity is two, the associated eigenspace is
R2, consequently Acx̂ptq “ λ1x̂ptq. Hence, τσ,T px̂ptqq “
max

!

σ
|λ1|

` rpx̂ptq, σq, T
)

, which corresponds to the desired
result as r satisfies the properties stated in Theorem 4 in view
of Proposition 3. �

Theorem 4 ensures that, for any initial condition px0, x0, 0q
with x0 P R2,‹, the inter-event times are close to

max

"

σ

|λ1|
, T

*

for all positive times when λ1 “ λ2 and their

geometric multiplicity is two for small σ ą 0 and T ą 0.
Hence, the considered event-triggering rule essentially leads
to periodic sampling, when σ is small, and τ avg

σ,T in (12) is well

approximated by max
!

σ
|λ1|

, T
)

for all x0 P R2,‹. The proof
of Theorem 4 does not exploit the fact that the state x is of
dimension two: the results apply to systems of any dimension.
Hence, when x is of dimension n P Zą0 and the eigenvalues
λ1, . . . , λn of Ac are equal and of geometric multiplicity n,
A ´ BK “ λ1I and the same conclusions as in Theorem 4
apply. Also, function r and constants cr, σ‹1 are the same as in
Proposition 3, which explains why the same notation is used.

When the geometric multiplicity of λ1 “ λ2 is one, the
arguments used in the proof of Theorem 4 no longer apply
and significant technical difficulties arise, as explained in more
detail next.

V. DISCUSSIONS

A. When λ1 and λ2 are real, equal and of geometric
multiplicity one

The results of Section IV eludes the case where λ1 “ λ2
and their geometric multiplicity is one. The reason is that the
argument of x̂ along the solutions to (6)-(7) only exhibits
an attractivity property in this case. As a result, the proof
techniques used for the other cases, which rely on robustness
arguments, do not apply. To see this, consider a non-zero

solution z to 9z “ Jz with J :“

ˆ

λ1 1
0 λ1

˙

like in the

proof of Proposition 5, see Section H. The argument of z
either converges to 0 or to π, see [26, Chapter 2.1]. This
property is not an asymptotic stability property, as in the case
where λ1 ‰ λ2, see the proof of Proposition 5, but only a
global attractivity property. If z2p0q ą 0 is very small and
z1p0q ą 0 for instance, then the argument of the corresponding
solution will monotonically converge to zero. However, if we
change z2p0q so that it is very small but negative, the argument
will converge to π. As a result, a small perturbation may
destroy this convergence property, which explains the difficulty
encountered in this case.

We conjecture that the inter-event times approximately
converge to max

!

σ
|λ1|

, T
)

in this case, for any x0 P R2,‹,
and pσ, T q P Smpσ‹1 , T ‹q, consistently with Theorem 3, and
as also seen in simulations in Section VI-A.

B. Nonlinear systems

The results of Section IV apply mutatis mutandis to non-
linear event-triggered control systems, whose linearization
around the origin is given by the considered linear model and
triggering rules. More precisely, the analytical guarantees of
Section IV apply asymptotically in time for such nonlinear
systems assuming its origin is globally asymptotically stable
and its linearization around the origin verifies SA1 and the
considered pairs pσ, T q belong to Smpσ‹, T ‹q for some given
m ą 0. In particular, the properties of the average inter-
transmission times (12) presented in Section IV do apply in
this case, as this quantity is related to the asymptotic behaviour
of the inter-event times. An illustration is provided in Section
VI-B.

C. Other system dimension

When the system is scalar, it is commonly known that
the triggering rule in (7) leads to periodic sampling due to
homogeneity (see Proposition 2). As we could not find this
result formally stated in the literature, we formalize it in the
next proposition.

Proposition 6: When n “ 1, for any σ P p0, σ‹q, T P

r0, T ‹q, and x0 P R‹ τσ,T px0q “ max
!

T, 1
A ln

´ A
1`σ`BK

A`BK

¯)

when A ‰ 0, and τσ,T px0q “ max
!

T, σ
|BK| p1` σq

)

when
A “ 0. l

Note that pσ, T q does not need to belong to Smpσ‹, T ‹q
for some given m ą 0 in Proposition 6. When the system
dimension is larger than 2, the situation becomes much more
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complicated and the proofs in Section IV need to undergo
major changes, unless Ac has a single eigenvalue of geometric
multiplicity equal to the state dimension, in which case The-
orem 4 applies as already mentioned. Still, we expect the key
properties of the inter-event times established in Section III,
which apply to systems of any dimension, to play an important
role in future extensions of the present results.

VI. NUMERICAL EXAMPLES

A. Linear example in [42, Section V]
To illustrate the obtained theoretical results, we consider the

same linear system as in [42, Section V], namely

9x “

ˆ

0 1
´2 3

˙

x`

ˆ

0
1

˙

. (13)

The matrix K is designed such that the corresponding ma-
trix A ` BK is Hurwitz, and three cases are considered
depending on the eigenvalues λ1, λ2 of A ` BK being
(i) non-real, complex conjugates, (ii) real and distinct, (iii)
real and equal. To design the triggering rule, we apply
Proposition 1 in [1]. As a result, SA1 is satisfied6 with

σ‹ “
1
?
µ

b

minλmin

`

AJ2 A2 ` pε1 ` ε2qI
˘

and7 T ‹ “

1

Lr
arctanprq, where A2 :“ ´Ac, L :“ |B2|, r :“

c

µ

L2
´ 1

and ε1, ε2, µ ą 0 are obtained by solving [1, (16)] with
A1 :“ Ac, B1 “ BK, B2 “ ´BK and Cp “ I.

For each of these cases, we have studied numerically the
impact of σ, T and of the initial conditions on the inter-event
times8. We first present a comparison of the estimated lower
and upper-bounds on the inter-event times established in
Lemma 1 with the actual minimum and maximum values of
the inter-event times obtained in simulations, which we denote
τmin and τmax, respectively. The estimated bounds are taken as
τ̂σ,T :“ max

!

σ
ςmaxpAcq

, T
)

and τ̂σ,T :“ max
!

σ
ςminpAcq

, T
)

,
respectively, as explained after Lemma 1. The values of τmin

and τmax were computed in simulations by taking 10 initial
conditions on the unit circle and extracting the minimum and
the maximum values of the inter-event times over the 10 runs.
The results are summarized in Table I. We observe that both
the estimated lower and the upper bounds are tight, actually
exact for the former, even when σ is close to the maximum
allowed value σ‹, which is specified in the following for each
case. We now study the results of Section IV on simulations
for each case.

Case (i): K “ r´3 ´ 7s, λ1 “ ´2` j and λ2 “ ´2´ j.
Then σ‹ “ 0.0844 and T ‹ “ 0.1153. We have selected
different values of σ, namely σ P t0.01, 0.04, 0.084u,
T “

σ

2
so that pσ, T q P Smpσ‹, T ‹q with m “ 1{2, with

initial condition px0, x0, 0q and x0 “ p1, 1q. The obtained

6Strictly speaking, Proposition 1 in [1] ensures that tpx, x̂, δq : x “ x̂ “
0u is uniformly globally asymptotically stable, but this property is actually
exponential due to the linearity of the flow dynamics.

7In this example, γ ą L in all cases with the notation of [1], which
explains the expression of T ‹, see [1, (11)].

8In all the cases T ą 0, simulation results for T “ 0 are presented in
[36, Section V].

