On the Converse Safety Problem for Differential Inclusions:
Solutions, Regularity, and Time-Varying Barrier Functions

Mohamed Maghenem and Ricardo G. Sanfelice

Abstract—This paper presents converse theorems for safety in terms of barrier functions for unconstrained continuous-time systems modeled as differential inclusions. Via a counterexample, we show the lack of existence of autonomous and continuous barrier functions certifying safety for a nonlinear system that is not only safe but also has a smooth right-hand side. Guided by converse Lyapunov theorems for (non-asymptotic) stability, time-varying barrier functions and appropriate infinitesimal conditions are shown to be both necessary as well as sufficient under mild regularity conditions on the right-hand side of the system. More precisely, we propose a general construction of a time-varying barrier function in terms of a marginal function involving the finite-horizon reachable set. Using techniques from set-valued and nonsmooth analysis, we show that such a function guarantees safety when the system is safe. Furthermore, we show that the proposed barrier function construction inherits the regularity properties of the proposed reachable set. In addition, when the system is safe and smooth, we build upon the constructed barrier function to show the existence of a smooth barrier function guaranteeing safety. Comparisons and relationships to results in the literature are also presented.

I. INTRODUCTION

Beyond stability and convergence, safety is among the most important properties to analyze for a general continuous-time system modeled as the differential inclusion

\[\dot{x} \in F(x) \quad x \in \mathbb{R}^n. \tag{1} \]

Differential inclusions extend the concept of differential equations by allowing the dynamics to be governed by a set-valued map instead of only a single-valued function \([1]\). Safety is the property that requires the solutions to \([1]\) starting from a given set of initial conditions \(X_o \subset \mathbb{R}^n\) to never reach a given unsafe region \(X_u \subset \mathbb{R}^n\), where, necessarily, \(X_o \cap X_u = \emptyset\). \([2], [3]\). Safety with respect to \((X_o, X_u)\) is verified when a set \(K \subset \mathbb{R}^n\), with \(X_o \subset K\) and \(K \cap X_u = \emptyset\), is forward pre-invariant, i.e., the solutions to \([1]\) starting from \(K\) remain in \(K\) for all time \([4]\) — the prefix “pre” indicates that solutions may not exist for all \(t \in [0, \infty)\), in particular, due to finite escape times. Such a set \(K\) is called inductive invariant in \([5]\). Depending on the considered application, reaching the unsafe set \(X_u\) can correspond to the impossibility of applying a predefined feedback law \([6]\) or, simply colliding with an obstacle \([7]\).

M. Maghenem is with University of Grenoble Alpes, CNRS, Gipsa-lab, Grenoble INP, France. Email: mohamed.maghenem@gipsa-lab.fr. R. G. Sanfelice is with the Department of Electrical and Computer Engineering, University of California, Santa Cruz. Email: ricardo@ucsc.edu.

This research has been partially supported by the National Science Foundation under Grant no. ECS-1710621, Grant no. CNS-1544396, and Grant no. CNS-2039054, by the Air Force Office of Scientific Research under Grant no. FA9550-19-1-0053, Grant no. FA9550-19-1-0169, and Grant no. FA9550-20-1-0238, and by the Army Research Office under Grant no. W911NF-20-1-0253.

A. Background

Analogous to Lyapunov theory for stability, the concept of barrier functions is a powerful tool to study safety without computing the solutions to the system. Generally speaking, two main types of barrier functions can be identified in the literature \([8]\). The first type of barrier functions consists of a scalar function \(B\) defined on the interior of \(K\), denoted \(\text{int}(K)\), with nonnegative values such that

\[\lim_{x \to \partial K} B(x) = \infty, \]

where \(\partial K\) is the boundary of \(K\). This barrier function certifies safety when the growth condition

\[\langle \nabla B(x), \eta \rangle \leq \gamma(B(x)) \quad \forall \eta \in F(x), \quad \forall x \in \text{int}(K) \tag{2} \]

is satisfied, where the scalar function \(\gamma\) is such that condition \([2]\) implies that the map \(t \mapsto B(\phi(t, x_o))\) does not become unbounded in finite time for every solution \(\phi\) to \([1]\) starting from \(x_o \in \text{int}(K)\) — each such solution is denoted \(t \mapsto \phi(t, x_o)\). Hence, the solution \(\phi\) remains in \(\text{int}(K)\) for all time. This type of barrier functions, often named potential functions, has been used in constrained optimization \([9]\), multiagent systems \([7]\), and constrained nonlinear control design \([10]\).

The second type of barrier functions is given by a scalar function \(B\) with a prescribed sign on the initial set \(X_o\) and with the opposite sign on the unsafe set \(X_u\). Without loss of generality, we can assume that \(B\) and \((X_o, X_u)\) satisfy

\[B(x) > 0 \quad \forall x \in X_o \]
\[B(x) \leq 0 \quad \forall x \in X_u. \tag{3} \]

In this case, safety is guaranteed when the zero-sublevel set

\[K := \{ x \in \mathbb{R}^n : B(x) \leq 0 \} \]

is forward pre-invariant. The first characterization of forward pre-invariance dates back to the work of Nagumo in \([11]\), where tangent-cone-based conditions are proposed; see Section \([V-A]\) for more details. Note that the computation of a tangent cone to a general set is not always a trivial task. Fortunately, when the set \(K\) satisfies \([4]\), it is possible to formulate sufficient conditions for forward pre-invariance using only the barrier candidate \(B\) and the right-hand side of \([1]\). \(F\). Such sufficient conditions are usually expressed in terms of an inequality constraining the variation of \(B\) along the solutions to the system \([1]\). In \([2]\) Proposition 2, the condition

\[\langle \nabla B(x), \eta \rangle \leq 0 \quad \forall \eta \in F(x), \quad \forall x \in \mathbb{R}^n \tag{5} \]

is used. Condition \([5]\) has been relaxed in the literature in different ways. According to our previous work in \([12]\), the inequality in \([5]\) does not need to hold on the entire \(\mathbb{R}^n\) to
guarantee forward pre-invariance. It is enough to guarantee that

\[\langle \nabla B(x), \eta \rangle \leq 0 \quad \forall \eta \in F(x), \quad \forall x \in U(K) \setminus K, \tag{6} \]

where \(U(K) \) is any open neighborhood around the (closed) set \(K \). Furthermore, according to [13, Theorem 1], when \(F \) is locally Lipschitz and \(\nabla B(x) \neq 0 \) for all \(x \) in the boundary of \(K \) denoted \(\partial K \), the inequality in (5) can be relaxed to hold only on the boundary of \(K \); namely, it is enough to assume

\[\langle \nabla B(x), \eta \rangle \leq 0 \quad \forall \eta \in F(x), \quad \forall x \in \partial K. \tag{7} \]

The non-positiveness required in (5) and (6) can be relaxed using uniqueness functions, or, minimal functions; see Section V for more details. It is important to note that conditions (5), (6), and (7) require continuous differentiability of the barrier function candidate \(B \). Similar conditions can be formulated when \(B \) is only locally Lipschitz or only lower semicontinuous, using appropriate tools; see [12]. In the most general case where \(B \) is not necessarily smooth, the aforementioned conditions can be replaced by the following solution-dependent monotonicity property:

(1) Along each solution \(\phi \) to (1) starting from \(x_0 \in U(K) \setminus \text{int}(K) \) and such that \(\phi([0, T), x_0) \subset U(K) \setminus \text{int}(K) \), for some \(T > 0 \), the map \(t \mapsto B(\phi(t, x_0)) \) is nonincreasing on \([0, T]\).

The second type of barrier functions in (3) has been applied to multi-robots collision avoidance in [14, 15], adaptive cruise control in [16], and bipedal walking in [17].

Finally, a notion equivalent to, named \textit{conditional invariance}, is studied and characterized in [18, 19, 20, 21] using Lyapunov-like conditions. Roughly speaking, a set \(X_s \subset \mathbb{R}^n \) is conditionally invariant with respect to a set \(X_o \subset X_s \) if the solutions starting from \(X_s \) never leave the set \(X_s \). Connections between Lyapunov-like conditions guaranteeing conditional invariance and the more recent conditions using barrier functions are discussed in Section V-D.

B. Motivation

Many existing tools to certify safety for control systems are based on the search of a controller and the corresponding barrier function that certifies safety for the resulting closed-loop system [22, 23, 24]. By solving the converse safety problem, in this case, one can be assured that a barrier function exists when the control system can be rendered safe. Generally speaking, given a safe system (1) with respect to \((X_o, X_u)\), the \textit{converse safety problem} pertains to showing the existence of a barrier function candidate \(B : \mathbb{R}^n \to \mathbb{R} \) satisfying (3) and verifying conditions guaranteeing safety, such as those in (5), (6), and (7). To the best of our knowledge, [25, 26], and [27] are the only existing works treating the converse safety problem via barrier functions. We review these results next.

The converse safety result proposed in [25] applies when \(F \) is single valued and continuously differentiable. Furthermore, it assumes that there exists a continuously differentiable function \(V : \mathbb{R}^n \to \mathbb{R} \) that is strictly decreasing along the solutions to (1); namely, \(V \) and \(F \) satisfy

\[\langle \nabla V(x), F(x) \rangle < 0 \quad \forall x \in \mathbb{R}^n. \tag{8} \]

Under these conditions, safety with respect to \((X_o, X_u)\) is shown to imply the existence of a continuously differentiable barrier function candidate \(B \) satisfying (5). Note that this result does not apply when system (1) admits a limit cycle. Indeed, for systems with limit cycles, it is not possible to find a function \(V \) such that (8) holds; see Example 6.

In [26], a geometric point of view is adopted using \textit{Morse-Smale} theory when system (1) is defined on a smooth and compact manifold. The right-hand side \(F \) is assumed to be single valued and smooth. Also, the sets \(X_o \) and \(X_u \) are assumed to be compact and disjoint. In the study in [26], a robust safety notion (see Definition 17) is introduced, for which necessary and sufficient conditions using barrier functions are proposed. Furthermore, in the converse safety result in [26], the strictly decreasing function \(V \) assumed to exist in [25] is replaced by the existence of a Meyer function; see [26, Definitions 7 and 8] for more details.

Finally, in [27], a converse robust safety result that does not assume existence of \(V : \mathbb{R}^n \to \mathbb{R} \) such that (8) holds nor the existence of a Meyer function is established when \(F \) is smooth and single valued. According to the latter reference, system (1) is robustly safe with respect \((X_o, X_u)\) if, for some \(\epsilon > 0 \), the perturbed system

\[\dot{x} \in F(x) + \epsilon B \quad x \in \mathbb{R}^n, \tag{9} \]

where \(B \subset \mathbb{R}^n \) is the closed unit ball centered at the origin, is safe with respect \((X_o, X_u)\). It is shown in [27] that when additionally the closures of the sets \(X_o \) and \(X_u \) are disjoint, and the set \(\mathbb{R}^n \setminus X_u \) is bounded, robust safety of system (1) with respect to \((X_o, X_u)\) is equivalent to the existence of a barrier function candidate satisfying (3) and such that

\[\langle \nabla B(x), F(x) \rangle < 0 \quad \forall x \in \partial K. \]

To the best of our knowledge, providing necessary and sufficient conditions for safety, or robust safety, without restricting the class of systems (1) are not available in the literature. Furthermore, as we show in this paper, safe systems may not admit a barrier function with the properties assumed in the literature. In fact, Example 1 presents a system as in (1) that is safe with respect to \((X_o, X_u)\) \(\subset \mathbb{R}^n \times \mathbb{R}^n \), where \(F \) is single valued and smooth, but does not admit a barrier function candidate \(B : \mathbb{R}^n \to \mathbb{R} \), function of \(x \) only, that is continuous and satisfies any of the sufficient conditions for safety in (5), (6), (7), and (8). This fact motivates the new class of barrier functions introduced in this paper.

