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Abstract— This paper proposes a hybrid geometric control
scheme for the classical problem of globally stabilizing a point-
mass system on a unit circle, as it is impossible to design
a smooth globally asymptotically stable controller for this
problem. Unlike most existing solutions that rely on coordinates
and rely on a particular controller construction, our proposed
solution is coordinate free (or geometric) and belongs to a class
of controllers that we also characterize. Specifically, we propose
a geometric hybrid controller that uses a local geometric
controller (from the said class) and an open-loop geometric
controller. The system achieves global asymptotic stability when
each controller from the local geometric class is combined
with the geometric open-loop controller using a hybrid sys-
tems framework. Moreover, the hybrid geometric controller
guarantees robust asymptotic stability. Simulations validate the
stability properties of the proposed hybrid geometric controller.

I. INTRODUCTION

In the context of classical control and dynamical sys-

tems [1], trajectories of the plant evolve on a n-dimensional

Euclidean space, i.e., R
n. However, there exist several

dynamical, mechanical, and robotic systems whose states

evolve on a more general structure, such as a smooth mani-

fold or Lie groups [2]–[4]. The underlying manifold structure

(Lie group structure) poses extra challenges in analysis and

controller design for such systems. One natural way to study

such a system is using a local coordinate chart approach [5],

and then express the state of the system, locally, in R
n.

However, coordinate-based local approaches lead to local

results and often suffer singularities [6], [7].

Although geometric controllers can be designed to avoid

singularities associated with a local chart, designing a smooth

global controller on a compact manifold or a compact Lie

group is nontrivial [5], [8]. It is impossible to design a

smooth (even continuous) global controller using geometric

tools, even for one of the simplest Lie groups, the unit circle,

because of topological obstructions [9]. Though a smooth

almost global controller1 design is possible, such a controller

may not be robust to perturbations, even if they are arbitrarily

small. Fortunately, it is possible to achieve global robust

asymptotic stability using hybrid controllers [10].
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1Informally, almost global controllers exhibit global properties every-
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Recently, hybrid controllers that are geometric, or coor-

dinate free, have been developed for the stabilization of

systems on specific manifolds [11], [12]. Moreover, in [13],

[14], the authors design a geometric hybrid controller for

systems on SO(3) and SE(3). The method in [13] relies

on potential synergistic functions, which are used to design

global hybrid attitude stabilization controllers. Their method

requires the explicit computation of the so-called synergistic

gap. In [12], [15], the control method is based on a central

family of potential functions, which requires an explicit

construction of these functions for controller design.

In this paper, we consider the classical control problem

of globally and robustly stabilizing a point-mass to a point

on the unit circle S
1. In [10], [16], [17], the authors solve

this problem by designing a hybrid controller. However, as

mentioned above, the solution is based on first embedding

the unit circle in the two-dimensional Euclidean space and

then using the Euclidean coordinates to design a controller.

Although the results are global, their method is not geometric

or coordinate-free and, in a sense, restrictive as it is hard to

generalize these results for Lie groups of higher dimensions.

We want to underscore that this classical problem is simple

yet rich enough because the unit circle is a Lie group,

which is a building block of many more complex robotic,

mechanical, and physical systems. Unlike the state of the

art [10], [16], [17], we set up the problem in a powerful

hybrid geometric framework, which would help solve more

complicated control problems on Lie groups. We exploit

the fact that the unit circle is isomorphic to the Special

orthogonal group SO(2) and apply hybrid system tools to

achieve global asymptotic stability with robustness.

Another significant difference between our work and [10],

[16], [17] is that we introduce the concept of a novel family

of Lie algebra valued functions on SO(2) and a novel

geometric controller class. Specifically, we propose a geo-

metric controller class in which every controller guarantees

convergence to the desired point from a neighborhood of it,

and a geometric global open-loop controller that forces the

system to enter in that neighborhood. By employing hybrid

systems tools, we show that the proposed controller class

induces robust and global asymptotic stability of the closed-

loop system.

The main contributions of this paper are as follows: i) a

novel kinematic family of Lie algebra valued function Fk on

S
1 (Definition 5.4); ii) a geometric kinematic controller class

Ck that provides asymptotic stability (Lemma 5.7); iii) a class

of hybrid controllers that guarantee robust global asymptotic

stability to the desired point (Theorem 5.12).
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A. Notation and Math Preliminaries

The n-dimensional Euclidean space is represented by R
n.