Fig. 1. Inter-event times for different values of σ for the example of
Section VI-A when pλ1, λ2q “ p´2 ` j,´2 ´ jq: 0.0845 (blue), 0.04
(green), 0.01 (yellow). The dotted lines represent the value of T for each
selection of σ. The mismatch is the error percentage between π and the
observed period.

Fig. 2. Inter-event times for the example of Section VI-A for different
values of x0 when pλ1, λ2q “ p´2 ` j,´2 ´ jq : p1, 1q (yellow),
p1,´2q (green), p1,´1q (blue).

inter-event times are depicted in Figure 1. We observe a
periodic-like behaviour in each case and that the “pseudo”
period is getting closer to π

β “ π as σ decreases, in agreement
with Theorem 1.

We have then selected σ “ 0.03 and studied the inter-
event times for different initial conditions px0, x0q with x0 P
tp1, 1q, p1,´2q, p1,´1qu, see Figure 2. The inter-event times
describe similar though slightly different patterns of very
similar periods, in agreement with Theorem 2.
Case (ii): K “ r0 ´ 6s, λ1 “ ´1 and λ2 “ ´2. Then σ‹ “
0.0761 and T ‹ “ 0.1486. Figure 3 shows the inter-event
times for σ P t0.01, 0.03, 0.076u and T “

σ

2
, and the

initial condition px0, x0, 0q with x0 “ p1, 1q. According to
Theorem 3, the inter-event times converge to a value close to
max tσ, T u “ σ as the time tends to infinity or is close to
max

 

σ
2 , T

(

“ σ
2 for all positive times. We see that the inter-

event times indeed converge to a constant close to σ in all the
cases considered in Figure 3, and that the mismatch between
the limit value and σ is getting smaller as we decrease σ,
which is in agreement with the conclusions of Theorem 3.

We might wonder whether there are solutions for which the
inter-event times are close to

σ

2
for all positive times, which

is allowed by Item (ii) of Theorem 3. We have not been able
to find such solutions for this example, even when taking x0
in the eigenspace associated to λ2.
Case (iii): K “ r´2 ´ 7s, λ1 “ λ2 “ ´2. Then σ‹ “ 0.0818
and T ‹ “ 0.1228. Note that this case is not covered by our
analysis as the geometric multiplicity of the double eigenvalue
is one, see Section V-A. We have considered the initial
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pλ1, λ2q “ p´2` j,´2´ jq pλ1, λ2q “ p´1,´2q pλ1, λ2q “ p´2,´2q

σ 0.01 0.04 0.084 0.01 0.03 0.076 0.01 0.04 0.081

τ̂σ,T T T T T T T T T T
τmin T T T T T T T T T

τ̂σ,T 0.0129 0.0515 0.1081 0.0185 0.0555 0.1407 0.0143 0.0570 0.1155
τmax 0.0128 0.0504 0.1033 0.0184 0.0545 0.1340 0.0142 0.0556 0.1095

TABLE I
GUARANTEED AND ESTIMATED MINIMUM AND MAXIMUM VALUES OF THE INTER-EVENT TIMES FOR THE EXAMPLE OF SECTION VI-A.

Fig. 3. Inter-event times (solid lines) and value of
σ

|λ1|
(dashed line)

for the example of Section VI-A when pλ1, λ2q “ p´1,´2q for different
values of σ : 0.076 (blue), 0.03 (green), 0.01 (yellow). The dotted lines
represent the value of T for each selection of σ. The mismatch is the
error percentage between the limit value of the inter-event times and
max

!

σ
|λ1|

, T
)

Fig. 4. Inter-event times for different values of σ when λ1 “ λ2 “ ´2:
0.085 (blue), 0.04 (green), 0.01 (yellow). The dotted lines represent
the value of T for each selection of σ. The mismatch corresponds to
the error percentage between max

!

σ
|λ1|

, T
)

and the limit value of the
inter-event times.

condition px0, x0, 0q and x0 “ p1, 1q and different values of
σ, namely σ P t0.01, 0.04, 0.081u, T “

σ

3
, see Figure 4. We

observe that the inter-event times converge in all cases to a
constant, which is in a neighborhood of σ as conjectured in
Section V-A, and that the mismatch reduces with σ like in
case (ii).

We have also varied the initial conditions for σ “ 0.01.
In particular, we have taken x0 “ p1,´2q, which is in the
eigenspace associated with λ1, and x0 “ p1,´1.9q and x0 “
p1,´2.1q, which are, loosely speaking, on both sides of the
eigenspace of λ1. Again, in all cases the inter-event times
converge to a constant close to σ, see Figure 5.

B. Nonlinear single-link robot arm in [1, Example 3]
We revisit [1, Example 3], which is nonlinear, in the light

of Sections IV and V-B. We thus consider a single-link robot
arm modeled as 9x “ Ax` φpxq ` Bu where x “ px1, x2q P

Fig. 5. Inter-event times for the example of Section VI-A for different
values of x0 when λ1 “ λ2 “ ´2: p1,´2q (blue), p1,´2.1q
(green), p1,´1.9q (yellow). The dashed line corresponds to the value
max

!

σ
|λ1|

, T
)

, and the dotted line to T .

R2, x1 is the angle, x2 is the rotational velocity, u P R is

the input torque, A “
ˆ

0 1
0 0

˙

, B “

ˆ

0
1

˙

and φpxq “

p0,´ sinpx1qq. The designed state-feedback controller is given
by u “ sinpx1q`Kx where K “ p´2 ´2q. We synthesize the
triggering rule as in [1, Section VI], which can be written in
the form of (7) in view [1, Example 3]. As a consequence SA1
is satisfied in view of [1, Corollary 1] with σ‹ “ 0.1929 and
T ‹ “ 0.0898; note that the stability property is exponential
for the considered system.

The state matrix of the linearized continuous-time closed-
loop model around the origin is given by A ` BK, whose
eigenvalues are λ1 “ ´1 ` j and λ2 “ ´1 ´ j. We have
selected σ “ 0.19 and T “ 0.089. We have performed
simulations for three initial conditions of the form px0, x0, 0q
with x0 P tp10, 0q, p10, 10q, p0, 10qu. The obtained inter-
transmission times are depicted in Figure 6. We observe that
these all exhibit a periodic-like behaviour and that the values
taken over a “period” are very similar for the different initial
conditions in agreement with Section IV-A. In particular, we
obtain for the estimated values of τ avg

σ,T in (12) 0.1208, 0.1206,
0.1199 for x0 “ p10, 0q, p10, 10q and p0, 10q, respectively.
These values are similar, in agreement with the statements
in Section V-B. The observed period in simulation is around
2.9 in all cases, while the theory predicts π: we thus have
a mismatch of only 7.7%. Note that these results have been
obtained for σ and T close to their maximum value σ‹ and
T ‹, respectively, even though the theory has been developed
for small σ and T compared to 1.

VII. CONCLUSIONS

We have analysed the inter-event times for two-dimensional
linear event-triggered control based on the relative threshold
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Fig. 6. Inter-event times for the example of Section VI-B for different
values of x0: p10, 10q (blue), p10, 0q (green), p0, 10q (yellow). The
dotted line corresponds to T .

technique of [42] with and without time regularization for
small parameter σ. We have shown that these times (approx-
imately): (i) describe a periodic pattern, which is essentially
independent of the considered initial condition, when these
eigenvalues are non-real, complex conjugates, and an estima-
tion of the period is provided; (ii) converge to or lie for all
positive times in a neighborhood of given constants when the
eigenvalues of the state matrix of the closed-loop system in
absence of sampling are real and distinct, or real, equal and
of geometric multiplicity two.