C. Contributions

This paper makes the following contributions:

1) We formulate a safety problem in terms of time-varying barrier functions, that are not necessarily smooth, and propose necessary and sufficient conditions for safety without assuming existence of \(V : \mathbb{R}^n \to \mathbb{R} \) such that (8) holds, the existence of a Meyer function, or boundedness of the set \(\mathbb{R}^n \setminus X_u \). Allowing for nonsmooth barrier functions is justified by the lack of existence of smooth scalar functions satisfying (3) for some scenarios of sets.
(X_o, X_u) as shown in Example 5. Furthermore, time-varying barrier functions are motivated by the existing converse Lyapunov theorems for stability, where time-varying Lyapunov functions are constructed for systems with a stable origin [28, 29, 30, 31, 32].

2) In Section IV-A inspired by the converse Lyapunov stability theorem in [28], given initial and unsafe sets (X_o, X_u), we construct a time-varying barrier function as a marginal function of an appropriately defined reachable set over a given finite window of time, along the solutions to (1), and starting from a given initial condition. We show that such a barrier function guarantees safety provided that (1) is safe with respect to (X_o, X_u).

3) Furthermore, we show that this barrier function inherits the regularity properties of the proposed reachable set when this one is viewed as a set-valued map [33]. As a result, when F satisfies mild regularity conditions, we show that safety of (1) with respect to (X_o, X_u) is equivalent to the existence of a lower semicontinuous time-varying barrier function; see Theorem 2.

4) In Section IV-B when in addition F is locally Lipschitz, we establish Lipschitz continuity of the proposed reachability mapping using Filippov Theorem [34, Theorem 5.3.1]. As a result, using the dependence of the constructed barrier function on the reachability map, we conclude that safety is equivalent to the existence of a locally Lipschitz time-varying barrier function; see Theorem 5.

5) In Section IV-C inspired by the converse Lyapunov stability theorem in [29], we build upon the barrier function constructed in Section IV-B to conclude the existence of a barrier function that is continuously differentiable provided that F is single valued and continuously differentiable; see Theorem 4. As observed in [30], Lyapunov stability of the origin is equivalent to conditional invariance with respect to a sequence of compact sets \{(X_o, X_u)\}_{i=0}^\infty that converges to the origin. However, extending the convex stability result in [29] to the context of safety is not straightforward and offers many technical challenges. Those challenges are due to the fact that the sets X_o and R^n \setminus X_u are not necessarily bounded, X_o is not necessarily forward pre-invariant, and the solutions to the system are not necessarily bounded.

Preliminary version of this work is in [35], where only differential equations are considered and the proofs are omitted. Furthermore, the current paper includes more examples and a more detailed comparison to the existing literature. The remainder of the paper is organized as follows. Preliminary notions are in Section II. The conservative safety problem using time-varying barrier functions is formulated in Section III. The main results are in Section IV. A comparison to existing literature is in Section V. Finally, conclusion and future work are in Section VI.

Notation. Let \R_{\geq} := [0, \infty), \N := \{0, 1, \ldots\}, and \N^* := \{1, 2, \ldots, \infty\}. For x and y \in \R^n, x^T denotes the transpose of x, \|x\| the Euclidean norm of x, and \langle x, y \rangle := x^T y denotes the scalar product between x and y. For a set K \subset \R^n, we use cl(K) to denote its closure and \|x\|_K := \inf_{y \in K} \|x - y\| to define the distance between x and the set K. For O \subset \R^n, K \setminus O denotes the subset of elements of K that are not in O. By \R, we denote the closed unit ball centered at the origin. By F : \R^n \to \R^n, we denote a set-valued map associating each element x \in \R^n into a subset F(x) \subset \R^n. For a set-valued map F : \R^n \to \R^n, dom F denotes the domain of definition of F and F^{-1}(x) denotes the reciprocal image of F evaluated at x. For a continuously differentiable function B : \R^n \to \R, \nabla B(x) denotes the gradient image of B evaluated at x. Finally, by \mathcal{C}^k(K), with k \in \mathbb{N}, we denote the class of k-times differentiable functions on K where the k-th derivative is continuous on K (when K = \R^n, we only write \mathcal{C}^k).

II. Preliminaries

A. Set-Valued and Single-Valued Maps

We start this section by recalling the following continuity notions for set-valued and single-valued maps.

Definition 1 (Semicontinuous set-valued maps): Consider a set-valued map F : K \rightrightarrows \R^n, where K \subset \R^m.

- The map F is said to be outer semicontinuous at x \in K if, for every sequence \{x_i\}_{i=0}^\infty \subset K and for every sequence \{y_i\}_{i=0}^\infty \subset \R^n with lim_{i \to \infty} x_i = x, \lim_{i \to \infty} y_i = y \in \R^n, and y_i \in F(x_i) for all i \in \mathbb{N}, we have y \in F(x); see [36, Definition 5.9].

- The map F is said to be lower semicontinuous (or, equivalently, inner semicontinuous) at x \in K if for each \epsilon > 0 and y_x \in F(x), there exists U(x) satisfying the following property: for each z \in U(x) \cap K, there exists y_z \in F(z) such that \|y_z - y_x\| \leq \epsilon; see [37, Proposition 2.1].

- The map F is said to be upper semicontinuous at x \in K if, for each \epsilon > 0, there exists U(x) such that for each y \in U(x) \cap K, F(y) \subset F(x) + \epsilon \R^n, see [38, Definition 1.4.1].

- The map F is said to be continuous at x \in K if it is both upper and lower semicontinuous at x. Furthermore, the map F is said to be upper, lower, outer semicontinuous, or continuous if, respectively, it is upper, lower, outer semicontinuous, or continuous for all x \in K.

Definition 2 (Semicontinuous single-valued maps): Consider a scalar function B : K \to \R, where K \subset \R^m.

- The scalar function B is said to be lower semicontinuous at x \in K if, for every sequence \{x_i\}_{i=0}^\infty \subset K such that lim_{i \to \infty} x_i = x, we have lim inf_{i \to \infty} B(x_i) \geq B(x).

- The scalar function B is said to be upper semicontinuous at x \in K if, for every sequence \{x_i\}_{i=0}^\infty \subset K such that lim_{i \to \infty} x_i = x, we have lim sup_{i \to \infty} B(x_i) \leq B(x).

- The scalar function B is said to be continuous at x \in K if it is both upper and lower semicontinuous at x.
Definition 4 (Locally Lipschitz set-valued maps): The set-valued map \(F : K \rightarrow \mathbb{R}^n \), with \(K \subseteq \mathbb{R}^m \), is said to be locally Lipschitz if, for each nonempty set \(K_o \subset K \), there exists \(k > 0 \) such that, for all \((x_1, x_2) \in K_o \times K_o\),
\[
F(x_1) \subset F(x_2) + k|x_1 - x_2| \mathbb{R},
\]
or, equivalently,
\[
d_H(F(x_2), F(x_1)) \leq k|x_2 - x_1|,
\]
where \(d_H(X_1, X_2) \) is the Hausdorff distance between the sets \(X_1 \subset \mathbb{R}^{m} \) and \(X_2 \subset \mathbb{R}^m \); namely,
\[
d_H(X_1, X_2) := \max \left\{ \sup_{x \in X_1} |x|, \sup_{x \in X_2} |x| \right\}.
\]

Definition 5 (Locally Lipschitz functions): A function \(F : K \rightarrow \mathbb{R}^n \), with \(K \subseteq \mathbb{R}^m \), is said to be locally Lipschitz if, for each nonempty set \(K_o \subset K \), there exists \(k > 0 \) such that, for all \((x_1, x_2) \in K_o \times K_o\),
\[
|F(x_1) - F(x_2)| \leq k|x_1 - x_2|.
\]

Moreover, each vector \(\zeta \in \partial P B(x) \) is said to be a proximal subgradient of \(B \) at \(x \).

Remark 2: Using \([39]\) Theorem 2.5, we conclude that \(\partial P B(x) = \{\zeta \in \mathbb{R}^n : 3e \geq 0 : \forall y \in U(x) \}
\]
\[
B(y) \geq B(x) + \langle \zeta, y - x \rangle - \epsilon|y - x|^2 \}
\]
Furthermore, when \(B \in C^2 \), we conclude that \(\partial P B(x) = \{\nabla B(x)\} \). Moreover, the latter equality holds also when \(B \) is only \(C^1 \) provided that \(\partial P B(x) \neq \emptyset \).

Definition 10 (Clarke generalized gradient): Let \(B : \mathbb{R}^n \rightarrow \mathbb{R} \) be locally Lipschitz. Let \(\Omega \) be any subset of zero measure in \(\mathbb{R}^n \), and let \(\Omega_B \) be the set of points in \(\mathbb{R}^n \) at which \(B \) fails to be differentiable. The Clarke generalized gradient at \(x \) is defined as
\[
\partial C B(x) := \text{co} \left\{ \lim_{t \rightarrow \infty} \nabla B(x_t) : x_t \rightarrow x, \ x_t \notin \Omega_B, \ x_t \notin \Omega \right\}.
\]

Remark 3: Definition \([10]\) is equivalent to the original definition of the Clarke generalized gradient in \([39]\); see Theorem 8.1 therein.

C. Safety and Set-Invariance in Differential Inclusions

First, we recall the concept of solution to \([1]\).

Definition 11 (Concept of solution): A function \(\phi : dom \phi \rightarrow \mathbb{R}^n \), where \(dom \phi \) is of the form \([0, T] \) or \([0, \infty) \) for some \(T \in \mathbb{R}_{\geq 0} \cup \{+ \infty\} \), is a solution to \([1]\) starting from \(x_0 \in \mathbb{R}^n \) if \(t \rightarrow \phi(t, x_0) \) is locally absolutely continuous and satisfies \([1]\) for almost all \(t \in dom \phi \).

A solution \(\phi \) starting from \(x_0 \in \mathbb{R}^n \) is forward complete if \(dom \phi \) is unbounded, and it is maximal if there is no solution \(\psi \) starting from \(x_0 \) such that \(\psi(t, x_0) = \phi(t, x_0) \) for all \(t \in dom \phi \) and \(dom \phi \) is a proper subset of \(dom \psi \). Finally, the system \([1]\) is said to be forward complete if each of its maximal solutions is forward complete.

Next, we consider a set \(X_o \subset \mathbb{R}^n \) denoting the unsafe region of the state space, a set \(X_u \subset \mathbb{R}^n \) denoting the set of initial conditions – namely, the region that the solutions start from – and a set \(X_s \) denoting the safe set. Without loss of generality, we assume that \(X_o \cap X_u = \emptyset, X_o \subset X_s, \) and \(X_s \cap X_u = \emptyset \).

Definition 12 (Safety): System \([1]\) is said to be safe with respect to \((X_o, X_u) \) if, for each solution \(\phi \) to \([1]\) starting from \(x_0 \in X_o \), we have \(\phi(t, x_0) \in X_u \) for all \(t \in dom \phi \).

Definition 13 (Conditional invariance \([18]\))): A set \(X_s \subset \mathbb{R}^n \) is conditionally invariant with respect to a set \(X_o \subset X_s \) for system \([1]\) if, for each solution \(\phi \) starting from \(x_0 \in X_o \), we have \(\phi(t, x_0) \in X_s \) for all \(t \in dom \phi \).

Definition 14 (Forward pre-invariance): A set \(X_s \subset \mathbb{R}^n \) is forward pre-invariant for \([1]\) if, for each solution \(\phi \) to \([1]\) starting from \(x_0 \in X_s \), we have \(\phi(t, x_0) \in X_s \) for all \(t \in dom \phi \).