For a point x ∈ R
n, the Euclidean norm is denoted by

|x|, and the distance of a point x from a subset S ⊂ R
n

is represented by |x|S := infy∈S |x− y|. The closed unit

ball of appropriate dimension in Euclidean norm is denoted

by B. For a matrix A ∈ R
m×n, its Frobenius norm is

given by ‖A‖F . We denote the inner product of two vectors

x, y ∈ R
n as 〈x, y〉. A k-dimensional vector x is rep-

resented as (x1, x2, . . . , xk) :=
[
x1, x2, · · · xk

]⊤
,

where ⊤ denotes transposition. The domain of a map f

is represented by dom f . The value of the gradient of the

map f : Rm → R
n with respect to its argument evaluated

at x is given by ∇f(x). The trace and determinant of a

matrix A ∈ R
n×n is represented by trace(A) and det(A),

respectively. The set of 2 × 2 rotation matrices is defined

as SO(2) =
{
R ∈ R

2×2 : R⊤ = R−1, det(R) = +1
}

and

it has a Lie group structure. The associated Lie algebra

of SO(2) is the set of 2 × 2 skew-symmetric matrices

so(2) =
{
A ∈ R

2×2 : A = −A⊤
}
, which is isomorphic to

R. The isomorphism is denoted by2 ·̂ : R → so(2) and

its inverse is denoted (·)∨ : so(2) → R. The unit sphere, or

unit circle, is defined as S1 :=
{
x ∈ R

2 : |x| = 1
}
. It is well

known that S1 is a Lie group and is isomorphic to SO(2).
Finally, the matrix exponential is an analytic diffeomor-

phism [2] between U
so(2) := {ω̂ ∈ so(2) : ω ∈ R, |ω| < π}

and USO(2) := {R ∈ SO(2) : trace (R) 6= −2}. The inverse

map from USO(2) to U
so(2) is the principal matrix logarithm

and is denoted by log(·). Let M be a smooth manifold and

p be a point on M. The tangent space of M at the point p is

denoted by TpM, and the tangent bundle of M is denoted

by TM.

II. MOTIVATION

Informally, first, we consider the classical point stabi-

lization problem on the unit circle in terms of Euclidean

coordinates. To be precise, consider a point mass with

coordinates x = (x1, x2) ∈ R
2 restricted to evolve on the

unit circle S
1 with controllable angular velocity ω ∈ R. The

kinematics equations of the point-mass system are given by

ẋ1 = −ωx2, ẋ2 = ωx1, (1)

where x ∈ S
1. The goal is to design a controller κ : R2 → R

that assigns ω and, robustly and globally, asymptotically

stabilizes the system to a point (x⋆
1, x

⋆
2). Without loss of

generality, we assume that the point to be stabilized is

(x⋆
1, x

⋆
2) = e1 := (1, 0). Although the problem seems simple,

it is far from being trivial due to topological obstructions [9].

Since S
1 is a compact manifold, it is not possible to design

a continuous time-invariant state-feedback controller that

globally asymptotically stabilizes any equilibrium [9]. While

discontinuous control laws can attain global asymptotic sta-

bility, they lack robustness, even to small noise.

The representation of the point-mass system evolving

on the unit circle given in (1) has two issues. First, the

2Given ω ∈ R, we express ω̂ ∈ so(2) or equivalently (ω)∧ ∈ so(2).

underlying manifold is of dimension one; therefore, we

should express the position of the point mass on the circle by

one coordinate, rather than two coordinates and a constraint.

