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Abstract— We introduce a modeling framework for robust-  the task of robustifying motion plans via feedback control

ness of maneuver-based motion planning algorithms for non-  challenging since standard trajectory tracking contrsigte
linear systems with symmetries. Our framework implements techniques are not applicable.

a hybrid controller that robustly combines motion primitiv es, ! ) )
which consist of trim trajectories and maneuvers, from a pre In this paper, we propose a hybrid control algorithm that
defined library. The closed-loop system is viewed as a hybrid executes maneuver-based motion plans and combines state
Eyste(;n_ffwith flows gi\t/_en byg ggfere?tialhequatﬁon, j(Lijps gien  feedback control laws for nonlinear systems with symme-
by iference ealon,ap g st whete hese MAMER 5, The purpose of our hybrid controller s 1 provide
of motion planning algorithms confers to the closed-loop sstem & control framework for maneuver-based motion planning
robustness properties to a large class of perturbations. featuring robustness properties to perturbations. We show
that this framework results in a hybrid system with imple-
) ) ) __ mentable semantics, and hence, useful experimental setups
Motion planning algorithms are commonly applied inThis class of hybrid systems has been recently introduced in
robotics as a method tolsolve ste.erlng problems. In a resz], [10] motivated by the pursue of robustness of asymetoti
world scenario, the motion planning task needs to be agapility. Our control framework for maneuver-based motio
complished in the presence of obstacles, measur_emen,t erbnning also borrows ideas from the techniques in [11]
exogenous disturbances, and unmodeled dynamics. To 9URJr robust combination of state feedback and open-loop
antee some degree of robustness, motion planning alg&@ithgynroliers, and also from the invariant constructionslig[
are usually blended with feedback control algorithms, Whic o paper is organized as follows. Section Il introduces

track the output of the motion planner; see, e.g., [1-[5]- notation and basic definitions regarding nonlinear systems
The motion planning problem itself is typically recastyi, symmetries, motion primitives and plans, and hybrid

as an optimal control problem with cost function and congysiems. Section Il introduces our hybrid control frameiwo
straints stemming from the given task to be accomplishegd, motion planning, while Section IV states its main prop-
along with its specifications. In complex motion planningajes.

problems, online computation of optimal control policiss i
not always feasible. A motion planning technique suitable [1. PRELIMINARIES
in such cases was proposed in [6] for general nonlinea( notation
systems with symmetries. A motion plan in [6] is given )
by a concatenation of a finite number wiotion primitives % denotes the real numbeis., denotes the nonnegative
selected from a pre-defined library and implemented in @l Numbers, i.eR>o = [0, cc). N denotes the natural num-
maneuver automatoMotion primitives were defined in [6] Pers includingo, i.e., N = {0,1,...}. Nox (N<j) denotes
as equivalence classes of trajectories, induced by syriggetr"UMPers in\ from 0 to k —1 (from 0 to &, respectively)R"
in the system’s dynamics, e.g., invariance with respect fd€notes ther-dimensional Euclidean spacg. denotes the
time, translations, and rotations. open unit ball in a Euclidean space. Given a$eb denotes
One of the main features of the maneuver-motion basdtf closure ands® denotes its interior. Given sets;, 5
approach is that each element in the motion primitives tipra SUPSets O™, S + S = {z1 + a2 | 21 € S1,22 € Sz}
can be designed off-line subject to particular specificetjo GVen a vectorz € R™, |$| dTenTotes |tsTEucI|dean norm.
like optimality, state constraints, etc., relaxing in thigy 1he equivalent notatioriz” y']", [z y| ', and (z,y) is
on-line computation requirements; see, e.g., its apptioat USed for vectors. Given a functiofi : R™ — R”, its
to robotics in [4], [7], [8]. However, this method combinesdomain of definition is denoted byjom f; i.e., dom f :=
motion primitives in an open-loop manner, which restrictg® € R™ | f(«) is defined. A functiona : R>o — R>o
its application to nominal scenarios, that is, those withodS S&id t0 belong to clasko if it is cont|51uous, zero at
perturbations. Moreover, the fact that the trajectoriesulte  2870» Strictly increasing, and unbound@™(R>o, R™) is

ing from this approach are not necessarily smooth, rendeg%e s;t Ofﬁg‘” piecewise continuous signdlsdom 3 — R™,
om g C K>q.