The safety and the conditional invariance notions are related as follows: system \([1]\) is safe with respect to \((X_o, X_u) \) if and only if the set \(X_o := \mathbb{R}^n \setminus X_u \) is conditionally invariant with respect to \(X_o \) for \([1]\). Safety generalizes the forward pre-invariance notion: forward pre-invariance of a set \(X_s \subset \mathbb{R}^n \) is equivalent to safety with respect \((X_s, \mathbb{R}^n \setminus X_u) \). Note that, the
prefix “pre” in forward pre-invariance is used to accommodate maximal solutions that are not complete. For example, if a solution \(\phi \) to \((1)\) starts from \(x_0 \in X_o \) and has a finite-time escape while remaining in \(X_i \), then such a solution may still satisfy \(\phi(t,x_0) \in X_i \) for all \(t \in \text{dom} \phi \), but with \(\text{dom} \phi \) bounded and open to the right.

III. The Converse-Safety Problem Formulation

Generally speaking, converse safety theorems identify classes of dynamical systems for which safety is equivalent to the existence of a smooth barrier function satisfying \((3)\) plus a sufficient condition for safety. According to the following (counter) example, \(B \) and \(x \).

Example 1: Consider the system in \((1)\) with \(x \in \mathbb{R}^2 \),
\[
F(x) := \begin{cases}
-x_2 + r x_1 \sin(1/r)^2 & \text{if } x \neq 0 \\
0 & \text{otherwise},
\end{cases}
\]
and \(r := |x| \). The system is safe with respect to the sets
\[
X_o := \{0\}, \quad X_u := \mathbb{R}^2 \setminus X_o.
\]
Indeed, the safety property, in this case, is equivalent to forward invariance of the origin (which coincides with \(X_o \)). Forward invariance of the origin holds since the origin is an equilibrium point for system \((1)\). However, we show below that it is not possible to find a barrier candidate \(B \), function only of \(x \), that is continuous, nonincreasing along the solutions to the system, and at the same time having a value at the origin that is strictly smaller than all the values elsewhere as \((3)\) requires.

In polar coordinates, system \((1)\) can be rewritten as
\[
\dot{r} = \dfrac{r^2}{2} \sin(1/r)^2, \quad \dot{\theta} = 1.
\]
Furthermore, from \((22)\), it follows that the origin is surrounded by \((\text{countably})\) infinitely many limit cycles centered at the origin, denoted by \(Q_i, i \in \mathbb{N} \). Moreover, the radius of the limit cycles monotonically converges to zero as \(i \to \infty \) and the trajectories starting from the interior of the annulus formed by each two circles \(Q_{i+1} \) and \(Q_i \) are spirals that leave \(Q_{i+1} \) and approach \(Q_i \). Figure 1 depicts such limit cycles as well as solutions starting from different initial conditions.

Now, assume the existence of a continuous function \(B \) that is nonincreasing along the solutions to \((21)\) and positive definite. Furthermore, for a sequence of points \(\{x_i\}_{i=0}^{\infty} \) with \(x_i \in Q_i \), the sequence \(\{B(x_i)\}_{i=0}^{\infty} \) converges to zero, and is strictly positive. Hence, there exists a strictly positive and monotonically decreasing subsequence \(\{B(x_{i_k})\}_{k=0}^{\infty} \) that also converges to zero. As a result, there exist \((l_1,l_2) \in \mathbb{N} \times \mathbb{N} \) and \(\epsilon > 0 \) such that \(B(x_{l_1}) - B(x_{l_2}) = \epsilon \). We assume, further and without loss of generality, that \(l_2 - l_1 = 2 \) (the same reasoning is valid if \(l_2 - l_1 > 2 \)). Next, using the continuity assumption on \(B \) and the properties of solutions to \((21)\), it follows that for any \(\epsilon > 0 \) we can find \(T > 0 \) and two initial conditions \(x_0 \) and \(x_{o1} \) in the interior of the annulus formed by \(Q_{l_2} \) and \(Q_{l_2-1} \) and, respectively, in the interior of the torus formed by \(Q_{l_2-1} \) and \(Q_{l_1} \) such that
\[
\max \{|B(x_0) - B(x_{l_2})|, |B(x_{o1}) - B(\phi(T,x_0))|, |B(x_{l_1}) - B(\phi_1(T,x_{o1}))|\} \leq \epsilon_1,
\]
where \(\phi \) and \(\phi_1 \) are the solutions to \((21)\) starting from \(x_0 \) and \(x_{o1} \), respectively. Now, having
\[
\epsilon = B(x_{l_1}) - B(x_{l_2}) = B(x_{l_1}) - B(\phi_1(T,x_{o1})) + B(\phi_1(T,x_{o1})) - B(x_{o1}) + B(x_{o1}) - B(\phi(T,x_0)) + B(\phi(T,x_0)) - B(x_0) + B(x_0) - B(x_{l_2})
\]
and using the fact that \(B \) does not increase along the solutions to system \((21)\), we obtain
\[
\epsilon = B(x_{l_1}) - B(x_{l_2}) \leq |B(x_{l_1}) - B(\phi_1(T,x_{o1}))| + |B(x_{o1}) - B(\phi(T,x_0))| + |B(x_0) - B(x_{l_2})| \leq 3\epsilon_1.
\]
The latter fact yields to a contradiction since \(\epsilon \) is fixed and \(\epsilon_1 \) can be made as small as possible, that is, for \(\epsilon_1 = \epsilon/4 \), we obtain \(\epsilon \leq 3\epsilon/4 \) which is a contradiction. Hence, though it is safe, an autonomous barrier function does not exist.

This example is inspired from \cite{32, Page 82} and \cite{31, Page 46}, where the existence of Lyapunov functions for (non-asympotically) stable systems is analyzed.

To handle the lack of existence of smooth barrier functions for safe systems, we introduce the following time-varying barrier function candidate notion.

Definition 15 (Time-varying barrier function candidate): A scalar function \(B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) is a time-varying barrier function candidate for safety with respect to \((X_o,X_u) \) if
\[
B(t,x) > 0 \quad \forall (t,x) \in \mathbb{R}^n \times X_u,
\]
\[
B(t,x) \leq 0 \quad \forall (t,x) \in \mathbb{R}^n \times X_o.
\]

Using time-varying barrier functions, we will be able to address the following converse safety problem.

Fig. 1. Solutions to system \((21)\) starting from different initial conditions.
Along each solution ϕ to (1) starting from $x_o \in U(K) \setminus \text{int}(K)$ and remaining in $U(K) \setminus \text{int}(K)$, the map $t \mapsto B(t, \phi(t, x_o))$ is nonincreasing, where

$$K := \{(t, x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n : B(t, x) \leq 0\}.$$

Problem 1 (Converse safety problem): Given sets $(X_o, X_u) \subset \mathbb{R}^n \times \mathbb{R}^n$, with $X_o \cap X_u = \emptyset$, show that the system in (1) is safe with respect to (X_o, X_u) if and only if there exists a time-varying barrier function candidate $B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}$, with the best possible regularity\footnote{By “best regularity” means the strongest smoothness property.}, such that

$$B \text{ nonincreasing, where}$$

$$K := \{(t, x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n : B(t, x) \leq 0\}.$$

Note that the property in [**]** requires the computation of the solutions to (1). However, depending on the regularity of the function B and of the map F, as shown in [40], it is possible to use the following infinitesimal conditions that are necessary and sufficient to conclude [**]**

- When B is continuously differentiable, [**]** is satisfied if

$$\langle \nabla B(t,x) , [1 \ y^T]^T \rangle \leq 0 \quad \forall \eta \in F(x), \forall (t,x) \in U(K) \setminus K.$$

When additionally F is locally Lipschitz, (27) is equivalent to [**]**

- When B is locally Lipschitz and F is locally bounded, [**]** is satisfied if

$$\langle \zeta , [1 \ y^T]^T \rangle \leq 0 \quad \forall \zeta \in \partial C B(t,x), \forall \eta \in F(x), \forall (t,x) \in U(K) \setminus K,$$

where $\partial C B$ is the Clarke generalized gradient of B (see Definition 10). When additionally F is locally Lipschitz and B is regular according to Definition 7 (28) is equivalent to [**]**

- When B is only continuous and F is locally Lipschitz with closed images, [**]** is satisfied if and only if

$$\langle \zeta , [1 \ y^T]^T \rangle \leq 0 \quad \forall \zeta \in \partial B(t,x), \forall \eta \in F(x), \forall (t,x) \in U(K) \setminus K,$$

where ∂B is the proximal subdifferential of B (see Definition 9).

To solve Problem 1 we start showing that having a time-varying barrier function candidate verifying [**]** is enough to conclude that the system in (1) is safe with respect to (X_o, X_u). In particular, note that [**]** reduces to (1) when B is time-independent.

Theorem 1: Given initial and unsafe sets $(X_o, X_u) \subset \mathbb{R}^n \times \mathbb{R}^n$, system (1) is safe with respect to (X_o, X_u) if there exists a lower semicontinuous time-varying barrier function candidate $B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}$ such that [**]** holds. \hfill \square

Proof. Consider the extended system

$$(\dot{t}, \dot{x}) \in (1, F(x)) \quad (t,x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n$$

and the extended initial and unsafe sets $X_{oa} := \mathbb{R}_{\geq 0} \times X_o$ and $X_{ua} := \mathbb{R}_{\geq 0} \times X_u$, respectively. To use a contradiction argument, we assume that there exists a solution $\phi_a := (t, \phi)$ starting from $\phi_{ao} := (0, x_o) \in X_{oa}$ that reaches the set X_{ua} in finite time. This implies, using the continuity of ϕ_a, the existence of $0 \leq t_1 < t_2$ such that $\phi_a(t_1, t_2), \phi_{ao}) \subset U(\partial K) \setminus \text{int}(K), \phi_a(t_1, x_{ao}) \in \partial K$, and $\phi_a(t_2, \phi_{ao}) \in \partial K(K) \setminus K$. Hence, $B(\phi_a(t_1, \phi_{ao})) \leq 0$ and $B(\phi_a(t_2, \phi_{ao})) > 0$. However, this contradicts [**]**.

The challenge in Problem 1 is to prove the reverse direction of the statement in Theorem 1, namely, necessity of the statements to (1). However, depending on the regularity of the function B and of the map F, as shown in [40], it is possible to use the following infinitesimal conditions that are necessary and sufficient to conclude [**]**

- When B is continuously differentiable, [**]** is satisfied if

$$\langle \nabla B(t,x) , [1 \ y^T]^T \rangle \leq 0 \quad \forall \eta \in F(x), \forall (t,x) \in U(K) \setminus K,$$

When additionally F is locally Lipschitz, (27) is equivalent to [**]**

- When B is locally Lipschitz and F is locally bounded, [**]** is satisfied if

$$\langle \zeta , [1 \ y^T]^T \rangle \leq 0 \quad \forall \zeta \in \partial C B(t,x), \forall \eta \in F(x), \forall (t,x) \in U(K) \setminus K,$$

where $\partial C B$ is the Clarke generalized gradient of B (see Definition 10). When additionally F is locally Lipschitz and B is regular according to Definition 7 (28) is equivalent to [**]**

- When B is only continuous and F is locally Lipschitz with closed images, [**]** is satisfied if and only if

$$\langle \zeta , [1 \ y^T]^T \rangle \leq 0 \quad \forall \zeta \in \partial B(t,x), \forall \eta \in F(x), \forall (t,x) \in U(K) \setminus K,$$

where ∂B is the proximal subdifferential of B (see Definition 9).

To solve Problem 1 we start showing that having a time-varying barrier function candidate verifying [**]** is enough to conclude that the system in (1) is safe with respect to (X_o, X_u). In particular, note that [**]** reduces to (1) when B is time-independent.