Second, the representation is not geometric or coordinate

free; to be precise, Euclidean coordinates are used to express

the system. To express the position of the point mass without

coordinates, i.e., in a geometric setting, we rewrite the

kinematic model (1) as

ẋ =

[
−ωx2

ωx1

]
=

[
0 −ω

ω 0

]
x. (2)

From (2), we make the following observations. Since x ∈
S
1 and the unit circle is isomorphic [18] to SO(2), i.e.,

S
1 ≃ SO(2), x belongs to SO(2). As we know that SO(2)

is the set of rotation matrices, we relabel x ∈ SO(2) with

R ∈ SO(2) for clarity. Moreover, we have a skew-symmetric

matrix appearing in (2), so it must belongs to so(2). Let the

skew-symmetric matrix in (2) be denoted by Ωr ∈ so(2). We

can rewrite (2) in the geometric form given by

Ṙ = ΩrR. (3)

Formally this is an equation representing a right-invariant

vector field. Using an adjoint map Ad : so(2) → so(2),
Ωl 7→ RΩlR

⊤, we define Ωr = RΩlR
⊤, which transforms

the right-invariant3 system (3) into a left-invariant system

Ṙ = RΩl. For the rest of this article, we consider the

left-invariant vector field on SO(2), and for the notational

simplification we drop the subscript from Ωl, i.e.,

Ṙ = RΩ. (4)

III. HYBRID SYSTEMS ON MANIFOLDS

Informally, a hybrid control system consists of a hybrid

plant and a hybrid controller whose variables may evolve

continuously, called flow, or change instantaneously, called

jump. We refer the reader to [10], [19] for more details. First,

we provide the notion of hybrid time.

Definition 3.1 (hybrid time and hybrid time domain):

Hybrid time is defined by pairs (t, j), where t ∈ R≥0

captures the duration of flows and j ∈ N indicates the

number of jumps. A set E is a hybrid time domain if for all

(T, J) ∈ E,E ∩ ([0, T ]× {0, 1, ..., J}) is a compact hybrid

time domain; i.e., it can be written as ∪J−1
j=0 ([tj , tj+1], j)

for some finite sequence of times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tJ .

Definition 3.2 (hybrid plant): A hybrid equation model of

a plant with hybrid dynamics is given by

HP :





(z, u) ∈ CP ż = FP (z, u)

(z, u) ∈ DP z+ = GP (z, u)

y = h(z),

(5)

where the state z takes values on a smooth manifold, i.e.,

z ∈ MP , the inputs to the plant takes values on a subset

of the Euclidean space, i.e., u ∈ UP ⊂ R
mp. Moreover, the

set CP ⊂ MP × UP is called the flow set, the set DP ⊂
MP ×UP is called the jump set, the single-valued mapping

3In terms of properties, left- and right-invariant systems are similar.



FP : MP × UP → TMP is called the flow map, and the

single-valued mapping GP : MP × UP → TMP is called

the jump map. The data of the hybrid plant is defined by the

tuple (CP , FP , DP , GP , h).
Unlike [10], the states of the plant evolve on the smooth

manifold MP . It should be noted that (4) is a special case

of the hybrid plant HP because the system only flows, i.e.,

DP = ∅. Let the state and input of the system be z :=
R ∈ SO(2) and u := Ω ∈ so(2), respectively. Moreover, the

data (CP , FP , DP , GP ) is given as CP := SO(2) × so(2),
FP (R,Ω) := RΩ, DP = ∅, and GP can be any arbitrary

mapping. This definition above captures a continuous-time

plant evolving on a manifold; for details see [10]. Similarly,

a hybrid controller model can be defined as follows.

Definition 3.3 (hybrid controller): A hybrid equation

model of a controller with hybrid dynamics is given by

HK :





(v, η) ∈ CK η̇ = FK(v, η)

(v, η) ∈ DK η+ = GK(v, η)

ζ = κ(v, η),

(6)

where η is the state, v is the input, and ζ is the output of

the controller. Moreover, CK is the flow set, DK is the

jump set, FK is the flow map, and GK is the jump map.

The data of the hybrid controller is defined by the tuple

(CK , FK , DK , GK , κ).
The control of the plant HP via the controller HK defines

an interconnection through the following simple rule: u = ζ

and v = y. Similar to the hybrid plant and the controller, a

hybrid closed-loop system can be defined as follows.

Definition 3.4 (hybrid closed-loop system): A hybrid

equation model of the closed-loop system is given by

H :

{
x ∈ C ẋ = F (x)

x ∈ D x+ = G(x)
(7)

where x is the state evolving on the manifold M, C is the

flow set, D is the jump set, F : M → TM is the flow map,

and G : M → TM is the jump map. The data of the hybrid

closed-loop system is defined by the tuple (C,F,D,G).
Solutions to hybrid systems are given by hybrid arcs which

are trajectories defined on hybrid time domains.