It would be interesting, in future work, to adapt and extend
the presented methodology to address other classes of control
systems and triggering rules, and to go beyond the two-
dimensional case.
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APPENDIX

A. Technical results
We first state the next claim, which essentially says that,

given m ą 0, τσ,T is of the order of σ when pσ, T q P
Smpσ‹1 , T ‹q, and which plays an instrumental role in the proof
of Proposition 3.

Claim 3: Given m ą 0, there exists c2 P Rě0 such that for
any x0 P Sn, and any pσ, T q P Smpσ‹1 , T ‹q, τσ,T px0q ě T
implies that τσ,T px0q ď c2σ. l

Proof: Let m ą 0, x0 P Sn and pσ, T q P Smpσ‹1 , T ‹q. We first
consider the case where τσ,T px0q ą T . As a consequence,
|xpT q´x0| ă σ|xpT q|, otherwise we would have τσ,T px0q “
T in view of (7), which is excluded here. On the other hand,
by the triangle inequality, |xptq| ď |x0| ` |xptq ´ x0|. Thus,
as |x0| “ 1, |xptq ´ x0| ă σ|xptq| ď σ|x0| ` σ|xptq ´ x0| “
σ ` σ|xptq ´ x0|, from which we deduce |xptq ´ x0| ď

σ
1´σ

for t P rT, τσ,T px0qs since σ P p0, 1q. Therefore, τσ,T px0q
is less than T plus the time it takes for |xptq ´ x0| to grow
from |xpT q ´ x0| to

σ

1´ σ
, which we denote rτσ,T px0q. We

now study rτσ,T px0q. Let e :“ x ´ x0. In view of (6), 9e “
Ax ` BKx0 “ Apx ´ x0q ` Ax0 ` BKx0 “ Ae ` Acx0
on rT, τσ,T px0qq. By integration, for t P rT, τσ,T px0qq, eptq “

epT q`

ż t

T

Aepsqds`

ż t

T

Acx0ds “ epT q`

ż t

T

Aepsqds`pt´

T qAcx0. We deduce from the last equality and the fact that
|a´ b| ě |a| ´ |b| for any a, b P Rn that

|eptq| ě pt´ T q|Acx0| ´
ˇ

ˇ

ˇ
epT q `

şt

T
Aepsqds

ˇ

ˇ

ˇ

ě pt´ T q|Acx0| ´ |epT q| ´
şt

T
|A||epsq|ds

(14)

Noting that |eptq| ď
σ

1´ σ
for t P rT, T ` rτσ,T px0qs, we

derive that

|eptq| ě pt´ T q|Acx0| ´
σ

1´σ ´
şt

T
|A| σ

1´σds

“ pt´ T q
´

|Acx0| ´ |A|
σ

1´σ

¯

´ σ
1´σ .

(15)

Let c :“ min t|Acx
1
0| : |x10| “ 1u. Since Ac is invertible

(being Hurwitz), c ą 0. We derive from (15) |eptq| ě

pt ´ T q

ˆ

c´ |A|
σ

1´ σ

˙

´
σ

1´ σ
. For σ‹1 sufficiently small,

c´ |A|
σ

1´ σ
ě

1

2
c as σ P p0, σ‹1q. Thus,

|eptq| ě pt´ T q 12c´
σ

1´σ . (16)

The lower-bound in (16) is equal to
σ

1´ σ
when t ´ T “

4c´1 σ

1´ σ
and this quantity upper-bounds rτσ,T px0q in view

of (16). Hence, rτσ,T px0q ď 4c´1 σ

1´ σ
. We deduce that

τσ,T px0q ď T `4c´1 σ

1´ σ
, hence, since T ď mσ as pσ, T q P

Smpσ‹1 , T ‹q, there exists c2 P Rě0 such that τσ,T px0q ď c2σ
for σ‹1 sufficiently small, as σ P p0, σ‹1q.

When τσ,T px0q “ T , τσ,T px0q ď mσ as pσ, T q P

Smpσ‹1 , T ‹q, and the desired result holds with c2 “ m. �
The next lemma will also be used in the sequel.
Lemma 3: For any a, b, c P Rě0, |maxta, cu ´

maxtb, cu| ď |a´ b|. l

Proof: Let a, b, c P Rě0. We distinguish several cases. If
maxta, cu “ c and maxtb, cu “ c, then maxta, cu ´
maxtb, cu “ 0. If maxta, cu “ a and maxtb, cu “ b, then
|maxta, cu ´ maxtb, cu| “ |a ´ b|. If maxta, cu “ a and
maxtb, cu “ c, then |maxta, cu´maxtb, cu| “ a´c ď a´b.
If maxta, cu “ c and maxtb, cu “ b, then |maxta, cu ´
maxtb, cu| “ b´ c ď b´ a. �

B. Proof of Proposition 3
Let m ą 0, x0 P Rn,‹ and m ą 0. In view of Proposition

2, it suffices to prove the desired result for |x0| “ 1. Hence,
consider x0 P Rn with |x0| “ 1, i.e., x0 P Sn, σ P p0, σ‹1q
with σ‹1 P p0, 1s specified in the following and T P r0, T ‹q.
We start by proving the result for pσ, T q P Smpσ‹1 , T ‹q.
The Taylor expansion of the solution t ÞÑ xptq to 9x “

Ax ` BKx0 initialized at x0 at t “ 0 and evaluated at t “
τσ,T px0q is xpτσ,T px0qq “ x0 ` τσ,T px0q pAx0 `BKx0q `
τσ,T px0qrxpx0, σq, where rx : Rn ˆ p0, 1q Ñ R is such that9

|rxpx0, σq| ď cxτσ,T px0q with cx ą 0 independent of x0 and
σ. Since Ac “ A`BK,

xpτσ,T px0qq“x0 ` τσ,T px0qAcx0 ` τσ,T px0qrxpx0, σq. (17)

9The existence of such a function rx follows from the expression of
the remainder of the Taylor expansion of xpτσ,T px0qq, which can be upper-
bounded by a uniform constant cx times τσ,T px0q as |x0| “ 1 and |xptq| ď
d1 for any t ě 0 in view of SA1 and the fact that |x0| “ 1.
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Consider the case where τσ,T px0q ą T . Hence, by definition of
τσ,T px0q, |xpτσ,T px0qq´x0| “ σ|xpτσ,T px0qq|. Consequently,
in view of (17),

|τσ,T px0q pAcx0 ` rxpx0, σqq| “
σ |x0 ` τσ,T px0qAcx0 ` τσ,T px0qrxpx0, σq| .

(18)
We have |Acx0 ` rxpx0, σq| ‰ 0. Indeed, otherwise
we would have from (18) that 0 “ σ|x0|, and
thus x0 “ 0, which is excluded here as x0 P Sn.
Hence, in view of (18), we can write τσ,T px0q “

σ

ˇ

ˇ

ˇ

ˇ

x0
|Acx0 ` rxpx0, σq|

` τσ,T px0q
Acx0 ` rxpx0, σq

|Acx0 ` rxpx0, σq|

ˇ

ˇ

ˇ

ˇ

.

This implies that
$

’

’

&

’

’

%

τσ,T px0q ď σ
|x0|

|Acx0 ` rxpx0, σq|
` στσ,T px0q

τσ,T px0q ě σ
|x0|

|Acx0 ` rxpx0, σq|
´ στσ,T px0q.