Theorem 1: Given initial and unsafe sets $(X_o, X_u) \subset \mathbb{R}^n \times \mathbb{R}^n$, system (1) is safe with respect to (X_o, X_u) if there exists a lower semicontinuous time-varying barrier function candidate $B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}$ such that [**]** holds. \hfill \square

Proof. Consider the extended system

$$(\dot{t}, \dot{x}) \in (1, F(x)) \quad (t,x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n$$

and the extended initial and unsafe sets $X_{oa} := \mathbb{R}_{\geq 0} \times X_o$ and $X_{ua} := \mathbb{R}_{\geq 0} \times X_u$, respectively. To use a contradiction argument, we assume that there exists a solution $\phi_a := (t, \phi)$ starting from $\phi_{ao} := (0, x_o) \in X_{oa}$ that
Note that the function B in (34) is inspired by the converse Lyapunov stability theorem in [28]. As we show in this section, when system (1) is safe with respect to (X_o, X_u), the function B in (34) becomes a time-varying barrier function candidate with respect to (X_o, X_u) in the sense of Definition 15. Furthermore, we also show that the scalar function B in (34) inherits the regularity properties of the reachability map R.

A. When F Satisfies Assumption 7

In the following result, for system (1) satisfying Assumption 1, we show that the reachability map R is outer semicontinuous, locally bounded, and continuous with respect to t. A proof is in the appendix.

Proposition 1: Suppose that the system in (1) is forward complete and F satisfies Assumption 1. Then, the following hold:

1) The map R is outer semicontinuous and locally bounded.
2) The map $t \mapsto R(t, x)$ is continuous for all $x \in \mathbb{R}^n$.

Along the lines of [33, Theorem 1.4.16], given a set-valued map $\Pi: \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ and a set $X \subset \mathbb{R}^n$, we show how the marginal function $f: \mathbb{R}^m \to \mathbb{R}$ given by

$$f(z) := \inf \{|y|_X : y \in \Pi(z)\}$$

(35)

inherits the regularity of the set-valued map R. A proof is in the Appendix.

Lemma 1: Consider a locally bounded set-valued map $\Pi: \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ such that $\Pi(z)$ is nonempty for all $z \in \mathbb{R}^m$. Consider a closed and nonempty set $X \subset \mathbb{R}^n$ and the marginal function $f: \mathbb{R}^m \to \mathbb{R}$ in (35). The following hold:

1) If Π is outer semicontinuous, then f is lower semicontinuous.
2) If Π is lower semicontinuous, then f is upper semicontinuous.
3) If Π is locally Lipschitz, then so is f.

The following result is a direct consequence of Proposition 1 and Lemma 1.

Proposition 2: Suppose the system in (1) is forward complete and that F satisfies Assumption 1. Consider a closed set $X_o \subset \mathbb{R}^n$ and the function B in (34). The following hold:

1) The function B is lower semicontinuous.
2) The map $t \mapsto B(t, x)$ is continuous.

Proof. The backward solutions to (1) starting from $x \in \mathbb{R}^n$ are the forward solutions to (31) starting from x. Furthermore, having (1) forward complete and F satisfying Assumption 1 implies that (31) is also forward complete and $-F$ satisfies Assumption 1. Hence, using Proposition 1, we conclude that the reachability map R is outer semicontinuous and locally bounded. Next, using the first item in Lemma 1, we conclude that B is lower semicontinuous.

Furthermore, using Proposition 1, we conclude that the map $t \mapsto R(t, x)$ is continuous; hence, lower semicontinuous. Next, using the second item in Lemma 1, we conclude that the map $t \mapsto B(t, x)$ is upper semicontinuous. Finally, since we already showed that B is lower semicontinuous, we conclude that $t \mapsto B(t, x)$ is continuous.

We are now ready to provide a solution to Problem 1 when F satisfies Assumption 1.

Theorem 2: Suppose the system in (1) is forward complete and F satisfies Assumption 1. Consider initial and unsafe sets $(X_o, X_u) \subset \mathbb{R}^n \times \mathbb{R}^n$ such that X_o is closed and $X_o \cap X_u = \emptyset$. System (1) is safe with respect to (X_o, X_u) if and only if there exists a lower semicontinuous time-varying barrier function candidate $B: \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}$, with $t \mapsto B(t, x)$ continuous, such that $\star \star$ holds.

Proof. The sufficiency part follows using Theorem 1. To prove the necessary part, we use the barrier function candidate B in (34). Since the set X_o is closed and system (1) is safe and the system (1) is forward complete, we conclude that the backward solutions to (1) starting from $x \in X_u$ will neither reach nor converge to the set X_o in finite time; hence, $B(t, x) > 0$ for all $(t, x) \in \mathbb{R}_{\geq 0} \times X_u$. Then, (24) holds. Furthermore, (23) is trivially satisfied under (34). Then, B is a time-varying barrier function candidate for safety with respect to (X_o, X_u). Next, we show that the barrier function candidate B is monotonically nonincreasing along the solutions to (1). Indeed, consider a solution $\phi: [t_0, t_1) \to \mathbb{R}^n$ to (1) starting from $x_o \in \mathbb{R}^n$ at $t = 0$, for some $h > 0$. Note that $B(t, x, \phi(t, h, x_o)) = \inf\{|y|_{X_o} : y \in R(-t - h, \phi(t + h, x_o))\}$. Furthermore, we use the fact that $R(-t - h, x_o) \subset R(-t - h, \phi(t + h, x_o))$, which implies that

$$B(t, h, \phi(t, h, x_o)) = \inf\{|y|_{X_o} : y \in R(-t - h, \phi(t + h, x_o))\} \leq \inf\{|y|_{X_o} : y \in R(-t, x_o)\} = B(t, \phi(t, x_o)).$$

Hence, the barrier function candidate B does not increase along the solution ϕ. Hence, $\star \star$ holds. Finally, the fact that B is lower semicontinuous and $t \mapsto B(t, x)$ is continuous follows from Proposition 2.

Example 2 (Example 1 revisited): Consider system (21) with the sets (X_o, X_u) as in (22). According to the proof Theorem 2, the function $B: \mathbb{R}_{\geq 0} \times \mathbb{R}^2 \to \mathbb{R}$ given by

$$B(t, x) = \phi(-t, |x|),$$

(36)

where ϕ is the backward solution to $\dot{r} = (r^2/2) \sin^2(1/r)$ starting from $|x|$, is a lower semicontinuous time-varying barrier function candidate satisfying $\star \star$. Indeed, the function B in (36) coincides with the time-varying barrier function candidate B in (34). Furthermore, the explicit formula of B in (36) is given by

$$B(t, x) = \begin{cases} \frac{1}{k\pi} - \frac{1}{(k\pi) + k\pi} & \text{if } x = 0, \\ 0 & \text{if } x \neq 0, \end{cases}$$

(37)

where \cot is the cotangent function and \arccot is its inverse function; namely, $\arccot(\cot(x)) = x$ for all $x \in (0, \pi)$. □
B. When F is Locally Lipschitz

For system (1) with F locally Lipschitz and having closed images, one can use the well-known Filippov Theorem (see Lemma 6 in the appendix) to conclude that the reachability map R is also locally Lipschitz. In this setting, we have the following result.

Proposition 3: Suppose system (1) is forward complete and F satisfies Assumption 1 and is locally Lipschitz. Then, R is locally Lipschitz.

Next, using Lemma 1 we show that, when F is locally Lipschitz, B in (34) is locally Lipschitz.

Proposition 4: Suppose that the system in (1) is forward complete and F is locally Lipschitz with closed images. Let $X_o \subset \mathbb{R}^n$ be closed. Then, B in (34) is locally Lipschitz.

Proof. The backward solutions to (1) starting from $x \in \mathbb{R}^n$ are the solutions to (31) starting from x. Furthermore, having (1) forward complete and F locally Lipschitz and satisfying Assumption 1 imply that (31) is also forward complete and $-F$ is locally Lipschitz and satisfies Assumption 1. Hence, using Proposition 3, we conclude that the reachability map R is locally Lipschitz. Finally, using the third item in Lemma 1 we conclude that B is locally Lipschitz.

We are now ready to present an equivalent characterization of safety solving Problem 1 when F is locally Lipschitz.

Theorem 3: Suppose the system in (1) is forward complete, and F satisfies Assumption 1 and is locally Lipschitz. Consider the initial and unsafe sets $(X_o, X_u) \subset \mathbb{R}^n \times \mathbb{R}^n$ such that X_o is closed and $X_o \cap X_u = \emptyset$. System (1) is safe with respect to (X_o, X_u) if and only if there exists a locally Lipschitz time-varying barrier function candidate $B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}$ such that

$$\langle \zeta, [1 \ \eta^T] \rangle \leq 0 \quad \forall \zeta \in \partial_B B(t, x), \ \forall \eta \in F(x), \ \forall x \in O. \quad (39)$$

Proof. According to Theorem 3 safety with respect to (X_o, X_u), when the set X_o is closed, is equivalent to the existence of a locally Lipschitz time-varying barrier function $B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}$ satisfying (24), (25), and (31). Moreover, according to the proof of Theorem 2 for each solution ϕ to (1) starting from $x_o \in \mathbb{R}^n$, the map $t \mapsto B(t, \phi(t, x_o))$ is nonincreasing. This property is equivalent to saying that property (**) in Lemma 2 is satisfied while replacing (x, O) therein by $(\{t, x\}, (\mathbb{R} \times \mathbb{R}^n))$, which completes the proof since the function B is continuous.

Example 3 (Example 1 revisited): Consider system (21) in Example 1 with the sets (X_o, X_u) as in (22). Since the right-hand side in (21) is locally Lipschitz and X_o is closed, we conclude via Theorem 3 that the time-varying barrier function B in (36) is locally Lipschitz and satisfies (39).

C. When F is Single Valued and Smooth

In the context of (non-asymptotic) stability of the origin, Kurzweil in [29] deduced from the Lyapunov function constructed in [28], which is similar to (39), the existence of a Lyapunov function that is C^1 everywhere (except at the origin) under continuous differentiability of F and using the fact that the origin is an equilibrium point. The compactness of the origin is an important requirement for the proof in [29] to hold. Unfortunately, this assumption does not hold when a generic (not necessarily invariant) set X_o is considered instead of the origin, as X_o might be unbounded. To handle this situation, we extend [28, Lemma 48.3] via Lemma 3 and Lemma 4 below, whose proofs are in the Appendix.

Lemma 3: Consider a continuous function $h : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and a closed set $K \subset \mathbb{R}^n$. Assume that

i) The function h is positive definite with respect to K uniformly in t; namely, $h(t, x) = 0$ for all $t \geq 0$ if and only if $x \in K$;

ii) The map $t \mapsto h(t, x)$ is nonincreasing for each $x \in \mathbb{R}^n$.

Then, for any compact set $I \subset \mathbb{R}^n$ such that $I \cap K = \emptyset$, there exists a continuous function $g : \mathbb{R}_{\geq 0} \times I \to \mathbb{R}_{\geq 0}$ such that

1) The function $g \in C^1(\mathbb{R}_{\geq 0} \times \text{int}(I))$.

2) For any $(t, x) \in \mathbb{R}_{\geq 0} \times I$,

$$\frac{1}{2} h(t, x) \leq g(t, x) \leq 2h(t, x), \quad (40)$$

3) The map $t \mapsto g(t, x)$ is nonincreasing for each $x \in I$.

Lemma 4: Consider a continuous function $h : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and consider a closed set $K \subset \mathbb{R}^n$. Assume that h in Lemma 3 hold. Then, there exists a continuous function $g : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that

1) The function $g \in C^1(\mathbb{R}_{\geq 0} \times (\mathbb{R}^n \setminus K))$,
2) For all \((t, x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n\),
\[
\frac{1}{2} h(t, x) \leq g(t, x) \leq 2h(t, x),
\] (41)

3) The map \(t \mapsto g(t, x)\) is nonincreasing for each \(x \in \mathbb{R}^n\).