Definition 3.5 (hybrid arc): A hybrid arc x is a function

whose values belong to M, is defined on a hybrid time

domain domx, and is such that t 7→ x(t, j) is locally

absolutely continuous for every j such that (t, j) ∈ domx.

Hybrid time domains impose a specific structure on the

domains of solutions to hybrid systems. In simple words,

solutions to H are defined on intervals of flow [tj , tj+1]
indexed by the jump counter j when tj+1 > tj . Hybrid arcs

specify the functions that define solutions to hybrid systems

when the following conditions are satisfied.

Definition 3.6 (solution): A hybrid arc φ is a solution to

the hybrid system H if φ(0, 0) ∈ C ∪ D and for all j ∈
N := {0, 1, 2, . . .} and almost all t such that (t, j) ∈ domφ,

φ(t, j) ∈ C, φ̇(t, j) = F (φ(t, j)); for all (t, j) ∈ domφ

such that (t, j + 1) ∈ domφ, φ(t, j) ∈ D, φ(t, j + 1) =
G(φ(t, j)).

A solution φ to H is said to be nontrivial if domφ contains

at least two points. A solution φ to H is said to be complete

if domφ is unbounded. A solution φ to H is said to be

Zeno if it is complete and the projection of domφ onto M
is bounded. A solution φ to H is said to be maximal if

there does not exist another solution ϕ to H such that domϕ

is a proper subset of domφ, and ϕ(t, j) = φ(t, j) for all

(t, j) ∈ domφ.

Definition 3.7: (hybrid basic conditions) A hybrid system

H = (C,F,D,G) satisfies the hybrid basic conditions if i)

C and D are closed subsets of M; ii) F : C → TM is

continuous; iii) G : D → TM is continuous.

Definition 3.8 (stability notions): Given a hybrid closed-

loop system H, a nonempty set A ⊂ M is said to be 1) stable

for H if for each ǫ > 0 there exists δ > 0 such that each

solution x to H with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ǫ

for all (t, j) ∈ domx; 2) attractive for H if there exists µ > 0
such that every maximal solution x to H with |x(0, 0)|A ≤ µ

is complete and satisfies lim(t,j)∈dom x,t+j→∞ |x(t, j)|A =
0; 3) asymptotically stable for H if it is stable and attractive.

Definition 3.9: (robust stability) Given a hybrid closed-

loop system H, a nonempty closed set A ⊂ M and an open

set U ⊂ M such that A ⊂ U , the set A is said to be robustly

stable for H on U if for every proper indicator function ̟

of A on U , every function β ∈ KL such that

̟(x(t, j)) ≤ β(̟(x(0, 0)), t+ j) ∀(t, j) ∈ domx

for the solutions to H from U , and every continuous function

ρ∗ : M → R≥0 that is positive on U\A, the following holds:

for each compact set K ⊂ U and each ǫ > 0, there exists

δ∗ > 0 such that for each solution xρ the perturbed system

Hρ with ρ = δ∗ρ∗, starting from xρ(0, 0) ∈ K satisfies

̟(xρ(t, j)) ≤ β(̟(xρ(0, 0)), t+ j) + ǫ ∀(t, j) ∈ domxρ.

IV. PROBLEM FORMULATION

For the point-mass system evolving on the circle, global

asymptotic stability of a point in SO(2) is not possible

with a continuous state-feedback law [9]. Global asymp-

totic stabilization of this point is possible by discontinuous

feedback, although the resulting closed-loop system may not

be robust to arbitrarily small measurement noise [16]. A

hybrid controller can be designed to achieve robust, global

asymptotic stabilization of the point, even in the presence

of noise. Without loss of generality, let I ∈ SO(2) be the

point we want to stabilize, where I is the two-by-two identity

matrix.

Problem 1: Given a point-mass evolving on the unit circle

as in (4), design a controller with state η, input v, and output

ζ of the form (6) where CK , DK , FK and DK are the flow

set, jump set, flow map, and jump set, respectively [10], such

that each solution component (t, j) 7→ R(t, j) of the closed-

loop system globally asymptotically converges to the desired

point I ∈ SO(2), i.e., for all R(0, 0) ∈ SO(2)

lim
t+j→∞

R(t, j) = I,



with robustness.