(19)
Since σ P p0, 1q as σ P p0, σ‹1q and σ‹1 ď 1, these inequalities
are equivalent to10

$

’

’

&

’

’

%

τσ,T px0q ď
σ

1´ σ

|x0|

|Acx0 ` rxpx0, σq|

τσ,T px0q ě
σ

1` σ

|x0|

|Acx0 ` rxpx0, σq|
.

(20)

To obtain the desired result, we are going to exploit the fact
that τσ,T px0q is of the order of σ. This is not obvious from (20)
because of the term rxpx0, σq, which depends on τσ,T px0q, in
the denominator of the right hand-sides.

Returning to (20), we temporarily concentrate on the first
inequality, which gives

|Acx0 ` rxpx0, σq| τσ,T px0q ď
σ

1´ σ
|x0|. (21)

As p|Acx0| ´ |rxpx0, σq|q τσ,T px0q ď

ˇ

ˇ

ˇ
Acx0 ` rxpx0, σq

ˇ

ˇ

ˇ

τσ,T px0q,

p|Acx0| ´ |rxpx0, σq|q τσ,T px0q ď
σ

1´ σ
|x0|. (22)

Since |rxpx0, σq| ď cxτσpx0q and τσ,T px0q ď c2σ according
to Claim 3, (22) implies that

|Acx0|τσ,T px0q ´ cxc
2
2σ

2 ď
σ

1´ σ
|x0|

|Acx0|τσ,T px0q ď
σ

1´ σ
|x0| ` cxc

2
2σ

2.

(23)
In view of the Taylor expansion of σ ÞÑ σ

1´σ around the
origin and since |Acx0| ‰ 0 as x0 ‰ 0 and Ac is invertible,
we deduce from the above inequality that, for σ‹1 sufficiently
small as σ P p0, σ‹1q,

τσ,T px0q ď σ
|x0|

|Acx0|
` cσ2, (24)

with c ě 0 independent of σ and x0.

10We could replace |x0| by 1 in (20), but we do not do so to obtain a,
what we believe, simpler and clearer expression in Proposition 3.

By following similar lines, we derive from the second
inequality in (20) that

τσ,T px0q ě σ
|x0|

|Acx0|
´ cσ2, (25)

with c ě 0 independent of σ and x0. Consequently, in

view of (24) and (25), τσ,T px0q “ σ
|x0|

|Acx0|
` rpx0, σq with

|rpx0, σq| ď crσ
2 and cr ą 0 independent of x0 and σ. Since

τσ,T px0q ą T , τσ,T px0q “ max

"

σ
|x0|

|Acx0|
` rpx0, σq, T

*

.

So far, we have been addressing the case where τσ,T px0q ą
T . Note that this case covers the scenario where T “ 0, as
τσ,T px0q ą 0 “ T according to [42]. We now focus on the
case where τσ,T px0q “ T and |xpT q ´ x0| ě σ|xpT q|. Let
t‹ ď T be the first time instant in r0, T s such that |xpt‹q ´
x0| “ σ|xpt‹q|. We derive from the above developments that

t‹ “ σ
|x0|

|Acx0|
` rpx0, σq for all σ P p0, σ‹1q and small enough

σ‹1 . Since t‹ ď T , σ
|x0|

|Acx0|
` rpx0, σq ď T and τσ,T px0q “

max

"

σ
|x0|

|Acx0|
` rpx0, σq, T

*

, which completes the proof of

Proposition 3.
For general pairs pσ, T q P p0, σ‹

1

1 qˆr0, T
‹q (not necessarily

in Smpσ‹1 , T ‹q), either τσ,T px0q “ T , or, in view of the the
proof of Claim 3, τσ,T px0q P pT, T ` c´1 σ

1´ σ
q. Therefore,

τσ,T px0q “ T ` r1px0, σq for some r1 : Rn ˆ p0, 1q Ñ R
satisfying |r1px0, σq| ď c1rσ with c1r ą 0 independent of x0
and σ, for small enough σ‹

1

1 .

C. Proof of Claim 1
Let m ą 0, x0 P Rn,‹, pσ, T q P Smpσ‹1 , T ‹q and t ě

0. We either have |x̂ptq ´ xptq| ď σ|xptq| or δptq ď T in
view of (7). When |x̂ptq ´ xptq| ď σ|xptq|, the desired result
holds. On the other hand, by following similar arguments as
in the proof of [42, Theorem III.1] (p. 1682), we derive that11

|x̂ptq´xptq| ď Lt
1´Lt |xptq| where L :“ max t|Ac|, |BK|u. The

map s ÞÑ Ls
1´Ls is increasing and well-defined on r0, T s Ă

r0, 1
L q for σ‹1 sufficiently small, as σ P p0, σ‹1q, L ą 0 as Ac

is Hurwitz and is independent of σ, and T of the order of

σ as pσ, T q P Smpσ‹1 , T ‹q so that T ă
1

L
. Hence, as σ P

p0, σ‹1q, there exists ρ1 ą 0 independent of σ such that |x̂ptq´

xptq| ď
LT

1´ LT
|xptq| ď

Lmσ

1´ Lmσ
|xptq| ď ρ1σ|xptq|. The

desired result holds by taking ρ :“ maxt1, ρ1u.

D. Proof of Claim 2
Let m ą 0. We proceed by contradiction and suppose that

there exist x0 P Rn,‹ and t̄ P r0, τσ,T px0qs such that the
solution x to 9x “ Ax ` BKx0 initialized at x0 satisfies
xpt̄q “ 0. In view of Claim 1, |x0 ´ xpt̄q| ď ρσ|xpt̄q| “ 0
since t̄ P r0, τσ,T px0qs. Hence, xpt̄q “ x0, but xpt̄q “ 0 while
x0 ‰ 0. We have obtained a contradiction, which proves the
claim.

11There is a typo in the expression of φpτ, 0q in [42, p.1682], it should
be φpτ, 0q “ τL

1´τL
and not ´ τL

1´τL
.
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E. Proof of Lemma 2
Let m ą 0, pσ, T q P Smpσ‹1 , T ‹q with σ‹1

from Proposition 3, x0 P Rn,‹, and px, x̂, δq be
the solution to (6)-(7) initialized at px0, x0, 0q. Let
t, t1 ě 0, according to Proposition 3, τσ,T pxptqq ´

τσ,T pxpt
1qq “ max

"

σ
|xptq|

|Acxptq|
` rpxptqq, σq, T

*

´

max

"

σ
|xpt1q|

|Acxpt1q|
` rpxpt1q, σq, T

*

. In view of the

properties of r stated in Proposition 3 and using Lemma
3 given in Appendix A with a “ σ |xptq|

|Acxptq|
` rpxptq, σq,

b “ σ |xpt1q|
|Acxpt1q|

` rpxpt1q and c “ T , we derive

|τσ,T pxptqq ´ τσ,T pxpt
1qq| ď σ

ˇ

ˇ

ˇ

ˇ

|xptq|

|Acxptq|
´

|xpt1q|

|Acxpt1q|

ˇ

ˇ

ˇ

ˇ

`2crσ
2,

(26)
where cr ą 0. The function t ÞÑ |xptq|

|Acxptq|
is continuously dif-

ferentiable on Rě0 as x never cancels according to Proposition
4 and Ac is invertible, being Hurwitz. Hence,

d

dt

|xptq|

|Acxptq|
“

9xptqJxptq
|xptq| |Acxptq| ´ |xptq|

9xptqJAJc Acxptq
|Acxptq|

|Acxptq|2
(27)

Since Ac is invertible, there exist $1, $2 ą 0 independent of
t, x0, σ such that $1|xptq| ď |Acxptq| ď $2|xptq|. Therefore,
ˇ

ˇ

ˇ

ˇ

d

dt

|xptq|

|Acxptq|

ˇ

ˇ

ˇ

ˇ

ď

| 9xptq||xptq|
|xptq| $2|xptq| ` |xptq|

| 9xptq||AJc Ac||xptq|
$1|xptq|

$2
1|xptq|

2

“
$2| 9xptq|

$2
1|xptq|

`
|AJc Ac|| 9xptq|

$3
1|xptq|

.