I. INTRODUCTION
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where f : R™ x R™ — R" is a locally Lipschitz function, and trim trajectoriest’ : [0,7'] — R™, 2" : [0,7"] —
z € R" is the state, and: € R™ is the control input. We R™ that arecompatiblewith z, i.e., there existmatching
focus on a particular subclass of nonlinear systémshose displacementg’, g € G such that

satisfying certain symmetry properties. Next, we review an ey / _ noon
adapt some of the concepts in [6] for the purposes of this (T") = ¥(g',2(0)), z(T) = ¥(g",2"(0)) . u
paper. Remark 2.5:The matching displacemenig and ¢’ in

1) Nonlinear systems with symmetriea: large class of Definition 2.4 guarantee that trim trajectories and maneuve
mechanical systems are invariant under certain transform@an be concatenated. More precisely, the left acfiowith
tions of their state. These include mobile robots as well gdisplacementy’ guarantees that the end point of the (left
more general autonomous vehicles, like several helicepteéfompatible) trim trajectory:” can be concatenated with the
and airplanes models, among others. General invariang-trafitial point of the maneuver, while the left action® with

formations can be characterized with the theory of Lie gmup(jisplace.zmeng’.’ guarantees that the initial point of the_ (right
(see [13] for an introduction to Lie groups and [14] forcompa‘uble) trim trajectory” can be concatenated with the

o : final point of the maneuver. |
applications to mechanics).

Let G be a finite-dimensional Lie group, and letbe its ~ Maneuver information forP with symmetry groupg is
identity element. It is said thak is a left action of the group Stored in the setM(P,G). By the regularity properties of
GonR"if U:G xR" — R" is a smooth map such that /» & maneuver: for 7 can be generated by only knowing
U(e,z) = for all z € R" and ¥(g, U(h,z)) = ¥(gh,x) the inputf applied to” and the initial conditionz®. By
for all g,h € G, = € R™. Let g be the Lie algebra of. construction, the application of at z° causes a maneuver

Definition 2.1: (symmetry of P) The nonlinear system dlsplacement given by < g, » .

P is invariant with respect to the left group actioh if _Fo_lllowmg the defmmons above, a I|br§ry 9f motion
forall g € G, 2° € R", andu € PC°(Rso,R™), each primitives for P with symmetry groupG is given by
solution (in the appropriate seryeo P starting fromz? (7 (P,G), M(P,G)). Let Qr,Qn C N be compact and
with u(t) = p(t), denoted byt — ¢(2°, 5 t), is such that disjoint sets, and defin€) .= Qr U Q. The setQr
U(g, (2, 1)) = (W (g,2°), pu;t) for all t € domep. M (respectively,Qy) is such that each of its elements is
uniquely associated to a trim trajectory (respectivelyato

maneuver). More precisely, for eache Qr, (§q,x2) €
T(P,G) defines the trim trajectory, (t) = ¥(exp(&,t), 27)
with z,(0) = =, while for eachg € Qur, (84, 20, 94, T4) €
M(P,G) € PC°(Rsp,R™) x R™ x G x R correspond to the
input to generate the maneuvey from «J, which, afterT,
units of time, results in a displacement given gy

3) Motion plan: A motion planv is denoted by

Definition 2.1 states thgP is invariant if the left action¥
commutes with the map from initial conditions.

2) Library of motion primitives: Trim trajectories and
maneuvers define our “library” of primitives for motion
planning; see also [6, Section IlI].