In the next section, we characterize the class of controllers

that solves this problem.

V. CONTROLLER DESIGN

As discussed earlier, it is impossible to design a global

smooth continuous feedback controller that globally asymp-

totically stabilizes, without loss of generality, the point

I ∈ SO(2). Specifically, the point −I ∈ SO(2) renders a

topological singularity. To overcome this issue, we divide the

unit circle in two regions, C0 and C1, as shown in Figure 1,

such that −I ∈ C1 ⊂ SO(2) and I ∈ C0 ⊂ SO(2). As

shown in Figure 1, the desired point I ∈ SO(2) is indicated

by a red star, and the singular point −I ∈ SO(2) is indicated

by a solid black dot. The region to the left of the red dot-

dashed line is indicated by C1 and the region to the right

of the green dashed line is indicated by C0. The region in

between the dot-dashed red line and the dashed green line

is the hysteresis region as indicated by the yellow shaded

region in Figure 1. We precisely quantify the sets C0, C1,

and the hysteresis region later in this section. The idea of

Hysteresis

Hysteresis

Fig. 1. Point stabilization problem on the unit circle.

the global geometric controller design is the following: if the

system is initialized in the region C0, employ a geometric

feedback controller that asymptotically stabilizes the system

to the point I ∈ SO(2) and if the system is initialized in the

region C1, use a geometric open-loop controller that forces

the system to enter in the C0 region, and switch the control

authority to the first controller.

First we define a map that measures distance between two

elements in SO(2). Let

dSO(2) : SO(2)× SO(2) → R

(R1, R2) 7→ ‖I −R⊤
1 R2‖F .

(8)

Remark 5.1: It is easy to verify that dSO(2) is a metric.

The image of SO(2) × SO(2) under the map dSO(2) is the

closed interval [0, 2
√
2]. Moreover, dSO(2)(R1, R2) = 2

√
2

when R1 and R2 are “furthest apart” or “antipodal.” One

such example of antipodal points are when R1 = −I and

R2 = I .

Next, we present two elementary, yet useful definitions.

Definition 5.2 (closed-ball): The unit closed ball in SO(2)
is defined as BSO(2) :=

{
R ∈ SO(2) : dSO(2)(R, I) ≤ 1

}
.

Definition 5.3: Given a point R⋆ ∈ SO(2), for some ǫ >

0, an open ǫ-neighborhood of R⋆ is defined as Nǫ(R
⋆) :={

R ∈ SO(2) : dSO(2)(R,R⋆) < ǫ
}
.

It should be noted that the ǫ-neighbourhood of every point

in SO(2) is a set of nonzero Lebesgue measure. To design

a class of geometric controllers on SO(2), we first propose

a novel family of Lie algebra valued functions on SO(2).
Definition 5.4: A function f : D ⊂ SO(2) → so(2) is

said to belong to the kinematic family of Lie algebra valued

functions Fk if it satisfies the following properties:

1) f is at least C1;

2) f−1(0) = {R ∈ D : R = I};

3) dR f , the derivative of f with respect to R, is non-

singular at least in a neighbourhood of I;

4) D contains an open neighborhood of I and is con-

nected.

The kinematic family of Lie algebra valued functions Fk

leads to the following definition.

Definition 5.5: Given a function f belonging to the family

Fk and the domain of f containing an open neighborhood

of I , the set C0 is defined as

C0 := {R ∈ D : det(dR f(R)) 6= 0} \ Nǫ(−I). (9)

Remark 5.6: An example of a function belonging to this

family is log : D ⊂ SO(2) → so(2). The log map is defined

everywhere on SO(2) except at −I ∈ SO(2) and dR f is

nonsingular everywhere except at −I ∈ SO(2). It is easy

to check that this function satisfies all three conditions of

Definition 5.4 and the set in (9) reduces to C0 = SO(2) \
Nǫ(−I). Another example of a function belonging to this

family Fk is given by f(R) = R⊤ −R.