(28)
We have 9xptq “ Acxptq`BKpxptiq´xptqq and |xptiq´xptq| ď
σρ|xptq| in view of Claim 1 where ti is such that t P rti, ti`1q,
hence | 9xptq| ď p|Ac|`ρσ|BK|q|xptq| ď p|Ac|`ρ|BK|q|xptq|
as σ P p0, 1q. Consequently,

ˇ

ˇ

ˇ

ˇ

d

dt

|xptq|

|Acxptq|

ˇ

ˇ

ˇ

ˇ

ď

ˆ

$2

$2
1

`
|AJc Ac|

$3
1

˙

p|Ac| ` ρ|BK|q

“: ccont,1.
(29)

Notice that ccont,1 is independent of t, x0 and σ. This implies,
by application of the mean value theorem, that, in view of
(26),

ˇ

ˇτσ,T pxptqq ´ τσ,T pxpt
1qq
ˇ

ˇ ď σccont,1|t ´ t1| ` ccont,2σ
2

with ccont,2 :“ 2ĉr.

F. Proof of Theorem 1
We first derive properties of τσ,T pxq, which differs from the

inter-event time function τσ,T px̂q, along solutions to (6)-(7).
We then exploit these properties to derive the desired result
on τσ,T px̂q in Theorem 1.

Proposition 7: Given m ą 0, when λ1 and λ2 are non-real,
complex conjugates, there exist ccomplex ą 0 and σ‹complex P

p0, 1s such that for any initial condition px0, x0, 0q with x0 P
R2,‹, and any pσ, T q P Smpσ‹complex, T

‹q, the corresponding
solution px, x̂, δq to (6)-(7) verifies the next property. For any

t ě 0, there exists θptq P
„

π

β
´ ccomplexσ,

π

β
` ccomplexσ



such

that τσ,T pxptqq “ τσ,T pxpt` θptqqq. l

The proof of Proposition 7 is given in Appendix K.
Let m ą 0, x0 P R2,‹, pσ, T q P Smpσ‹complex, T

‹q and
px, x̂, δq be the solution to (6)-(7) initialized at px0, x0, 0q, and
t ě 0. There exists i P Zě0 such that t P rti, ti`1q. Hence,
x̂ptq “ xptiq in view of (6)-(7) and

τσ,T px̂ptqq “ τσ,T pxptiqq. (30)

According to Proposition 7, there exists θptiq P
„

π

β
´ ccomplexσ,

π

β
` ccomplexσ



such that τσpxptiqq “

τσpxptiq ` θptiqq. Therefore,

τσ,T px̂ptqq “ τσ,T pxpti ` θptiqqq. (31)

Let θ̂ptq :“ ti´ t` θptiq so that t` θ̂ptq “ ti` θptiq and thus

τσ,T px̂ptqq “ τσ,T pxpt` θ̂ptqqq. (32)

By adding and subtracting τσ,T px̂pt` θ̂ptqqq, we obtain

τσ,T px̂ptqq “ τσ,T px̂pt` θ̂ptqqq ` τσ,T pxpt` θ̂ptqqq

´τσ,T px̂pt` θ̂ptqqq.
(33)

We note that θ̂ptq ď θptiq as ti ď t. Hence, θ̂ptq ď
π

β
`

ccomplexσ as θptiq ď
π

β
` ccomplexσ. On the other hand, as

t ď ti`1 and θptiq ě
π

β
´ ccomplexσ, θ̂ptq ě ti ´ ti`1 `

π

β
´

ccomplexσ “ ´τσ,T pxptiqq`
π

β
´ccomplexσ. According to Propo-

sition 3, τσ,T pxptiqq “ max

"

σ
|xptiq|

|Acxptiq|
` rpx0, σq, T

*

ď

maxtυ,muσ ` crσ
2 where υ :“ max

zPS2

|z|

|Acz|
ą 0, as

|rpx0, σq| ď crσ
2. Since σ ă 1, maxtυ,muσ ` crσ

2 ď

c̃complexσ with c̃complex “ maxtυ,mu ` cr ą 0. As a result,
θ̂ptq ě

π

β
´ccomplexσ´c̃complexσ. Denoting ĉcomplex :“ ccomplex`

c̃complex, we have proved that

θ̂ptq P

„

π

β
´ ĉcomplexσ,

π

β
` ĉcomplexσ



. (34)

Returning to (33), we now concentrate on the term
τσ,T pxpt ` θptqqq ´ τσ,T px̂pt ` θptqqq. Denoting i1 the el-
ement of Zě0 such that t ` θ̂ptq P rti1 , ti1`1q, we have
τσ,T pxpt ` θptqqq ´ τσ,T px̂pt ` θptqqq “ τσ,T pxpt ` θptqqq ´
τσ,T pxpti1qq. By application of Lemma 2, we derive that
|τσ,T pxpt` θptqqq ´ τσ,T pxpti1qq| ď σccont,1|t ` θ̂ptq ´ t1i| `
σ2ccont,2. By definition of θ̂ptq, t` θ̂ptq ´ t1i “ ti ` θptiq ´ ti1

and, since ti ` θptiq ď ti1`1, |t ` θ̂ptq ´ t1i| ď ti1`1 ´ ti1 “
τσ,T pxpt

1
iqq. By following similar lines as above, we derive

that τσpxpti1qq ď υσ with υ ą 0 independent of t, σ, x0. As a
result,

|τσ,T pxpt` θptqqq ´ τσ,T px̂pt` θptqq|ďσ
2ccont,1υ ` σ

2ccont,2
“ĉrσ

2,
(35)

with ĉr :“ ccont,1υ ` ccont,2. Therefore τσ,T pxpt ` θptqqq ´
τσ,T px̂pt` θptqq “ rcomplexpt, x0, σq with |rcomplexpt, x0, σq| ď
ĉrσ

2. As a consequence, in view of (33), τσ,T px̂ptqq “
τσ,T px̂pt`θ̂ptqqq`rcomplexpt, x0, σq. The last equation together
with (34) ensures that the desired result holds. �
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G. Proof of Theorem 2

Let m ą 0, x0, x10 P R2,‹ and pσ, T q P Smpσ‹complex, T
‹q.