Definition 2.2 (trim): A C! functionz : [0,7] — R" is
a trim trajectory for P if there exists¢ € g, called thetrim
velocity vectorandy, € R™, called thetrim input, such that

z(t) = Y(exp(&t),x(0)) forallt e [0,7], (2)
z(t) = f(z(t),p) for almost allt € [0,7]. W

When the right-hand side dP is locally Lipschitz, every
trim trajectoryx for P is uniquely defined by its velocity
¢ and initial conditionz®. We shall assume the following
property throughout the paper.

vooi= {(qla Tth)’ (Q2agéagg)’ (Q?H T‘ZS)’ )
Yo (Qkflag;cflvggfl)v (ququ)} )
wherek € N>3 is an odd number and:
o For each odd numbere N<y, ¢; € Q.
o For each even number € N<y, ¢; € Qu and the
j-th maneuver is compatible with thg — 1)-th trim
trajectory with matching displacemeg} and with the

Standing Assumption 2.3fhe functionf : R™ x R™ — (j + 1)-th trim trajectory with matching displacement
R™ is locally Lipschitz continuous. The nonlinear systé¢m g".
is invariant under the action of. u . For each odd numbeir € N, T,, € R>( defines the
Then, for the nonlinear systef@ with symmetry groupg, time to execute the;-th trim trajectory. The nonneg-
we store¢ and 2 in the set of trim trajectories, which is ative constantr;, for the last trim trajectory can be
denoted byZ7 (P,G) C g x R™. either finite or infinite.

Definition 2.4 (maneuver)A C' functionz : [0,7] — In other words, a motion plarv is given by a se-
R" is a maneuverfor 7 if there exist a functions € quence {v;}%_,, where vy,v4,..., 051 are such that
PCO(RZO,R’”), called themaneuver inpytsuch that 92, q4, - - -, qu—1 € Qpr define maneuvers and, vs, . .., vy

CoN ) are such thaty, gs,...,qr € Qr define (compatible) trim
B(t) = f(=(®), 5®) for almost allz € [0, 7] ; trajectories. (Alternatively, and without affecting thesults
g € g, called themaneuver displacemergatisfying in this paper, motion plans can be defined as in [6].) We

T) = 0)) : denote byV(P,G) the set of motion plans fof® with

(T) = ¥(g,2(0)) ; symmetry groupg generated from(7 (P,G), M(P,G)).
1This property does not depend on the notion of solution usteds F'gl'_'re 1 depICtS a sample trim-maneuver-trim piece of a

required to hold for each (perhaps nonunique) solutio®ton its domain. Mmotion planv S V('P, g).



| t+ Ty, + Ty, + T,
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Fig. 1. Sequence of entries of a motion planv;_; = (qul,quil)
defining trim trajectoryzq; vj = (qi7g;j ,-gé’j) defining maneuvet,,
andvjt1 = (gj+1,7q;,,) defining trim trajectoryz, , , -

C. Hybrid systems

A concept of closeness of solutions to hybrid systems is as
follows. Two solutionsz : domz — R", y : domy — R”
are (T, J,e)-closeif:
(a) forall (t,j) € domz with t < T, j < J there exists
s such that(s, j) € domy, |t — s| < &, and

|CC(t,_]) - y(S,j)| <g,
(b) for all (¢,7) € domy with ¢t < T, j < J there exists
s such that(s, j) € domz, |t — s| < ¢, and
|y(ta]) - (E(S,])| <e.

Note that this closeness concept does not require solutions
to be close at jumps at the same hybrid inst@ng). See
[9] and [10] for more details.

The hybrid control framework proposed in this paper for
maneuver-based motion planning follows the general model!ll. A HYBRID CONTROLLER FOR MOTION PLANNING

for hybrid systems in outlined in [9] (see also [10], [15]).

Given a motion plany € V(P, G), our goal is to design a

Hybrid systems are dynamical systems with continuous argbntroller generating a trajectory @f that satisfies the mo-

discrete dynamics. In [9], a hybrid systeh is given by

tion plan specifications given in terms of a finite sequence of

a flow map, a flow set, a jump map, and a jump set. Fafim trajectories and maneuvers frof@ (P, G), M(P,G)).
the purposes of this paper, the state of the hybrid systemye propose a hybrid controller, denoted Hy., with:

denoted by(, takes values irR™, the flow map is given
by a functionf : R” — R"™ and the flow set, denoted by
C C R, define the flow equatior = f(x),z € C; while
the jump map is given by a function: R” — R™ and the
jump set, denoted by) c R", define the jump equation
zt = g(x),2 € D. Continuous evolution of the solutions
(or flows) to H is permitted only when the solution is in

C and discrete evolution (or jumps) is allowed only when

the solution is inD. Hence, a hybrid systeri has data
(f,C,g,D) and can be written as

r e R {

reC
reD.