It should be added that the origin being an equilibrium plays an important role in (29) to guarantee positive definiteness of a certain function constructed in the proof. However, such a function is not necessarily positive definite when the origin is replaced by a generic closed set. To handle this situation, we propose a state dependent change in the time scale such that, in the new time scale, this function becomes positive definite.

Theorem 4: Suppose the system in (1) is forward complete, and \(F\) is single valued and continuously differentiable. Consider initial and unsafe sets \((X_o, X_u) \subset \mathbb{R}^n \times \mathbb{R}^n\) such that \(X_o\) is closed and \(X_o \cap X_u = \emptyset\). System (1) is safe with respect to \((X_o, X_u)\) if and only if there exists a continuous time-varying barrier function candidate \(B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}\) of class \(C^1((\mathbb{R}_{\geq 0} \times \mathbb{R}^n) \setminus K)\), where \(K := \{(t, x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n : B(t, x) \leq 0\}\), such that
\[
\langle \nabla B(t, x), [F(x)^T] \rangle \leq 0 \quad \forall (t, x) \in (\mathbb{R}_{\geq 0} \times \mathbb{R}^n) \setminus K.
\] (42)

Proof. In order to prove the sufficient part of the statement, we use a contradiction. That is, assume the existence of a solution \(\phi\) starting from \(x_o \in X_o\) such that \(\phi(T, x_o) \in X_u\) for some \(T > 0\). The latter fact implies, using (42), that \(B(0, \phi(0, x_o)) \leq 0\) and \(B(T, \phi(T, x_o)) > 0\). Furthermore, since \(t \mapsto B(t, \phi(t, x_o))\) is continuous, we also conclude the existence of \(0 \leq T_1 < T\) such that \(B(T_1, \phi(T_1, x_o)) = 0\) and \(B(t, \phi(t, x_o)) > 0\) for all \(t \in (T_1, T)\). Hence, \(B(T, \phi(T, x_o)) - B(T_1, \phi(T_1, x_o)) > 0\) and using the continuity of \(t \mapsto B(t, \phi(t, x_o))\), we also conclude the existence of \(\epsilon > 0\) sufficiently small such that \(T_1 + 2\epsilon < T\) and \(B(T - \epsilon, \phi(T - \epsilon, x_o)) - B(T_1 + \epsilon, \phi(T_1 + \epsilon, x_o)) > 0\). However, since \(B(t, \phi(t, x_o)) > 0\) for all \(t \in (T_1, T)\), it follows that \(t \mapsto B(t, \phi(t, x_o))\) is \(C^1((T_1, T))\). Hence,
\[
B(T - \epsilon, \phi(T - \epsilon, x_o)) - B(T_1 + \epsilon, \phi(T_1 + \epsilon, x_o)) = \int_{T_1 + \epsilon}^{T - \epsilon} \frac{\partial B}{\partial t}(t, \phi(t, x_o)) + \frac{\partial B}{\partial x}(t, \phi(t, x_o))F(\phi(t, x_o))dt \leq 0,
\]
which yields to a contradiction.

To prove the necessary part, we first propose to render the behavior of the system (1) around the set \(X_o\) similar to the behavior of a smooth system around its equilibrium point. More precisely, by proposing a new time scale, we render the set \(X_o\) unreachable in finite time by the solutions starting from \(\mathbb{R}^n \setminus X_o\). To this end, given an initial condition \(x_o \in \mathbb{R}^n \setminus X_o\), we propose the following new time scale
\[
\tau(t, x_o) := t + \int_0^t \frac{1}{V(\phi(s, x_o))}ds,
\] (43)
outside the set \(X_o\) and \(\phi\) is the solution to (1) starting from \(x_o\). The function \(V\) always exists for any given closed set \(X_o \subset \mathbb{R}^n\) and it can be constructed using Lemma [4] by considering the distance function with respect to \(X_o\) to be the function \(h\) therein. Furthermore, we let \(\psi(\tau(t, x_o), x_o) := \phi(t, x_o)\).

As a consequence, the derivative of \(y\) with respect to the new time scale \(\tau\) satisfies
\[
\psi'(\tau, x_o) := \frac{d\psi}{d\tau}(\tau, x_o) = \frac{d\phi}{d\tau}(t, x_o) = F(\phi(t, x_o))V(\phi(t, x_o)) \quad \frac{d\tau}{dt}(t, x_o) = \frac{1 + V(\phi(t, x_o))}{1 + V(\psi(t, x_o))}.
\] (44)

Hence,
\[
\psi'(\tau, x_o) = \frac{F(\psi(\tau, x_o))V(\psi(\tau, x_o))}{1 + V(\psi(\tau, x_o))}.
\] (45)

Note that the solutions to the system
\[
\psi' = \frac{F(\psi)V(\psi)}{1 + V(\psi)}
\] (46)
starting from \(x_o\) cannot reach \(X_o\) when starting outside that set \(X_o\). Moreover, the set \(X_o\) is forward invariant under the system (46).

Let us now introduce the continuous function \(h : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}\) as
\[
h(\tau, x_o) := \inf \{\|y\|_{x_o} : y \in R(\tau, x_o)\},
\] (47)
where \(R\) in this case is the reachable set along the solutions to the system (46). Using Proposition [4] we conclude that the function \(h\) is locally Lipschitz. Furthermore, since the right-hand side of (46) is locally Lipschitz, we conclude that \(h\) positive definite with respect to the set \(X_o\). Finally, the map \(\tau \mapsto h(\tau, x_o)\) non-increasing for all \(x_o \in \mathbb{R}^n\). Therefore, using Lemma [4] we conclude the existence of a continuous function \(g : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}\) which is \(C^1\) outside the set \(X_o\), non-increasing with respect to the first argument, and satisfies
\[
\frac{1}{2} h(\tau, x_o) \leq g(\tau, x_o) \leq 2h(\tau, x_o) \quad \forall (\tau, x_o) \in (\mathbb{R}_{\geq 0} \times \mathbb{R}^n).
\]

Next, we introduce the barrier candidate \(B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}\) as
\[
B(t, x) := \begin{cases} g(\tau(\chi(-t, x)), \chi(-t, x)) & \text{if } \chi([-t, 0], x) \cap X_o = \emptyset, \\ 0 & \text{otherwise}, \end{cases}
\] (48)
where \(\chi\) is the backward solution to (1) starting from \(x\). Note that when \(x \in X_u\), for each \(t \geq 0\), we have \(\chi([-t, 0], x) \cap X_o = \emptyset\), hence,
\[
B(t, x) = g(\tau(\chi(-t, x)), \chi(-t, x)) \geq h(\tau(\chi(-t, x)), \chi(-t, x))/2 > 0.
\]

Contrary, when \(x \in X_o\), \(\chi([-t, 0], x) \cap X_o \neq \emptyset\), hence, \(B(t, x) = 0\). Furthermore, we show that the candidate \(B\) is non-increasing along the solutions to (1) by showing that
\[
B(t + h, \phi(t + h, x_o)) \leq B(t, \phi(t, x_o)) \quad \forall t \geq 0, \quad \forall h \geq 0,
\]
and for each solution \(\phi\) to (1) starting from \(x_o\). To this end, we distinguish two complementary situations.
1) When \(\chi([-(t+h),0], \phi(t+h,x_o)) \cap X_o = \emptyset \), it follows that \(B(t+h, \phi(t+h,x_o)) = 0 \leq B(t,\phi(t,x_o)) \).
2) When \(\chi([-(t+h),0], \phi(t+h,x_o)) \cap X_o = \emptyset \), it follows that

\[
B(t+h, \phi(t+h,x_o)) = g(\tau(t+h,x_o),x_o)
\]

\[
= g(\tau(t+h, \chi(-t,\phi(t,x_o))), \chi(-t,\phi(t,x_o)))
\]

\[
\leq g(\tau(t, \chi(-t,\phi(t,x_o))), \chi(-t,\phi(t,x_o)))
\]

\[
= B(t,\phi(t,x_o)).
\]

To obtain the latter inequality, we used the fact that the function \(g \) is non-increasing with respect to its first argument uniformly in the second.

In order to complete the proof, it remains to show that \(B \in C^1((\mathbb{R}_{\geq 0} \times X_o)/K, K) \). Indeed, for \((t,x) \in (\mathbb{R}_{\geq 0} \times \mathbb{R}^n)/K \), we have \(B(t,x) > 0 \). Hence, \(\chi([t,0],x) \cap X_o = 0 \) and \(B(t,x) = g(\tau(t, \chi(-t,\phi(t,x_o))), \chi(-t,\phi(t,x_o))) \). Furthermore, since the function \(B \) is continuous, we conclude the existence of \(U(t,x) \) an open neighborhood around \((t,x) \) such that, for any \((t',x') \in U(t,x) \), we have \(B(t',x') = g(\tau(t', \chi(-t',\phi(t',x'))), \chi(-t',\phi(t',x')) > 0 \). Next, we note that the map \((t, \chi \rightarrow \tau(t, \chi(-t,\phi(t,x_o))) \) is continuously differentiable on \(\mathbb{R}_{\geq 0} \times \mathbb{R}^n/X_o \). Furthermore, \(\chi(-t,\phi(t,x_o)) \) is continuously differentiable with respect to its arguments since \(F \in C^1 \), see [42] Chapter 5]. Moreover, the map \((t, \chi \rightarrow \tau(t, \chi(-t,\phi(t,x_o))) \) is \(C^1 \) provided that \(\chi(-s,\phi(t,x_o)) \notin X_o \) for all \(s \in [0,t] \), which completes the proof.

Example 4 (Example 1 revisited): Consider system (21) in Example 1 with the sets \((X_o, X_u) \) as in [22]. Since the right-hand side in (21) is continuously differentiable, we conclude using Theorem 4 that system (21) admits a continuous time-varying barrier function candidate \(B : \mathbb{R}_{\geq 0} \times \mathbb{R}^n \to \mathbb{R} \) of class \(C^1 ((\mathbb{R}_{\geq 0} \times \mathbb{R}^n)/K) \) satisfying (42). In particular, the function \(B \) in (35), given explicitly in (37), corresponds to such a smooth barrier function.

V. CONNECTIONS TO RESULTS IN THE LITERATURE

A. Connections to Tangent-Cone-Type Conditions

According to (11), given a closed set \(K \subseteq \mathbb{R}^n \), when the solutions to (1) are unique or when \(F \) is locally Lipschitz according to Definition 1 the set \(K \) is forward pre-invariant if and only if

\[
F(x) \subset TK(x) \quad \forall x \in \partial K.
\]

(49)

Note that (49) involves the contingent cone \(TK \) and the map \(F \) on the boundary of the closed set \(K \). However, in general, as stressed in [34], invariance depends on the values of \(F \) outside \(K \) rather than on its boundary. Under mild regularity properties on \(F \), the external contingent cone \(EK \) is used in [34], and (49) can be replaced by

\[
F(x) \subset EK(x) \quad \forall x \in \mathbb{R}^n \setminus K,
\]

(50)

where \(EK \) is the external contingent cone of \(K \) at \(x \) is given by \(EK(x) := \{v \in \mathbb{R}^n : \liminf_{h \to 0^+} \frac{|x+hv|-|x|}{h} \leq 0 \} \).

Note that conditions (49) and (50) resemble conditions (7) and (6), respectively. Indeed, in (49) and (50), we are using the distance function \(B(x) := |x|_K \) since (4) holds. However, since the distance function to a set is only locally Lipschitz, the gradient-based inequalities in (7) and (6) are replaced by the limits in the definitions of \(TK \) and \(EK \) in (49) and (50), respectively.