Lemma 5.7: Given the point mass system in (4) and a

kinematic family of Lie algebra valued functions Fk, each

function f ∈ Fk induces a controller given by

Ω = κ(R) = R−1 (dR f)
−1

(−f(R))
∨
, (10)

such that, for the resulting closed-loop system

Ṙ = Rf(R),

the singleton set {R ∈ D : R = I} is asymptotically stable

with the basin of attraction equal to

Bf := {R ∈ D : det(dR f(R)) 6= 0} . (11)

Remark 5.8: Every function f contained in the kinematic

family Fk gives rise to a local geometric controller, which

by Lemma 5.7 renders I locally asymptotically stable. The

collection of all such controllers constitute a class, denoted

by Ck that we call the kinematic controller class. We claim

that there exists functions in the family Fk that lead to

controllers whose domain of attraction is as large as possible,

i.e., Bf = SO(2) \ {−I}.

Example 5.9: In this example, we select the following

function from the Fk family:

f : SO(2) \ {−I} → so(2), R 7→ log(R)

In the light of Lemma 5.7, it is straightforward to verify

that dR f = I . Therefore, f is invertible everywhere and

produces the following controller:

Ω = κ0(R) = − log(R). (12)



The controller κ0 is defined everywhere on SO(2) except

of a “small” set of measure zero. Precisely, that set of zero

measure is given by Z := {R ∈ SO(2) : R = −I}. In other

words, the controller κ0 has the largest possible basin of

attraction, i.e., Bf = SO(2) \ Z. Therefore, this controller

is almost globally asymptotically stabilizing. Finally, this ǫ-

neighborhood leads to the characterization of the set C0 =
SO(2) \ Nǫ(−I).

For other candidate functions of the family Fk the domain

of attraction can be smaller than the one considered in

Example 5.9. However, it must be noted that Definition 5.4

and Lemma 5.7 guarantee that the region of attraction will

be a non empty open neighbourhood of I ∈ SO(2).
Next, we define the region C1.

Definition 5.10: Given a function f belonging to the fam-

ily Fk, the set C1 is chosen as

C1 ⊂ SO(2) \ ({R ∈ D : det(dR f(R)) 6= 0} \ Nǫ(−I)) ,
(13)

such that C1 is connected and C1 ∪ C0 = SO(2).
An explicit construction of C1 is provided later in this

section. We define a global open-loop controller such that,

when the state is in C1, the open-loop controller forces the

system to enter the region C0 in finite time.

Lemma 5.11: Let C0 and C1 be the sets defined as in (9)

and (13), respectively. For each, R(0) ∈ C1, the open-loop

controller

κ1(R) = 1̂ =

[
0 −1

1 0

]
(14)

is such that the solution t 7→ R(t) to system (4) under the

effect of κ1 reaches the set C0 in finite time, i.e., for each

R(0) ∈ SO(2), there exists T > 0 such that the solution

t 7→ R(t) satisfies R(T ) ∈ C0.

In summary, roughly speaking, any controller κ0 from the

controller class Ck asymptotically stabilizes the equilibrium

point if the initial state R(0) is in the basin of attraction

Bf . If R(0) is outside the basin of attraction, the controller

κ1 can be used to push R into Bf . At first glance, it looks

that a discontinuous (non-hybrid) switching scheme would

be sufficient to achieve global stabilization. Nevertheless,

such a solution would be sensitive to even arbitrarily small

noise and hence nonrobust. In other words, in the presence of

noise, solutions of the system may exhibit chattering at the

switching surface when a discontinuous controller is used.

To avoid this issue, we introduce hysteresis in the switch-

ing mechanism and model it as hybrid control HK as in (6).

To create hysteresis and achieve robustness, we construct

our hybrid geometric controller as follows. Let V (R) =
1
2

(
(f(R))

∨)2
be a real-valued map. By Definition 5.4 and

Lemma 5.7, Bf is nonempty and has nonzero measure.

Moreover, the point I ∈ SO(2) is an interior point of Bf .

This implies that for 0 < c1 < c1,0 < c0, there exists an

open set U0 such that

U0 := {R ∈ SO(2) : V (R) < c0} , U0 ⊂ Bf .

The set T1,0 is defined by a c1,0-sublevel set of V , such that

T1,0 is contained in the interior of U0, i.e.,

T1,0 := {R ∈ SO(2) : V (R) ≤ c1,0} ⊂ U0.