T
ot

f(x)7
g9(z),

H :

To define solutions td4, the number of jumps is treated as_
an independent variablg and the state is parametrized by

(t,7). A solution is a function defined on subsetgfof, x N.
A subsetE C R>o x N is acompact hybrid time domaiif

J—1
E = (Itj tj+l].7)
J=0
for some finite sequence of times = t; < ;... <
ty. It is a hybrid time domainif for all (7,J) € FE,
E n ([0,7] x {0,1,...J}) is a compact hybrid domain.

« logic stateq € @ to indicate the system modéim

modewhenq € @7, maneuver modehenq € Q.

« logic statep € N to select an entry of a given motion
planv € V(P,G).

« displacement state € G to store the overall displace-
ment of the trajectory of.

« timer stater € R to keep track of the time in maneuver
mode and to parametrize the reference trajectory during
trim mode.

The output of the controller, that is, the input Bf is
3)

whererk, : R" x @ x R — R™. The input toH. is the state
of P.

U = fic(xa q, T)

A. Control strategy

Given a motion planv € V(P,G), let ¢ = ¢; € Qr,
j € N.. The controllerH. performs the following tasks:
Task 1) Trim Trajectory TrackingTrack the trim trajectory
x4, Wherez, is defined by(¢,,29) € T(P,G) via (2).
Task 2) Maneuver Execution StartWhen the stater
is such that the maneuver, , ,, which succeeds the trim
trajectoryz,, can be executed and the timer elapsed for at

On each hybrid time domain there is a natural ordering déastT;, units of time, update to ¢, 1, reset timerr to zero,

points: (¢,7) < (t,5') if t <t andj < j'. A hybrid arcis
a functionz : domx — R"™ on a hybrid time domaidom x
such thatz(t, j) is absolutely continuous in for a fixed j
and(¢,7) € dom. It is a solution to the hybrid systefi
if 2(0,0) € C'UD and

(S1) For allj € N and almost alt such thatt, j) € dom z,

o(t,j) = f(x(t, )
(S2) For all(t, j) € domz such that(t,j + 1) € domz,

a(t,j) € C,

and execute th¢j + 1)-th maneuver.

Task 3) Maneuver Execution EndVhen the state: is
such that the trim trajectory,,,, can be executed and the
timer 7 has elapsed for at lea}, units of time, updatg to
¢;+2 and perform Task 1) if + 2 < k.

Execution of trim trajectories in Task 1 is performed in
closed-loop with a local tracking controller that guaraste
z(t) — z4(t) asymptotically. Maneuvers are started when:
1) the timer has elapsed for at least the duration planned
for the predecessor trim trajectory, and 2) the state reache
a set from where the maneuver can be executed (the latter



corresponds to Task 2). The trim trajectory that followsrgve of each of the maneuvers v (P, G) after T, units of time

maneuver is started as soon as the statein the set where have elapsedI(, is the execution time of the trim trajectory

tracking is possible and the timer has elapsed the specifigiven in the motion plan).

amount of time for the maneuver. The following assumption guarantees that maneuvers take
. trajectories to points where trim trajectories can be etextu

B. Control design

. . Assumption 3.3 (nested conditiorjor every motion
The following assumption guarantees that Task 1 can tbefanv c 5(73 G) eE/ery maneuver vn\Zth associ}::lted entry
accomplished. e

_ _ . . . in v and inputg,,, its associated sdt,, is such that
Assumption 3.1{tracking of trim trajectories) For each
q € Qr, there exists a continuous functiep : R" xR>q — Lg, € Dgiyy

R™, & continuously differentiable functioly, : R" — R>o, yhereD,,,, is the set associated with tracking of the trim
classK ., functlons%, ag, and an open neighborhood of thetrajectory:v i1 € Qr
Qi1 47 .