We denote by px, x̂, δq and px1, x̂1, δ1q the solutions to (6)-
(7) initialized at px0, x0, 0q and px10, x

1
0, 0q, respectively. We

define for any t ě 0, zptq “M´1xptq and z1ptq “M´1x1ptq
as in the proof of Proposition 7 given in Appendix K. Let
cr,1 :“ 1

β pargpz1p0qq ´ argpzp0qq and t P r0, πβ ` ĉcomplexσs.
We first show that there exists c̃r,2pt, x0, x10, σq, c̃r,2ptq for

short, such that
"

τσ,T pxptqq “ τσ,T px
1pt` cr,1 ` c̃r,2ptqqq

|c̃r,2ptq| ď 2
β p

π
β ` ĉcomplexσqccomplexσ,

(36)

where ccomplex comes from the proof of Proposition 7. In view
of (the proof of) Proposition 7, the range of τσ,T pxp¨qq is
equal to the range of τσ,T px1p¨qq and there exists c̃r,2ptq such
that the first inequality in (36) holds. We now need to prove
that |c̃r,2ptq| ď 2

β p
π
β ` ĉcomplexσqccomplexσ. We exploit for this

purpose the fact that (36) is equivalent to

argpzptqq “ argpz1pt` cr,1 ` c̃r,2ptqqq, (37)

by Proposition 2. In view of (46) in Appendix K, argpzptqq “
argpzp0qq ´ βt ` νptqccomplexσ where |νptq| ď π

β ` ĉcomplexσ.
Consequently, argpzptqq “ argpzp0qq´βpt` cr,1` c̃r,2ptqq`
νptqccomplexσ` βpcr,1 ` c̃r,2ptqq. By definition of cr,1 and the
fact that argpz1pt`cr,1` c̃r,2ptqqq “ argpz1p0qq´βpt`cr,1`
c̃r,2ptqq ` ν1pt ` cr,1 ` c̃r,2ptqqccomplexσ with |ν1pt ` cr,1 `
c̃r,2ptqq| ď

π
β ` ĉcomplexσ,

argpzptqq “ argpz1pt` cr,1 ` c̃r,2ptqq ` βc̃r,2ptq
`pνptq ´ ν1pt` cr,1 ` c̃r,2ptqqqccomplexσ.

(38)
Since argpzptqq “ argpz1pt ` cr,1 ` c̃r,2ptqq and by the
properties of νptq and ν1pt ` cr,1 ` cr,2ptqq, we derive that
|c̃r,2ptq| ď

2
β p

π
β ` ĉcomplexσqccomplexσ. We have thus proved

(36).
Second, τσ,T px̂ptqq “ τσ,T pxptiqq with i P I such that

t P rti, ti`1q. We derive from (36) that τσ,T px̂ptqq “

τσ,T px
1pti ` cr,1 ` c̃r,2ptiqqq. Let j P I be such that ti `

cr,1 ` c̃r,2ptiq P rt
1
j , t
1
j`1q, τσ,T px̂ptqq “ τσ,T px

1pti ` cr,1 `
c̃r,2ptiqqq ` τσ,T px

1pt1jqq ´ τσ,T px
1pt1jqq “ τσ,T px̂

1pti ` cr,1 `
c̃r,2ptiqqq ` τσ,T px

1pti ` cr,1 ` c̃r,2ptiqqq ´ τσ,T px
1pt1jqq. We

derive, by proceeding like in the end of the proof of Theorem
1, that |τσ,T px1pti ` cr,1 ` c̃r,2ptiqqq ´ τσ,T px

1pt1jqq| ď ĉrσ
2.

Consequently, |τσ,T px̂ptqq ´ τσ,T px̂
1pti ` cr,1 ` c̃r,2ptiqqq| ď

ĉrσ
2.

Finally, by Lemma 2, we derive that |τσ,T px̂ptqq ´
τσ,T px̂

1pti ` cr,1qq| ď ĉrσ
2 ` |τσ,T px̂

1pti ` cr,1 ` c̃r,2ptiqqq ´
τσ,T px̂

1pti ` cr,1qq| ď ĉrσ
2 ` σccont,1|c̃r,2ptiq| ` σ2ccont,2 ď

ĉrσ
2`σ2ccont,1

2
β p

π
β`ĉcomplexσqccomplex`σ

2ccont,2 as |c̃r,2ptq| ď
2
β p

π
β ` ĉcomplexσqccomplexσ, from which we obtain the desired

result.

H. Proof of Proposition 5

Let m ą 0, x0 P R2,‹, pσ, T q P Smpσ‹distinct, T
‹q with

σ‹distinct P p0, σ
‹
1s specified in the following. We write matrix

Ac in a Jordan form. Let M “ rw1, w2s, where w1, w2

are non-zero eigenvectors of Ac associated with λ1 and λ2,

respectively, z “ pz1, z2q :“ M´1x and ẑ :“ M´1x̂. Hence,

on flows 9z “ Jz ` ε where J :“

ˆ

λ1 0
0 λ2

˙

and ε “

pε1, ε2q :“M´1BKMpẑ ´ zq. Equivalently, 9z1 “ λ1z1 ` ε1
and 9z2 “ λ2z2 ` ε2. Note that |ε| ď σρ|z| for some ρ ą 0
independent of σ, whenever |x̂ ´ x| ď ρσ|x|, which holds
along solutions to (6)-(7) in view of Claim 1.

We are going to study the variation of ∆1pzq :“
z22
|z|2

for any

z “ pz1, z2q P R2,‹, which is equal to sinpargpzqq2, along the
solutions to 9z “ Jz`ε; recall that z ‰ 0 so that ∆1pzq is well-
defined. The obtained properties will allow us to derive that
Items (i)-(ii) of Proposition 5 hold. Let z P R2,‹ and ε P R2

be such that |ε| ď σρ|z|. It holds that x∇∆1pzq, Jz ` εy “
1

|z|4
`

2z2pλ2z2 ` ε2q|z|
2 ´ 2z22pλ1z

2
1 ` z1ε1 ` λ2z

2
2 ` z2ε2q

˘

.

We obtain by adding and subtracting λ2z
2
1 in the second

term inside the brackets above x∇∆1pzq, Jz ` εy “
1

|z|4

´

2z2pλ2z2 ` ε2q|z|
2 ´ 2z22pλ1z

2
1 ´ λ2z

2
1 ` λ2z

2
1 `

z1ε1 ` λ2z
2
2 ` z2ε2q

¯

“
1

|z|4
`

´2pλ1 ´ λ2qz
2
1z

2
2 ´2ε1z1z

2
2

`ε2p2z2|z|
2 ´ 2z32q

˘

. Since |ε| ď ρσ|z|, there exists ρ1 ą 0
independent of σ such that
ˇ

ˇ

ˇ

1
|z|4

`

´2ε1z1z
2
2 ` ε2p2z2|z|

2 ´ 2z32q
˘

ˇ

ˇ

ˇ
ď ρ1σ. Consequently,

x∇∆1pzq, Jz ` εy ď
´2pλ1 ´ λ2qz

2
1z

2
2

|z|4
` ρ1σ. (39)

We have
z21z

2
2

|z|4
“ cospargpzqq2 sinpargpzqq2 “ p1 ´

sinpargpzqq2q sinpargpzqq2 “ p1´∆1pzqq∆1pzq. Therefore,

x∇∆1pzq, Jz ` εy ď ´2pλ1 ´ λ2qp1´∆1pzqq∆1pzq ` ρ1σ.
(40)

Let ζpσq :“ 1 ´ 2σ
ρ1

λ1 ´ λ2
. We note that ζpσq ă 1

as λ1 ą λ2. Also ζpσq ą
1

2
for σ‹distinct small enough,

as σ P p0, σ‹distinctq . Hence ζpσq P

ˆ

1

2
, 1

˙

. Furthermore,

ρ1σ

pλ1 ´ λ2qp1´ ζpσqq
“

1

2
ă ζpσq. Consequently, for any

∆1pzq P

„

ρ1σ

pλ1 ´ λ2qp1´ ζpσqq
, ζpσq



,

x∇∆1pzq, Jz ` εy ď ´pλ1 ´ λ2qp1´ ζpσqq∆1pzq.
(41)

System (6)-(7) in the coordinates pz, ẑ, δq becomes
p 9z, 9̂z, 9δq “ pJz ` ε, 0, 1q for all t P pti, ti`1q and
pzpt`i q, ẑpt

`
i q, δpt

`
i qq “ pzptiq, zptiq, 0q. Consider a solution

pz, ẑ, δq initialized at pz0, z0, 0q P R2,‹, where z0 “M´1x0.
If ∆1pzqp0q ď ζpσq, we derive from (41) using standard

Lyapunov techniques and the fact that ∆1pzq is not affected
by jumps that lim sup

tÑ8
∆1pzptqq ď

ρ1σ

pλ1 ´ λ2qp1´ ζpσqq
.