B. Connections to Results using Barrier Functions

Before comparing our results to the existing literature, we recall the following useful notions.

- **Uniqueness function** [12]. A function \(g : \mathbb{R} \to \mathbb{R} \) is said to be a uniqueness function if, for each continuous function \(l : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) satisfying \(l(0) = 0 \) and, for some \(\epsilon > 0 \),

\[
\limsup_{h \to 0^+} \frac{l(t+h) - l(t)}{h} \leq g(l(t)) \quad \text{for a.a. } t \in [0,\epsilon],
\]

it follows that \(l(t) = 0 \) for all \(t \in [0,\epsilon] \).

- **Minimal functions** [43]. A function \(g : \mathbb{R} \to \mathbb{R} \) is said to be a minimal function if, for each continuous function \(l : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) satisfying \(l(0) \leq 0 \) and, for some \(\epsilon > 0 \),

\[
\limsup_{h \to 0^+} \frac{l(t+h) - l(t)}{h} \leq g(l(t)) \quad \text{for a.a. } t \in [0,\epsilon],
\]

it follows that \(l(t) \leq 0 \) for all \(t \in [0,\epsilon] \).

- **Extended class-K functions** [3]. A continuous function \(g : \mathbb{R} \to \mathbb{R} \) is said to be an extended class-K function if \(g \) is strictly increasing and \(g(0) = 0 \).

The nonpositive sign required in (27) can be relaxed using uniqueness functions or minimal functions, as shown in [12] and [43], respectively. More precisely, for a general time-varying barrier function candidate \(B \in C^1 \), condition (27) can be relaxed to

\[
(\nabla B(x), [1 \quad \eta^T]) \leq g(B(x)) \quad \forall \eta \in F(x), \quad \forall (t,x) \in U(K) \setminus K,
\]

(51)

where \(g \) is either a uniqueness or a minimal function. Furthermore, given a time-independent barrier function candidate \(B \in C^1 \), according to [22], [23], [3], the following condition implies forward pre-invariance of the set \(K \) in (4):

\[
(\nabla B(x), \eta) \leq g(B(x)) \quad \forall \eta \in F(x), \quad \forall (t,x) \in U(K),
\]

(52)

where the function \(g \) is either an extended class-K or a locally Lipschitz function. Moreover, when \(F \) is locally Lipschitz and the set \(K \) is compact, (52) is equivalent to forward pre-invariance of the set \(K \). This converse result, in addition to restricting the class of systems (1), requires the existence of a \(C^1 \) barrier function candidate. As we show in the following example, it is possible to find situations where the sets \((X_o, X_u) \) do not admit a \(C^1 \) time-independent barrier function candidate.

Example 5: Let \(X_o := \mathbb{R}^2 \setminus X_o \) and \(X_u := \{x \in \mathbb{R}^2 : \rho_1(x) \leq 0, \rho_2(x) \leq 0\} \), where \(\rho_1 \) and \(\rho_2 : \mathbb{R}^n \to \mathbb{R} \) are \(C^1 \) functions such that, for each \(i \in \{1,2\}, \nabla \rho_i(x) \neq 0 \) for all \(x \in \mathbb{R}^n \) such that \(\rho_i(x) = 0 \). Furthermore, suppose there exists \(x_o \in \mathbb{R}^2 \) such that \(\rho_1(x_o) = \rho_2(x_o) = 0 \) and the vectors \(\nabla \rho_1(x_o) \) and \(\nabla \rho_2(x_o) \) are linearly independent. For this choice of \((X_o, X_u) \), we show that it is not possible to find a \(C^1 \) barrier function candidate. To arrive to a contradiction,
we assume the existence of $B: \mathbb{R}^n \to \mathbb{R}$ such that $X_o := \{x \in \mathbb{R}^2 : B(x) \leq 0\}$. Assume without loss of generality that $\nabla B(x_o) \neq 0$. Hence, using [38, Proposition 4.3.7], we conclude that $T_{X_o}(x_o) = \{v \in \mathbb{R}^2 : \langle \nabla B(x_o), v \rangle \leq 0\}$. Moreover, from the construction of X_o using ρ_1 and ρ_2, we conclude that

$$T_{X_o}(x_o) = \{v \in \mathbb{R}^2 : \langle \nabla \rho_1(x_o), v \rangle \leq 0, \langle \nabla \rho_2(x_o), v \rangle \leq 0\}.$$

Now, let $y \in \mathbb{R}^2 \setminus \{0\}$ be such that $\nabla B(x_o, y) = 0$; hence, $\lambda y \in T_{X_o}(x_o)$ for all $\lambda \in \mathbb{R}$. The latter implies that $\langle \nabla \rho_1(x_o, y), 0 \rangle = 0$ and $\langle \nabla \rho_2(x_o, y), 0 \rangle = 0$, which contradicts the fact that the vectors $\nabla \rho_1(x_o)$ and $\nabla \rho_2(x_o)$ are linearly independent. □

When g is an extended class-K function, the condition in (52) is a particular case of (9), and thus a particular case of [27]. Furthermore, when g is locally Lipschitz, (52) becomes a particular case of [31]. Indeed, every locally Lipschitz function is a uniqueness function and a minimal function at the same time. However, Osgood functions are examples of uniqueness and minimal functions that are not locally Lipschitz [44], [45]. Finally, imposing the inequality in (52) to hold on $U(K)$ instead of only on $U(K) \backslash K$ is not necessary to guarantee safety; however, it becomes useful when using numerical methods for the (online) design of smooth controllers that enforce safety [46].

Remark 5: When the barrier function candidate B is locally Lipschitz, condition (23) can also be relaxed using uniqueness functions and minimal functions. Furthermore, when B is time independent, condition (28) reduces to the condition used in [14, Theorem 2] and [15].

C. Connections to Existing Converse Safety Results

Via the following simple example, we illustrate the limitation of the converse safety results in [25], [26], and [27].

Example 6: Consider the system

$$\dot{x} = \begin{bmatrix} -1 & -10 \\ 1 & 0 \end{bmatrix} x, \quad x \in \mathbb{R}^2,$$

and let the initial and unsafe sets be given by

$$X_o := \{x \in \mathbb{R}^2 : x_1^2 + x_2^2 \leq 1\}, \quad X_u := \{x \in \mathbb{R}^2 : x_2 \geq 2\}.$$

Note that the set X_o is not forward pre-invariant but the system (53) is safe with respect to (X_o, X_u). One way to show this fact consists in verifying (5) using the barrier function candidate $B(x) := x_1^2/10 + x_2^2 - 1$. Note that system (53) admits the origin as an equilibrium point, which is a trivial limit cycle. Hence, it is not possible to apply the converse safety result in [25]. Furthermore, according to the robust safety notion introduced in [26], which is included below, the system (53) is robustly safe with respect to (X_o, X_u). However, the system (53) is not defined on a bounded manifold. Hence, it is not possible to use the converse result in [26].

Definition 17 (Robust safety [26]): System (1) is said to be robustly safe with respect to (X_o, X_u) if there exists $V_o := U(X_o)$ and $V_u := U(X_u)$ such that the vector field F separates V_o from V_u. In turn, a vector field F is said to separate a set V_o from a set V_u if F does not join V_o to V_u. In turn, a vector field F is said to join a set V_o to a set V_u if one of the following is true.

1) There exists a solution to (1) starting from V_o that reaches V_u.

2) There is not a succession of singular elements (singular points and limit cycles) $\{\beta_1, \beta_2, ..., \beta_N\}, \quad N \in \mathbb{N}$, such that the following properties hold simultaneously:

- A forward solution to (1), starting from V_o, converges to β_1.
- A backward solution to (1), starting from V_u, converges to β_N.
- A broken solution joins β_1 to β_N; namely, for each $\beta_i \in \{1, 2, ..., N\}$, there is $x_{ai} \in \mathbb{R}^n$ such that the forward solution to (1) starting from x_{ai} converges to β_i and the backward solution to (1) starting from x_{ai} converges to β_i; see [26] for more details.

Finally, note that the system

$$\dot{x} \in \begin{bmatrix} -1 & -10 \\ 1 & 0 \end{bmatrix} x + \epsilon B, \quad x \in \mathbb{R}^2$$

is input-to-state stable (ISS) with respect to ϵ and the sets X_o and X_u are closed and disjoint. Hence, for $\epsilon > 0$ sufficiently small, system (54) is safe with respect to (X_o, X_u). However, the complement of the set X_u is unbounded. As a result, we cannot use the converse result in [27]. □

D. Connections to Results on Conditional Invariance

According to [18, Theorem 2], the set X_i is conditionally invariant with respect to X_o if there exists a continuously differentiable function $V: \mathbb{R}^n \to \mathbb{R}$ such that the following three conditions hold:

- i) For each $x \in \mathbb{R}^n \backslash X_o$ and for each $y_x \in X_o$ satisfying $y_x := \arg \inf \{V(x - z) : z \in X_o\}$, we have $\langle \nabla V(x - y_x), \eta \rangle \leq 0$ for all $\eta \in F(y_x)$.
- ii) There exists $a \in \mathbb{R}$ such that the function $B: \mathbb{R}^n \to \mathbb{R}$ given by $B(x) := \inf \{V(x - z) - a : z \in X_o\}$ satisfies $B(x) > 0 \forall x \in \partial X_s$, $B(x) \leq 0 \forall x \in \partial X_o$.
- iii) For each $(x, y) \in (\mathbb{R}^n \backslash X_o) \times X_o$,

$$\langle \nabla V(x - y), \eta_x - \eta_y \rangle \leq g(V(x - y) - a)$$

for all $(\eta_x, \eta_y) \in F(x) \times F(y)$, where the scalar function g is a minimal function (see Section V-B).

The proof of this result is based on showing that, along the solutions to (1), the function B cannot become positive when starting from nonpositive values. Indeed, using (ii) and (iii), we can prove that

$$\langle \zeta, \eta \rangle \leq g(B(x)) \forall \zeta \in \partial C B(x), \forall \eta \in F(x), \forall x \in \mathbb{R}^n \backslash X_o.$$

Note that (ii) along with (57) guarantee forward pre-invariance of the set K in (4); however, condition (3) is not necessarily satisfied in this case. Furthermore, (ii) and (57) imply that int(X_o) is conditionally invariant with respect to X_o, when $X_o \subset \text{int}(X_s)$.

Next, we present a result that generalizes [18] Theorem 2. In our result, we distinguish *strict conditionally invariant* when the solutions starting from \(X_o \) remain in the interior of \(X_s \), from *conditionally invariant*, where the solutions starting from \(X_o \) remain in \(X_s \). To match the setting in [18], it is written for a time-independent barrier function candidate.

Theorem 5: Consider the system in (1) such that \(F \) satisfies Assumption 1. Let \((X_o, X_s) \subset \mathbb{R}^n \times \mathbb{R}^n \) with \(X_o \subset X_s \), \(g : \mathbb{R} \to \mathbb{R} \) be a minimal function, and \(B : \mathbb{R}^n \to \mathbb{R} \) be locally Lipschitz.