origin B, C R™ such that
Remark 3.4:The condition in Assumption 3.3 assures

ag(lel) < Vy(e) < ag(le]) Ve e R", that, after a maneuver, the stateis in a set from which
(Vy(e), f(e)> < —V,(e) Ve € B, , (4) tracking of the trim trajectory succeeding it is possiblaisT
- o condition holds by picking small enough landing $gtwhen
where f : R" — R™ is given by Assumption 3.1 is in place. However, in order to get prattica
Flo) — _ robustness results, the landing sets are usually fixed.dn su
J(€) = Fle+ @q(t), role+ 4 (0), ) f(xf’(t)’ Ha) - cases, the tracking law in Assumption 3.1 should be chosen
and defines the time-invariant systeim= f(e) invariant to have large enough s@,,q € Qr. [ ]

under the action of¥, where z, is the trim trajectory

Figure 2 illustrates the sets designed above.
generated byu,.

g-th maneuver

3 W
B Dq

(a) Trim sets. (b) Maneuver sets.

Remark 3.2:In addition to the invariance property, As-
sumption 3.1 guarantees the existence of a local controlle
with basin of attractior3,, which accomplishes asymptotic
tracking of trim trajectories. Additionally, each trackin
control law x4 is such that, when applied t®, result in
a time-invariant error system with := x — x, having
the symmetry property. This assumption holds for nonlinear
systems that can be put in feedback linearizable normal form

[16], [17] with error system that is invariant under the anti Fig. 2. Sets of the hybrid controller for a trim trajectorydamaneuver in
of ¥ [18]. B the motion primitive in Figure 1.

o~
g-th trim
D']

The construction of the flow and jumps setsHf follows. )
By the continuity properties of maneuvers in Definition 2.4 Hybrid controller
for each maneuver, with input 3, and maneuver duration ~ The control logic outlined above is implemented in the
T,, ¢ € Qur, there exist disjoint and open se$s, L, ¢  hybrid controller}.. as follows.
R™ such that for each,(0) € Sy, x4(Ty) € Lg, ©4(t) = 1) Jumps: Jumps occur while in trim mode with < k
f(zq, B4(t)). For eachg € Qas, pick compact setd), such (i.e., itis not the last trim trajectory of the motion planhen
that D, C S, andz) € D¢, and defineC, := R" \ D,. The the statex reaches the set of points where the maneuver
setD,, q € Qu, corresponds to the maneuver’s start set ing,,, can be started and the timer has elapsed foff},
Task 2. units of time. The set in the first condition is given by, . ,,

We now compute the set of points from where trackingy+1 € Qs after the left action with displacement given

of trim trajectories is possible. By construction, therésex by z multiplied by the nominally expected trim trajectory dis-
e* > 0 such that placementxp(§,7,) and the matching displacemeyff ..

— Then, jumps occur when
e" = argmax{z, +eB C Sy, Vg € Qur} .

e>0 q € Qr andx € (zexp(§,Ty)gy, s Dy,y,) @andr > Ty,

Using Assumption 3.1, for eaahe Qr, define (5)

Dyi= {c €R" | Vi(e) <y} . with update law

wherec, > 0 is such that ¢" = gpir, pT=p L 2T =zexp(Er), 70 =0, (6)
D, C (:Cg +6,B)NB, , 6, = (@) (exp(T,)al(e")) | that is, ¢ is mapped to the next mode in the motion pian

the motion plan indey is incremented by one; is updated

and (o)~ is the inverse of the function?. DefineC, :=  with the current total displacement of the motion primitive
R™\ D,. This construction yields a constafif such that andr is reset to zero.
when the trim trajectory,(t) is tracked from initial condi- While in maneuver mode, jumps occur when the state

tions in D,, the stater belongs to a subset of the start seteaches the set of points where the trim trajectayy,, can



be started and the timer statehas elapsed for at leag, = motion planv, that is:

units of time. As in the case for jumps during trim mode, if ¢ € [0,71]
the set in the former condition is given b9, ¢ € Qur, (g9, 4, (1)) and j 0
after the invariant operatiowr with displacement given by if ¢ € [Ty, 7]
multiplied by the planned maneuver trajectory displacetmen U (gy exp(€g, T1) g1, g, (1)) and j :’ 1 7
which is given byg,, and the matching displacemegf. if ¢t € [Ty, T3]
Then, jumps in maneuver mode occur when rt,f) = 4 V(g exp(€q, Th)gl, 7q, (1)) Ly

andj =2

q € Qun andx € W(zg,9,,Dy,,,) andr > T, ,  (7) .
[

U(gy exp(éq, T1)g7 - - -

; v te|Tr_1,Tkl,

with update law cexp(&gr Tho1)g) g, (1)) and[jk:;c K]