Let C0 := U0 and C1 := SO(2) \ T1,0, which lead to the

hysteresis region C0 \ T1,0. With the above mentioned sets,

the hybrid controller HK has state η = q ∈ Q := {0, 1},

input v = z := R ∈ SO(2), output ζ := Ω ∈ so(2), and data

(CK , FK , DK , GK , κ) as follows:

CK =
⋃

q∈Q

(CK,q × {q}) ,




CK,0 := C0

CK,1 := C1

(15)

FK(z, q) = 0 ∀(z, q) ∈ CK (16)

DK =
⋃

q∈Q

(DK,q × {q}) ,




DK,0 := SO(2) \ U0

DK,1 := T1,0
(17)

GK(z, q) = 1− q ∀(z, q) ∈ DK (18)

κ(z, q) = κ1(z) + (1− q)κ0(z), (19)

where the controller κ0 belong the controller class Ck,

induced by the kinematic family of functions Fk, and the

open-loop controller κ1 give in (14). The above mentioned

construction of the sets U0 and T0,1 creates a hysteresis, with

boundary of U0 and T0,1 being the outer and inner portion

of the hysteresis region, respectively.

Controlling the continuous-time plant (4), defined on a Lie

group, by the hybrid controller results in a hybrid closed-loop

system with states x = (z, q) and dynamics

ż = FP (z, κ(z, q)) := Rκ(z, q), q̇ = 0 (20)

during flows, and at jumps, the state is updated according

to

z+ = z, q+ = 1− q. (21)

Finally, the hybrid closed-loop system H = (C,F,D,G)
with the state x = (z, q) ∈ SO(2)×Q =: X has data given

as

C := {(z, q) ∈ X : (z, κq(z)) ∈ CP , z ∈ CK,q}

F (x) :=

[
FP (z, κq(z))

0

]
∀x ∈ C

D := {(z, q) ∈ X : (z, κq(z)) ∈ CP , z ∈ DK,q}

G(x) :=

[
z

1− q

]
∀x ∈ D,

(22)

where CP := SO(2)× so(2).
Theorem 5.12: Given I ∈ SO(2) and the continuous-time

plant (1) defined on a Lie group SO(2), the following hold:

1) The closed-loop system H = (C,F,D,G) with data

in (22) satisfies the hybrid basic conditions;

2) Every maximal solution to H from C ∪D is complete

and exhibits no more than two jumps;

3) The set A = {I}× {0} is robustly globally asymptot-

ically stable for H.



VI. SIMULATION RESULTS

In this section, we provide simulation results of the hybrid

controller HK . Informally, we unite geometric controller κ0

and the open-loop controller κ1, given in (12) and (14),

respectively, through the hybrid framework. The system is

initialized at the most challenging position, i.e., R(0) = −I .

No controller from the Ck controller class can make the

system states converge asymptotic to the desired point. In

other words, the system is initialized on the set CK,1 ×{1};

therefore, we invoke the controller κ1. The system trajecto-

ries flow for about 1 sec, as seen in Figure 3, and then enter

in the set CK,0×{0}. After that, the control authority is given

to the controller κ0, which makes the system asymptotically

converge to the desired point I ∈ SO(2), as seen in Figure 2.

All the errors converge to zero, as shown in Figure 3. Since

the system is simulated under persistent random white noise,

the effect of noise can be seen in the steady-state in Figure 3,

and the system demonstrates robustness. Finally, as shown

in the bottom plot of Figure 3, around 1 sec, the control

authority switches from controller κ1 to κ0.
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Fig. 2. Hybrid control scheme achieves global asymptotic stability on S1.
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Fig. 3. The top left and top right plots show the errors converging to zero.
The bottom left plot shows the logic variable switching from 1 to 0 around
t = 1 secs and the bottom right plot shows the control input.

VII. CONCLUSION

We developed a hybrid geometric controller to globally

robustly and asymptotically stabilize a desired point on

the unit circle. First, we introduce a notion of a family

of Lie algebra valued function on SO(2). This family of

functions induces a geometric controller class, such that each

controller is in this class is locally asymptotically stable.

Using the tools of hybrid systems, we combine an open-loop

controller with this geometric controller class and define a

geometric hybrid controller for each function belonging to

the geometric controller class. We proved that the resulting

closed-loop hybrid system stabilizes the desired set and is

robust. For future work, we will extend these results for

systems defined on more general Lie groups.
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