This means that either lim sup
tÑ8

| argpzptqq| ď cz,argσ or

lim sup
tÑ8

| argpzptqq ` π| ď cz,argσ for some constant cz,arg ą

0 independent of σ and z0, since ∆1pzq “ sinpargpzqq2.
This implies that, in the original coordinates px, x̂q, there
exists a non-zero eigenvector v1 (˘w1) associated with λ1
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such that lim sup
tÑ8

| argpxptqq ´ argpv1q| ď cargσ for some

carg ą 0 independent of σ and x0. On the other hand, if
∆1pzp0qq P pζpσq, 1s there are two options: (a) there exists
t ą 0 such that ∆1pzptqq ď ζpσq; (b) ∆1pzptqq P pζpσq, 1s
for all t ě 0. In case (a), we deduce from the reasoning
above that there exists a non-zero eigenvector v1 associated
with λ1 such that lim sup

tÑ8
| argpxptqq ´ argpv1q| ď cargσ.

In case (b), ∆1pzptqq P pζpσq, 1s “
´

1´ 2σ ρ1
λ1´λ2

, 1
ı

for
all t ě 0, which means that | argpzptqq ˘ π

2 | ď c1distinctσ
for all t ě 0 with c1distinct ą 0 independent of σ and x0.
Returning to the original coordinates, this means that there
exists a non-zero eigenvector v2 (˘w2) associated with λ2
such that | argpxptqq ´ argpv2q| ď cdistinctσ for all t ě 0.
Since x̂ptq “ xptiq for any t P rti, ti`1q and the sequence ti,
i P Zě0, is unbounded according to Propositions 1 and 3, we
deduce from the properties established in this paragraph that
the desired result holds.

I. Proof of Theorem 3

Let m ą 0, x0 P R2,‹ and pσ, T q P Smpσ‹distinct, T
‹q.

Let t ě 0 and consider px, x̂, δq the solution to sys-
tem (6)-(7) initialized at px0, x0, 0q. In view of Proposi-

tion 3, τσ,T px̂ptqq “ max

"

σ
|x̂ptq|

|Acx̂ptq|
` rpx̂ptq, σq, T

*

“

max

#

σ

ˇ

ˇ

ˇ

ˇ

Ac
x̂ptq

|x̂ptq|

ˇ

ˇ

ˇ

ˇ

´1

` rpx̂ptq, σq, T

+

, recall that we have

x̂ptq ‰ 0 according to Proposition 4. In polar co-
ordinates, the above equation becomes τσ,T px̂ptqq “

max
!

σ
ˇ

ˇ

ˇ
Ac

´

cospargpx̂ptqqq, sinpargpx̂ptqqq
¯
ˇ

ˇ

ˇ

´1

`rpx̂ptq, σq,

T
)

. Suppose Item (i) of Proposition 5 holds, and let
v1 be the corresponding unit eigenvector of Ac associ-
ated with λ1. Consider the case where τσ,T px̂ptqq “

σ
ˇ

ˇ

ˇ
Ac

´

cospargpx̂ptqqq, sinpargpx̂ptqqq
¯
ˇ

ˇ

ˇ

´1

` rpx̂ptq, σq. It
holds that

|v1|

|Acv1|
“

ˇ

ˇ

ˇ
Ac

´

cospargpv1qq, sinpargpv1qq
¯
ˇ

ˇ

ˇ

´1

, (42)

thus τσ,T px̂ptqq́ σ
|v1|

|Acv1|
“ rpx̂ptq, σq ` σ

ˇ

ˇ

ˇ
Ac

´

cospargpx̂ptqqq,

sinpargpx̂ptqqq
¯ˇ

ˇ

ˇ

´1
´ σ

ˇ

ˇ

ˇ
Ac

´

cospargpv1qq, sinpargpv1qq
¯

ˇ

ˇ

ˇ

´1

.
Noting that z ÞÑ |Acz|

´1 is Lipschitz with some constant
` ě 0 on the compact set S2, and since |rpz, σq| ď crσ

2

for any z P R2 according to Proposition 3, we deduce that
ˇ

ˇ

ˇ

ˇ

τσ,T px̂ptqq ´ σ
|v1|

|Acv1|

ˇ

ˇ

ˇ

ˇ

ď σ`
ˇ

ˇ

ˇ

´

cospargpx̂ptqqq, sinpargpx̂ptqqq
¯

´
´

cospargpv1qq, sinpargpv1qq
¯
ˇ

ˇ

ˇ
` crσ

2. Exploiting the global
Lipschitz properties of the cosine and sine functions, we have
ˇ

ˇ

ˇ

ˇ

τσ,T px̂ptqq ´ σ
|v1|

|Acv1|

ˇ

ˇ

ˇ

ˇ

ď 2σ` |argpx̂ptqq ´ argpv1q| ` crσ
2.

(43)
By applying Lemma 3 given in the appendix with

a “ σ
ˇ

ˇ

ˇ
Ac

´

cospargpx̂ptqqq, sinpargpx̂ptqqq
¯
ˇ

ˇ

ˇ

´1

` rpx̂ptq, σq,

b “ σ
|v1|

|Acv1|
and c “ T , we derive that, when τσ,T px̂ptqq “

max
!

σ
ˇ

ˇ

ˇ
Ac

´

cospargpx̂ptqqq, sinpargpx̂ptqqq
¯ˇ

ˇ

ˇ

´1
` rpx̂ptq, σq, T

)

,
ˇ

ˇ

ˇ

ˇ

τσ,T px̂ptqq ´max

"

σ
|v1|

|Acv1|
, T

*
ˇ

ˇ

ˇ

ˇ

ď 2σ` |argpx̂ptqq́ argpv1q|

`crσ
2. As a result, we obtain by invoking Item (i) of

Proposition 5 and the fact that
1

|λ1|
“

|v1|

|Acv1|
as v1 is an

eigenvector for λ1,

lim sup
tÑ8

ˇ

ˇ

ˇ

ˇ

τσ,T px̂ptqq ´max

"

σ

|λ1|
, T

*
ˇ

ˇ

ˇ

ˇ

ď 2`cdistinctσ
2 ` crσ

2,

(44)
we conclude that Item (i) of Theorem 3 holds with c1 “
2`cdistinct ` cr in this case.

Similar arguments apply when Item (ii) of Proposition 5 is
verified, which leads to the satisfaction of Item (ii) of Theorem
3.