" =qp1, pt=p+1, 2T =29, 77=0. (8 Whe_reaz:q1 is the trim trgjectory With(gql,xgl) e T7(P,9),
x4, IS the maneuver With(By,, 23, 942: Tyn) € M(P,G),
2) Flows: During flows, the controller variables haveetc. Note that each jump of corresponds to a change of

dynamics given by motion primitive. For example, for eadh, j) € [0, 71]x {0},
r(t, ) is given by theg; -th trim trajectory, and after the jump
q': 07 p — O, 5= 07 F=1 , (9) att = T17j = 0, and for all (t7j) € [Tl,TQ] X {1}, T(t7j)

is given by theg,-th maneuver. The duration of the motion
planvis T, =3, 5 4 Ti+> 04 41 1q- WhenT,
is finite, domr is a subset of0,7,] x {0,1,2,...,k — 1},
while when T, is infinite, domr is a subset ofl0, c0) x
q € Qr and(z € U(zexp(§,T4)gg, ., Capyr) OF T € [0,T4]), (0,1,2,.. . k—1}.

(10) ) ) ) )

when

Theorem 4.1: (nominal execution) Let Assumptions 3.1
and 3.3 hold. For eachv € V(P,G) with nominal motion

plan trajectory r and each(z?,¢%) € R™ x G such that
¢ € Qur and(z € V(zg4g4, Cgyn) OF 7 € [0, T5]). (M) o- — g(g0 20 ), (¢,,,20) € T(P.G), there exists a

q1
_ . ~unique solutiony to H.; from (0,0) = (2%, q1,1,92,0)
3) Output: The controller output is the input t8 and is  that is bounded and is such that thecomponent satisfies

or

given byu = k.(z,q,7) where x(t,j) = r(t,7) for all (¢,75) € dom .
i Remark 4.2:Theorem 4.1, which follows by construction,
Kol q,7) :{ By(1) T geQu (12) states that every motion plan € V(P,G) is properly
ro(2,7) i qeQr . executed byH,;. This result recovers the nominal motion

plan execution property of the hybrid automaton in [6l

In addition to the nominal property in Theorem 4.1, the
law in Assumption 3.1 for the-th trim trajectory,q € Qr., proposed hybrid control anstruct|0q guarantees tha_\teund
the presence of perturbations, motion plan execution stay

which is designed using trim trajectory information. .
close to a nominal one. Note that the presence of perturba-
4) Closed-loop systemi/e denote the closed-loop SYysteMiinns in H.; on the initial conditions, parameters, and/or the

resulting from controlling? with . by H.; and its state by giate affects the jump times. In this way, the domain of the

— PN l
¢ = (2,¢,p, 2, T)le A = R"xQx N xR' R, where the o 1ting trajectory does not need to coincide with the doma
Euclidean spac&’ embedsj. The continuous dynamics are ¢ he nominal trajectory- associated to € V(P,G). The

given by closed-loop plant dynamids = f(z, rc(z, g,7)) (T, J,¢)-closeness notion of distance between hybrid arcs in
along with (9), with flow set given by the union of the SetSgaction 11-C handles such a situation.

defined by (10) and (11). The discrete dynamics are given
by the update laws in (6) and (8). The resulting cIosed—Ioogumptions 3.1 and 3.3 hold. For eache V(P,G) with

systemH., can be written in the compact form in (I1-C) i) motion plan trajectory and eachz!, ¢%) € R"xG
using as the state and appropriately defining functigng such thatz? = (g% 20 ), (€,,2°) € ”7’—(;) G), each

A - q q
and sets’ and D. e > 0, each compact sefd Bqlf and each(T,J) €

R>o x N, (T, J) 2 (T,,k — 1), there exists) > 0 such that

The functionf, is the control input that generates theh
maneuverg € QQys. The functions,, is the tracking control