1) The set \(X_s \) is conditionally invariant with respect to \(X_o \) if
\[
B(x) > 0 \; \forall x \in U(X_s) \setminus X_s, \quad B(x) \leq 0 \; \forall x \in \partial X_o, \quad (58)
\]
\[
\langle \zeta, \eta \rangle \leq g(B(x)) \quad \forall \zeta \in \partial_C B(x), \; \forall \eta \in F(x), \; \forall x \in X_s \setminus X_o. \quad (59)
\]

2) The set \(X_s \) is strictly conditionally invariant with respect to \(X_o \subset \text{int}(X_s) \) if \(\text{(55)} \) holds and
\[
\langle \zeta, \eta \rangle \leq g(B(x)) \quad \forall \zeta \in \partial_C B(x), \; \forall \eta \in F(x), \; \forall x \in X_s \setminus X_o, \quad (60)
\]

Proof. To reach a contradiction and establish item 1 (respectively, item 2), we assume that \(\text{(58)} \) (respectively, \(\text{(55)} \)) holds and \(X_s \) is not conditionally invariant (respectively, not strictly conditionally invariant) with respect to \(X_o \). That is, there exists a solution \(\phi \) starting from \(x_o \in \partial X_o \) — thus, \(B(x_o) \leq 0 \) — and there exists \(T > 0 \) such that
\[
\phi(T, x_o) \in U(X_s) \setminus X_s \quad \text{(respectively,} \phi(T, x_o) \in \partial X_o); \text{ thus,} \phi(T, x_o) > 0, \quad \text{and} \phi((0, T], x_o) \subset U(X_s) \setminus X_s \quad \text{(respectively,} \phi((0, T], x_o) \subset \partial X_s \setminus X_o). \quad \text{Hence, according to [47] Page 7] and [48], we conclude that, for almost all} t \in [0, T],
\]
\[
\bar{B}(\phi(t, x_o)) \leq \sup \{ \zeta, \phi(t, x_o) : \zeta \in \partial_C B(\phi(t, x_o)) \}
\]
\[
\leq g(B(\phi(t, x_o))),
\]
with \(B(x_o) \leq 0 \) and \(B(\phi(T, x_o)) > 0 \), which yields a contradiction since \(g \) is a minimal function, implying that \(B(\phi(T, x_o)) \) has to be nonpositive.

Theorem 5 relaxes condition (3) while assuming that the inequality in \(\text{(51)} \) holds in a relatively larger set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose sufficient and necessary conditions for safety in differential inclusions. Guided by the lack of existence of autonomous and continuous barrier functions certifying safety, time-varying barrier functions are proposed, and their existence is shown to be both necessary as well as sufficient. The regularity of the proposed time-varying barrier functions depends on the regularity of the right-hand side of the system.

Future work pertains to solve Problem 1 for constrained systems of the form
\[
\dot{x} \in F(x) \quad x \in C \subset \mathbb{R}^n \quad (61)
\]
or, more generally, hybrid systems as in [36]. Although the sufficient conditions for safety in constrained and hybrid systems are studied in [12], the converse problem is still not fully answered in the literature. Indeed, the converse safety results in [26] and [25] consider only particular cases of constrained systems, where the sets \(C, X_o, \) and \(X_s \) are assumed to be compact, and \(F \) is assumed to be at least continuously differentiable. Furthermore, in [26], the system is assumed to admit a Meyer function and in [25] (8) is assumed to hold which, as shown in Example 3, are rather restrictive conditions to impose. It is important to note that Theorem 2 can already be extended to constrained and hybrid systems; see [49]. However, to establish the existence of a barrier function that is continuous or smooth, the problem becomes more challenging due to the presence of the constraint. In particular, the regularity properties of the reachability map \(R \), that allows to conclude Lipschitz continuity and continuous differentiability of the marginal functions in (34) and (47), are not necessary satisfied in the constrained case; see [50].

VII. APPENDIX

A. Auxiliary Results

We start this section by introducing the reachability map \(R^b : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \), along the solutions to (1), given by
\[
R^b(t,x) := \{\phi(s,x) : \phi \in S(x), \; s \in \text{dom } \phi \cap [0,t], \exists \phi \in [0,t] \cap \text{dom } \phi \text{ s.t. } \phi > s\}. \quad (62)
\]

In words, the set \(R^b(t,x) \) includes only the last element reached by each maximal solution to (1) starting from \(x \) over the interval \([0,t] \).

The following lemma can be found in [33] Theorem 1]

Lemma 5: Suppose that the system in (1) is forward complete and that \(F \) satisfies Assumption 1. Then, the following hold for each \(t \geq 0 \):

1) The map \(x \mapsto R^b(t,x) \) is outer semicontinuous and locally bounded.

2) The map \(x \mapsto A(t,x) \) is outer semicontinuous and locally bounded, where \(A : \mathbb{R}^n \times \mathbb{R}^n \rightarrow S(\mathbb{R}^n) \) is given by
\[
A(t,x) := \{ \phi : \phi \in S(x), \; \text{dom } \phi = [0,t] \}. \quad (63)
\]

The following lemma recalls the well-known Filippov Theorem that can be found in [34] Theorem 5.3.1]

Lemma 6 (Filippov Theorem): Consider the system in (1) and suppose that \(F \) is locally Lipschitz on a compact set \(K \subset \mathbb{R}^n \); namely, there exists \(\lambda > 0 \) such that \(F(y) \subset F(x) + \lambda [x-y] \mathbb{B} \) for all \((x,y) \in K \times K \). Assume further that \(F(x) \) is closed for all \(x \in \mathbb{R}^n \). Then, for any \((x,y) \in K \times K \) and \(t > 0 \) such that \((R(t,x), R(t,y)) \subset K \times K \), each solution \(\phi \) to (1) starting from \(x \) satisfies \(|\phi(s,x)|_{R^b(s,y)} \leq \exp(\lambda s) |x-y| \) for all \(s \in [0,t] \), where the map \(R^b \) is introduced in (62). □

B. Proof of Proposition 7]

To prove the first item using Lemma 5, we start showing outer semicontinuity of \(R^b \) in (62). Let \((t_o, x_o) \in \mathbb{R}^n \times \mathbb{R}^n \) and let two sequences \(\{t_{o_i}, x_{o_i}\}_{i=0}^{\infty} \) and \(\{y_{i}\}_{i=0}^{\infty} \) be such that \(\lim_{i \to \infty} (t_{o_i}, x_{o_i}) = (t_o, x_o) \), \(y_i \in R^b(t_{o_i}, x_{o_i}) \), and \(\lim_{i \to \infty} y_i = y \in \mathbb{R}^n \). Outer semicontinuity of \(R^b \) at
By passing to an adequate subsequence, we conclude the existence of \(t' \in [0, t_0] \) such that \(t' = \lim_{i \to \infty} t'_i \). Having \(R^b \) locally bounded contradicts (66) and, thus, \(R \) is locally bounded.

To prove the second item in Proposition 1 given \(x \in \mathbb{R}^n \), we establish continuity of the set-valued map \(t \mapsto R(t, x) \). Since \(t \mapsto R(t, x) \) is outer semicontinuous and locally bounded, it is enough to show that it is lower semicontinuous. We show lower semicontinuity of \(t \mapsto R^b(t, x) \) in (62) via contradiction.

Assume that there exist \(\epsilon > 0, t_0 \geq 0, y \in R^b(t_0, x) \), and a sequence \(\{t_i\}_{i=0}^\infty \) such that \(\lim_{i \to \infty} t_i = t_0 \) and, at the same time,

\[
|y - z| \geq \epsilon \quad \forall z \in R^b(t_i, x), \quad \forall i \in \mathbb{N}.
\]

(67)

Consider a maximal solution \(\phi \) to (1) starting from \(x \) such that \(\phi(t_0, x) = y \) and let \(y_i := \phi(t_i, x) \). Note that \(y_i \in R^b(t_i, x) \). Since the solution \(\phi \) is continuous, it follows that \(\lim_{i \to \infty} y_i = y \), which contradicts (67). Now, to show lower semicontinuity of \(t \mapsto R(t, x) \), we assume that there exist \(\epsilon > 0, t_0 \geq 0, y \in R(t_0, x) \), and a sequence \(\{t_i\}_{i=0}^\infty \) such that \(\lim_{i \to \infty} t_i = t_0 \) and, at the same time,

\[
|y - z| \geq \epsilon \quad \forall z \in R(t_i, x), \quad \forall i \in \mathbb{N}.
\]

(68)

Note that (68) implies the existence of \(t' \in [0, t_0] \) such that \(y \in R^b(t', x) \). Moreover, for each sequence \(\{t'_i\}_{i=0}^\infty \) such that \(t'_i \in [0, t_0] \) and \(\lim_{i \to \infty} t'_i = t' \), we have

\[
|y - z| \geq \epsilon \quad \forall z \in R^b(t'_i, x), \quad \forall i \in \mathbb{N}.
\]

(69)

However, (69) contradicts lower semicontinuity of the map \(t \mapsto R^b(t, x) \).

C. Proof of Proposition 3

To show that the set-valued map \(R \) is locally Lipschitz, we will first show that the map \(R^b \) in (62) is locally Lipschitz. To that end, we consider \((t_0, x_0) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n \) and the set

\[
U_r(t_0, x_0) := \{(t, x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^n : t \in [0, t_0 + r], |x - x_0| \leq r\},
\]

(70)

for some \(r > 0 \). Furthermore, let \(\lambda_K > 0 \) be the Lipschitz constant of \(F \) on the set \(K := R(U_r(t_0, x_0)) \). Note that \(K \) is compact since the system is forward complete. Next, we show the existence of \(\epsilon > 0 \) such that, for any \(((t_1, x_1), (t_2, x_2)) \in U_r(t_0, x_0) \times U_r(t_0, x_0) \), for any \(y_1 \in R^b([0, t_1], x_1) \) there exists \(y_2 \in R^b(t_2, x_2) \) such that

\[
|y_1 - y_2| \leq \epsilon(|x_1 - x_2| + |t_1 - t_2|).
\]

(71)

The latter inequality is enough to conclude that \(R^b \) is locally Lipschitz. Let \(((t_1, x_1), (t_2, x_2)) \in U_r(t_0, x_0) \times U_r(t_0, x_0) \), assume without loss of generality that \(t_2 \geq t_1 \), and note that both \(R(t_2, x_2) \) and \(R(t_1, x_1) \) belong to the compact set \(K \). Hence, using Lemma 6, we conclude that

\[
|y_{t_1} - y_{t_2}| \leq \exp^{\lambda_K(t_2 - t_1)} |x_2 - x_1|.
\]

Furthermore, for any \(y_{t_1} \in R^b(t_1, x_1) \) and since \(F \) is locally bounded, we conclude that

\[
M_r(t_0, x_0) := \max\{|F(\phi(t, y))| : \phi \in S(y), y \in R(U_r(t_0, x_0)), \tau \in [0, t_0 + r]| < \infty,
\]

(72)
where \(S(y) \) is the set of maximal solutions to system \(\Pi \) starting from \(y \). Hence, \(|y_2 - y_1| \leq M_2(t_0, x_0) |t_1 - t_2| \) and \(|y_1 - y_2| \leq |y_1 - y_2| + |y_2 - y_1| \leq \epsilon (|x_2 - x_1| + |t_1 - t_2|) \), where

\[
\epsilon := \max \left\{ \exp^{\lambda k (t_0 + r)}, M_0(t_0, x_0) \right\}.
\] (72)

Now, to show that the set-valued map \(R \) is locally Lipschitz, we consider \((t_0, x_0) \in \mathbb{R}^2 \times \mathbb{R}^n \) and the compact neighborhood \(U \) introduced in \((70) \). We will show the existence of \(\epsilon > 0 \) such that for any two elements \((t_1, x_1), (t_2, x_2) \) in \(U \), any \(y \in R(t_1, x_1) \) we can find \(y_1 \) in \(R(t_2, x_2) \). Indeed, consider \(y_1 \in (0,t_1) \) such that \(R(t_1, x_1) = y_1 \) and \((t_1, x_1) \in U(t_0, x_0) \). Hence, there exists \(y_2 \) in \(R(t_2, x_2) \) with \(y_1 \), \(y_2 \) the closest element to \(y_1 \) while being in \((0,t_2) \). Note that \((y_2, x_2) \in U(t_0, x_0) \) and since \(R \) is locally Lipschitz, we have \(|y_2| \leq \epsilon (|t_1 - t_2| + |x_1 - x_2|) \), \(\epsilon \) is introduced in \((72) \). □

D. Proof of Lemma \[\]

We prove item 1 by directly showing that \(B \) satisfies the definition of lower semicontinuity for scalar functions. That is, for every sequence \(\{y_i\}_{i=0}^{\infty} \subset \mathbb{R}_m \) such that \(\lim_{i \to \infty} y_i = y_0 \), we have \(y_0 \in \Pi(z_0) \). Choose \(\{y_i\}_{i=0}^{\infty} \) such that \(\lim_{i \to \infty} y_i = y_0 \) and \(|y_i| \leq \eta \). This sequence is strictly positive and nonincreasing. We prove item 2 by directly using the definition of upper semicontinuity for scalar functions. That is, for every sequence \(\{z_i\}_{i=0}^{\infty} \subset \mathbb{R}_m \) such that \(\lim_{i \to \infty} z_i = z_0 \), we have \(z_0 \leq \lim_{i \to \infty} z_i \). This sequence is strictly positive and nonincreasing.