J. Proof of Proposition 6
Let x0 P R‹, σ P p0, σ‹q, and T P r0, T ‹q. We

first assume that A ‰ 0. Consider the case where
τσ,T px0q ą T . Hence, |xpτσ,T px0qq ´ x0| “ σ|xpτσ,T px0qq|
in view of (7). Since xpτσ,T px0qq “ eAτσ,T px0qx0 `
ż τσ,T px0q

0

eApτσ,T px0q´sqBKx0ds “ eAτσ,T px0qx0 ´

A´1p1 ´ eAτσ,T px0qqBKx0 and x0 P R‹, we have at
t “ τσ,T px0q,

ˇ

ˇeAτσ,T px0q ´A´1p1´ eAτσ,T px0qqBK ´ 1
ˇ

ˇ “

σ
ˇ

ˇeAτσ,T px0q ´A´1p1´ eAτσ,T px0qqBK
ˇ

ˇ. By squaring the
last inequality and introducing ψ :“ eAτσ,T px0q ´ A´1p1 ´
eAτσ,T px0qqBK, we obtain a second order polynomial in ψ,
namely p1´σ2qψ2´2ψ`1 “ 0. This equation has two strictly

positive roots, denoted ψ´ :“
1

1` σ
ă ψ` :“

1

1´ σ
. Since

|xpT q´x0| ă σ|xpτσ,T pT qq|, necessarily ψ “ ψ´. By solving

ψ “ ψ´, i.e., eAτσ,T px0q´A´1p1´ eAτσ,T px0qqBK “
1

1` σ
,

we derive that τσ,T px0q “ 1
A ln

´ A
1`σ`BK

A`BK

¯

, which is strictly
greater than T this is the case here.

When τσ,T px0q “ T , this means that |xpT q ´ x0| ě
σ|xpT q|, which implies that ψ ě ψ´, which is equiva-
lent to τσ,T px0q ě

1
A ln

´ A
1`σ`BK

1`BK

¯

. Hence τσ,T px0q “

max
!

T, 1
A ln

´ A
1`σ`BK

A`BK

¯)

.
We follow similar lines as above when A “ 0 to obtain the

expression of the inter-event time in Proposition 6.

K. Proof of Proposition 7
Let m ą 0, x0 P R2,‹ and pσ, T q P Smpσ‹complex, T

‹q with
σ‹complex P p0, σ

‹
1s specified in the following. We write matrix

Ac in the real Jordan form. Let M “ rw1, w2s where w1 ˘

iw2 are non-zero eigenvectors of Ac associated with the pair
of complex conjugates eigenvalues λ ˘ iβ, respectively, z “
pz1, z2q :“ M´1x and ẑ :“ M´1x̂. Hence, system (6)-(7)
becomes

9z “ Jz ` ε
9̂z “ 0
9δ “ 1

,

.

-

for all t P pti, ti`1q,

$

&

%

zpt`i q “ zptiq
ẑpt`i q “ zptiq
δpt`i q “ 0

(45)
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where J :“

ˆ

λ β
´β λ

˙

and ε “ pε1, ε2q “M´1BKMpẑ´

zq as in the proof of Proposition 5.
The inter-event time function at time t becomes

in these coordinates rτσ,T pẑptqq with rτσ,T pz0q :“

inf
!

η ě T : |Mz0 ´M rφpη, z0q| ě σ|M rφpη, z0q|
)

, where
rφpη; z0q is the solution to 9z “ Jz `M´1BKMpz0 ´ zq at
time η ě 0, initialized at z0. Hence, for the solutions px, x̂, δq
and pz, ẑ, δq to (6)-(7) and (45) initialized at px0, x0, 0q and
pz0, z0, 0q, respectively, τσ,T pxptqq “ rτσ,T pzptqq for all t ě 0.
Moreover, there exists ρ3 ą 0, independent of σ, such that
|εptq| ď σρ3|zptq| in view of Claim 1 and the definition of z.

We investigate the argument of the z-component of the
solution to (45) initialized at pz0, z0, 0q, where z0 “M´1x0.
In view of its definition in Section I, the argument function
is differentiable everywhere except on Ră0 ˆ t0u, which
is of Lebesgue measure zero. On the other hand, the set
tt ě 0 : zptq P Ră0 ˆt0uu is also of Lebesgue measure zero.
Indeed, suppose there exists t˚ ě 0 such that z1pt˚q ă
0 and z2pt

˚q “ 0. Then 9z2pt
˚q “ λz2pt

˚q ´ βz1pt
˚q `

ε2pt
˚q “ ´βz1pt

˚q ` ε2pt
˚q. Suppose 9z2pt

˚q “ 0 to obtain
a contradiction. This means that βz1pt˚q “ ε2pt

˚q, which
implies that β|z1pt˚q| “ |ε2pt˚q|, but |ε2pt˚q| ď ρ3σ|zpt

˚q| “

ρ3σ|z1pt
˚q|. Hence, we derive β|z1pt˚q| ď ρ3σ|z1pt

˚q|, which
is impossible as z1pt˚q ‰ 0, in view of Proposition 4, when
taking σ‹complex and thus σ small enough. We conclude that
the set tt ě 0 : zptq P Ră0 ˆ t0uu is of Lebesgue measure
zero. Consequently, for almost all t ě 0, d

dt argpzptqq “
1

|zptq|2

´

z1ptqpλz2ptq´βz1ptq`ε2ptqq´z2ptqpλz1ptq`βz2ptq`

ε1ptqq
¯

“ 1
|zptq|2

´

´ β|zptq|2 ` z1ptqε2ptq ´ z2ptqε1ptq
¯

, and

d

dt
argpzptqq “ ´β ` rcomplexpzptq, εptqq, (46)

where rcomplexpz, εq :“
1

|z|2
pz1ε2 ´ z2ε1q. Since |ε| ď σρ3|z|,

by Cauchy-Schwarz inequality, there exists ccomplex ą 0 such
that |rcomplexpzptq, εptqq| ď ccomplexσ for any t ě 0.

Equation (46) and the properties of rcomplex imply that z de-
scribes spirals “converging” to the origin in the phase portrait
and that it spends at most π

β´ccomplexσ
and at least π

β`ccomplexσ

units of time to successively intersect twice any given line
passing through the origin. The inter-event time function rτσ,T
satisfies the same homogeneity12 as τσ,T stated in Proposi-
tion 2. Consequently, for any t ě 0, there exists θptq P
”

π
β`ccomplexσ

, π
β´ccomplexσ

ı

such that rτσ,T pzptqq “ rτσ,T pzpt `

θptqqq. In view of the Taylor series of σ ÞÑ π
β`ccomplexσ

and
σ ÞÑ π

β´ccomplexσ
, as σ P p0, σ‹complexq and σ‹complex is taken

small, there exists ccomplex ą 0 independent of pσ, x0q such
that

”

π
β`ccomplexσ

, π
β´ccomplexσ

ı

Ď

”

π
β ´ ccomplexσ,

π
β ` ccomplexσ

ı

.
Therefore, since τσpxptqq “ rτσ,T pzptqq for any t ě 0,
where z and x are components of the solutions to (45)
and (6)-(7) initialized at pM´1x0,M

´1x0, 0q and px0, x0, 0q,
respectively, the desired result follows.

12It suffices to use the definition of rτσ,T and to compute explicitly rφ to
see that rτσ,T pµz10q “ rτσ,T pz

1
0q for any µ P R‹ and any z10 P R2,‹.
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[7] K.E. Årzén. A simple event-based PID controller. In Proc. of the IFAC
World Congress, Beijing, China, volume 18, pages 423–428, 1999.

[8] D. Borgers and W.P.M.H. Heemels. Event-separation properties of event-
triggered control systems. IEEE Transactions on Automatic Control,
59(10):2644–2656, 2014.

[9] D.P. Borgers, V.S. Dolk, G.E. Dullerud, A.R. Teel, and W.P.M.H.
Heemels. Time-regularized and periodic event-triggered control for
linear systems. In Control Subject to Computational and Communication
Constraints, pages 121–149. Springer, 2018.

[10] F.D. Brunner, W.P.M.H. Heemels, and F. Allgöwer. Robust self-
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