Theorem 4.3: (perturbation of initial conditions) Let As-

IV. MOTION PLAN EXECUTION: every solutiongs 10 He With 5(0,0) = (2§, 41,1, 97,0),
NOMINAL AND PERTURBED CASE xy € K + 0B, is bounded and the component and are
(T, J,e)-close.
Given a motion planv and an initial configuration  Remark 4.4:The time horizon(T, J) where the closeness
(z0,99) € R" x G such thatz) = W(g),x) ), let r :  property in Theorem 4.3 holds can be picked to be equal

domr — R™ describe the desired trajectory of the nominato (7;.,k — 1) when T, is finite. Then, closeness between



the component of the solution and- is guaranteed in the
entire duration of the motion plan. The hybrid time domair
of each solution toH,.; can be extended to an unboundec
one without affecting the behavior of the system up to tim
(T, J). In addition to the regularity properties of the closed-
loop system (guaranteed by the standing assumption and !
hybrid controller construction), the proof of Theorem 4.2
extends the hybrid time domain to an unbounded one 1
enable the application of results in [10] for hybrid system:
with perturbations.

Under the presence of perturbations, sysf@roontrolled
by H can be written as

&= f(xa ﬁc(x + dl(ﬂan

7))+ da(t) , (13)

0.8-

0.6r

0.2r

Fig. 3. Motion primitive (dashed) in Figure 1 and simple &ine trajectory
resulting from applying our hybrid control strategy for reot planning.

Tracking control during trims (red pieces) guarantees $hition and trim
where d; corresponds to error in the measurementszof trajectory are stay close. Maneuver starts from a pointhyetire maneuver

andd, models other exogenous disturbances and unmodeld¢ie piece) in the library and remains close to it.

dynamics. The addition of these perturbations in the closed

loop systent,, results in a perturbed hybrid system, denot®ounds on the perturbations are known beforehand follow

as’H,;, which can be written as

v flp +di(t) + da(t)
et = g

<,O+d1€C?

g(p) o+d €D,

The following result asserts that the motion planning ISH
robust to a class of perturbatiorfs.
%

Theorem 4.5: (perturbations) Let Assumptions 3.1 and 3.

hold. For eachv € V(P,G) with nominal motion plan

trajectoryr and each( v.9%9) € R* x G such thatz! [4]
(

W(gd,2)), (&, 20,) € T(P,G), eache > 0, each compact
set K C B, and each(T,J) € R>o x N, (T,J) =
(T,,k — 1), there existsd > 0 such that every solution
@ to He with $(0,0) = (2°,¢1,1,4%,0), 2° € K + §B,
|dy(t,7)| < & and |dz(t,7)] < 6 for each(t,j) € dom g, is
bounded and the component and the motion plan trajectory
r are (T, J,¢)-close. v

(5]
(6]

Remark 4.6:The proof of this result uses a technique
from [10, Section V] in which a perturbed hybrid system g
H?, is embedded into a set-valued hybrid system. Using the
hybrid time domain extension as in Theorem 4.3, the resultfgl
follows from [10, Corollary 5.5].

Finally, Figure 3 illustrates a solution t&{. starting 10]
nearby the motion plan in Figure 1. This corresponds to a
simulation result from a toolbox for robust maneuver-based
motion planning, currently under development. [t

V. CONCLUSION [12]

We presented a hybrid systems framework for maneuver-
based motion planning algorithms for nonlinear systemhb wit[13]
symmetries. We systematically described the construction (14]
a hybrid controller and showed its robustness properties fps)
a large class of perturbations. Our results are built upon
recent tools for robustness of stability for hybrid systems; g

Extensions of the hybrid control strategy to situations rehe
[17]

2The exogenous signalé; and do are given on hybrid time domains
(given a hybrid time domairs and an exogenous signdl (¢), we can
define, with some abuse of notatiod (¢, j) := di(¢) for each(t,5) €
S.) Solutions to hybrid systems with the perturbations akievenderstood
similarly to the notion of solution outlined in Section II-C

(18]

1 V. Gavrilets, E. Frazzoli,

from the ideas presented in this manuscript and will be
closely explored in the future.
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