E. Proof of Lemma \[\]

Given a compact set \(I \subset \mathbb{R}^n \) such that \(I \cap K = \emptyset \) and the continuous function \(h \), we introduce the sequence \(\{\eta_k\}_{k=1}^{\infty} \) given by

\[
\eta_k := \min \{|h(t, x) : x \in I, t \in [0, k]\}.
\] (79)

This sequence is strictly positive and nonincreasing.

Next, we prove to partition the set \(\mathbb{R}^2 \) using an increasing sequence \(\{t_i\}_{i=0}^{\infty} \subset \mathbb{R}_0 \) that we design as follows:

1. For each interval \(T_k := [k - 1, k], k \in \mathbb{N}^* \), we associate \(u_k \in \mathbb{N}^* \). Furthermore, we introduce the sequence \(\{j_k\}_{k=1}^{\infty} \) such that \(j_1 := 0 \) and \(j_{k+1} := j_k + u_k \).

2. The subsequence \(\{t_i\}_{i=0}^{j_k} \) satisfies \(t_0 := 0 \) and \(t_{i+1} := t_i + \frac{1}{u_k} \) for all \(i \in \{0, 1, \ldots, u_k - 1\} \). It follows that \(t_{u_k} = 1 \).

3. For each \(k \geq 2 \), the subsequence \(\{t_{j_k + u_k} \} \) satisfies \(t_{j_k + u_k} = t_{j_k + 1} = k - 1 \) and \(t_{j_k + u_k} = t_{j_k + 1} = j_k + 1 \). It follows that \(t_{j_k + u_k} = t_{j_k + 1} = k \).

4. Under the continuity of \(h \), we choose the parameter \(u_k \) such that, for each \(i \in \{j_k, j_k + 1, \ldots, j_k + u_k - 1\} \) and for each \(x \in I, h(t_i, x) - h(t_{i+1}, x) = h(t_i, x) - h(t_i + (1/u_k), x) < \frac{1}{2\eta_k} \).

Now, we consider a nonincreasing sequence \(\{\xi_i\}_{i=0}^{\infty} \subset \mathbb{R}_0 \) such that

\[
\sum_{i=0}^{\infty} \xi_i < \frac{1}{8} \eta_k.
\] (80)
Furthermore, using the continuity of \(h \), we conclude the existence of a sequence of functions \(\{w_i\}_{i=0}^\infty \) such that: Each \(w_i : \mathbb{R}^n \to \mathbb{R}, i \) is continuously differentiable on \(\text{int}(I) \). For each \(x \in I \), the sequence \(\{w_i(x)\}_{i=0}^\infty \) is nonincreasing. For each \(i \in \mathbb{N}, \)
\[
|h(t_i, x) - w_i(x)| < \frac{1}{2}\zeta_i + \sum_{i=1}^\infty \zeta_i. \tag{81}
\]

Finally, we construct the function \(t \mapsto g(t, x) \) by interpolating the sequence of functions \(\{w_i(x)\}_{i=0}^\infty \) by means of a nonincreasing third order polynomial to obtain, for any \(t \in [t_i, t_{i+1}] \) and \(i \in \mathbb{N}, g(t, x) := g(t, t_i, t_{i+1}, w_i(x), w_i(x)) \), where
\[
q(t, t_i, t_{i+1}, w_i(x), w_i(x)) := w_i(x) + \frac{3(t - t_i)^2}{(t_{i+1} - t_i)^2} - \frac{2(t - t_i)^3}{(t_{i+1} - t_i)^3}.
\]

Note that \(q \) is nonincreasing on \([t_i, t_{i+1}] \)
\[
q(t_i, t_i, t_{i+1}, w_i(x), w_i(x)) = w_i(x),
q(t_{i+1}, t_i, t_{i+1}, w_i(x), w_i(x)) = w_i(x),
q(t_i, t_i, t_{i+1}, w_i(x), w_i(x)) = 0,
q(t_{i+1}, t_i, t_{i+1}, w_i(x), w_i(x)) = 0.
\]

In order to complete the proof, it remains to show that \(\mathbf{40} \) is satisfied for all \((t, x) \in \mathbb{R}_{\geq 0} \times I \). Without loss of generality, consider \(x \in I \) and \(t \in [k - 1, k) \), for \(k \in \{1, 2, \ldots, \infty\} \). Assume that \(t \in [t_i, t_{i+1}] \) for some \(t_i \in [k - 1, k) \). Hence, \(i \in (j_k, j_k + u_k) \). It follows that \(g(t, x) - h(t, x) \leq g(t, x) - h(t_{i+1}, x) \leq |g(t, x) - h(t, x)| + h(t, x) - h(t_{i+1}, x) \leq \sum_{j_k}^{j_k + u_k} \zeta_j + \frac{1}{2}\zeta_i + \frac{1}{2}\eta_k \leq \frac{1}{2}\eta_k \), where we used the fact that \(g(t, x) = w_i(x) \), \(\mathbf{81} \), and \(\mathbf{80} \). Similarly,
\[
h(t, x) - g(t, x) \leq h(t_{i+1}, x) - g(t, x) \leq |g(t_{i+1}, x) - h(t_{i+1}, x)| + h(t, x) - h(t_{i+1}, x) \leq \sum_{j_k}^{j_k + u_k} \zeta_j + \frac{1}{2}\zeta_i + \frac{1}{2}\eta_k < \frac{1}{2}\eta_k.
\]

Therefore, \(|h(t, x) - g(t, x)| \leq \frac{1}{2}\eta_k \) and \(h(t, x) - \frac{1}{2}\eta_k \leq g(t, x) \leq h(t, x) + \frac{1}{2}\eta_k \). Finally, using \(\mathbf{79} \), we conclude that \(\eta_k \leq \min\{h(t, x) : \tau \in [0, k]\} \) and, since \(t \in [k - 1, k) \), it follows that \(\eta_k \leq h(t, x) \).

\[\Box\]

F. Proof of Lemma 2

We propose to adapt the proof of \(\mathbf{32} \) Lemma 48.3 to the case where the origin is replaced by a general closed set \(K \subset \mathbb{R}^n \). For each integer \(s \), we introduce the set
\[
I_s := \{x \in \mathbb{R}^n : 2^{s-3} \leq |x|^2 \leq 2^{s+4}\}.
\]

Furthermore, we propose to decompose the set \(I_s \) into a sequence of nonempty compact subsets \(\{D_i^s\}_{i=1}^{N_s} \), such that \(D_i^s \subset I_s \) for all \(i \in \{1, 2, \ldots, N_s\} \). Furthermore, for each \(i \in \{1, 2, \ldots, N_s\} \), there exist a finite set \(N_i^s \subset \{1, 2, \ldots, N_s\} \) and a compact set \(D_i^s \) in its interior such that \(D_i^s \cap K = \emptyset \), \(D_i^s \subset \bigcup_{j \in N_i^s} D_j^s \), and \(D_i^s \cap D_j^s = \emptyset \) for all \(j \neq N_i^s \).

The rest of the proof follows in three steps.

1. In the first step, we use Lemma 3 to construct a function \(\psi_s : \mathbb{R}_{\geq 0} \times D_i^s \to \mathbb{R}_{\geq 0} \) that is nonincreasing with respect to its first argument, \(C_1^i \) on \(\mathbb{R}_{\geq 0} \times \text{int}(D_i^s) \), and satisfies \(\mathbf{41} \) for all \((t, x) \in \mathbb{R}_{\geq 0} \times D_i^s \).
2. In the next step, we consider an open set \(O_i^s \subset D_i^s \) that contains \(D_i^s \), and a differentiable function \(\lambda^s : \mathbb{R}^n \to \mathbb{R} \), which is positive in \(O_i^s \) and vanishes outside. Then, we introduce the function \(\psi_s(t, x) := \frac{1}{\|x\|} \sum_{j \in N_i^s} \psi_j^s(t, x) \lambda^s_j(x) \) with \(\lambda_j^s(x) := \sum_{i=1}^{N_i^s} \lambda^s(x) \).

Note that, for each \(x \in I_s \), the previous sum is finite by construction of the sequence \(\{D_i^s\}_{i=1}^{N_s} \). Furthermore, the map \(t \mapsto \psi_s(t, x) \) nonincreasing, \(\psi_s \in C^1(\mathbb{R}_{\geq 0} \times \text{int}(I_s)) \), and satisfies \(\mathbf{41} \) for all \((t, x) \in \mathbb{R}_{\geq 0} \times I_s \).
3. In the last step, we consider \(g(t, x) := \frac{1}{\|x\|} \sum_{s=-\infty}^{s=\infty} \psi_s(t, x) \lambda^s(x) \). Finally, it is easy to see that for all \(x \in \mathbb{R}^n \), the previous sum is finite.

BIOGRAPHY

Mohamed Maghenem received his Control-Engineer degree from the Polytechnical School of Algiers, Algeria, in 2013, his M.S. and Ph.D. degrees in Automatic Control from the University of Paris-Saclay, France, in 2014 and 2017, respectively. He was a Postdoctoral Fellow at the Electrical and Computer Engineering Department at the University of California at Santa Cruz from 2018 through 2021. M. Maghenem has the honour of holding a research position at the French National Centre of Scientific Research (CNRS) since January 2021. His research interests include dynamical systems theory (stability, safety, reachability, robustness, and synchronization), control systems theory (adaptive, time-varying, linear, non-linear, hybrid, robust, etc.) with applications to power systems, mechanical systems, and cyber-physical systems.

Ricardo. G. Sanfelice received the B.S. degree in Electronics Engineering from the Universidad de Mar del Plata, Buenos Aires, Argentina, in 2001, and the M.S. and Ph.D. degrees in Electrical and Computer Engineering from the University of California, Santa Barbara, CA, USA, in 2004 and 2007, respectively. In 2007 and 2008, he held postdoctoral positions at the Laboratory for Information and Decision Systems at the Massachusetts Institute of Technology and at the Centre Automatic et Systèmes at the École de Mines de Paris. In 2009, he joined the faculty of the Department of Aerospace and Mechanical Engineering at the University of Arizona, Tucson, AZ, USA, where he was an Assistant Professor. In 2014, he joined the University of California, Santa Cruz, CA, USA, where he is currently Professor in the Department of Electrical and Computer Engineering. Prof. Sanfelice is the recipient of the 2013 SIAM Control and Systems Theory Prize, the National Science Foundation CAREER award, the Air Force Young Investigator Research Award, the 2010 IEEE Control Systems Magazine Outstanding Paper Award, and the 2020 Test-of-Time Award from the Hybrid Systems: Computation and Control Conference. His research interests are in modeling, stability, robust control, observer design, and simulation of nonlinear and hybrid systems with applications to power systems, aerospace, and biology.