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Abstract— A hybrid control strategy is introduced that ren-
ders a compact set uniformly globally asymptotically stable
for a continuous-time plant by switching between a Lyapunov-
certified feedback controller and an uncertified controller.
This control strategy allows for the opportunistic use of a
controller that has desirable performance but lacks a Lyapunov
certificate. A pair of tunable threshold functions determine
conditions for switching between the controllers. To establish
global uniform asymptotic stability, a nonsmooth Lyapunov
function is constructed for the closed-loop hybrid system using
an auxiliary memory variable and the Lyapunov certificate
associated with the certified controller. Examples illustrate
improvements to control effort and rate of convergence resulting
from the proposed hybrid control strategy when applied to
state-feedback and model-predictive control.

I. INTRODUCTION

For some control design problems, a single continuous
state-feedback controller cannot simultaneously satisfy all
design requirements. In particular, the design of a globally
asymptotically stabilizing controller for a nonlinear system
requires multiple controllers if the system violates Brock-
ett’s conditions [1] or has certain topological obstructions,
such as systems with states that live in certain topological
manifolds [2], [3]. Such challenges have motivated the use
of supervisory algorithms that selects between multiple con-
trollers [4], [5], [6], [7]. For a system with one controller that
renders a set-point only locally asymptotically stable, and
another controller that guides the system into the vicinity of
the set-point, a class of supervisors called uniting controllers
produce global asymptotic stability of the set-point by se-
lecting the first controller near the set-point and the second
controller away from it [8], [9], [10]. Similarly, a switching
strategy for a family of Lyapunov-certified controllers to
achieve asymptotic stability is presented in [11]. For systems
with constraints, supervisors are used to provide a backup
controller that guarantees safety when the primary controller
lacks such a guarantee [12]. We do not, however, know
of a control strategy that allows for the opportunistic use

Paul K. Wintz is with the Department of Applied Mathematics, University
of California, Santa Cruz, CA 95064 (pwintz@ucsc.edu), Ricardo G. Sanfe-
lice is with the Department of Electrical and Computer Engineering, Univer-
sity of California, Santa Cruz, CA 95064 (ricardo@ucsc.edu), João P. Hes-
panha is with the Department of Electrical and Computer Engineering, Uni-
versity of California, Santa Barbara, CA 93106 (hespanha@ece.ucsb.edu).

This research was supported by the National Science Foundation under
grant nos. ECS-1710621, CNS-1544396, and CNS-2039054; by the Air
Force Office of Scientific Research under grant nos. FA9550-19-1-0053,
FA9550-19-1-0169, and FA9550-20-1-0238; by the Army Research Office
under grant no. W911NF-20-1-0253; and by the U.S. Office of Naval
Research under the MURI grant no. N00014-16-1-2710.

of an uncertified controller to improve performance while
preserving asymptotic stability.

In this paper, a hybrid control strategy is proposed to
fill that gap by uniting a Lyapunov-certified controller with
an uncertified controller via opportunistic switching. We
consider an unconstrained continuous-time nonlinear plant
with state space Rn and a given compact set A ⊂ Rn

that must be rendered uniformly globally asymptotically
stable (UGAS). If, for a given controller, A is rendered
UGAS and a Lyapunov function is known for the closed-
loop system, then we call the controller Lyapunov-certified.
A Lyapunov function exists for every sufficiently regular
closed-loop system such that A is UGAS [13, Theorem 4.17],
but construction of such a function is often difficult. Some
controllers that do not cause A to be UGAS may, however,
have otherwise desirable properties. A controller for which
a Lyapunov function is unavailable is called uncertified. The
novel contribution of this paper is the introduction of a hybrid
control strategy, such that—given a continuous Lyapunov-
certified feedback controller κ0 and a continuous uncertified
controller κ1—the set A is UGAS for the resulting closed-
loop system, the controller κ1 is preferred over κ0, and Zeno
behavior does not occur.

As an example where using an uncertified controller is
advantageous, suppose κ1 is a linear quadratic regulator
(LQR) for the linearization of a nonlinear system about
the origin. Because an LQR feedback is an optimal control
law, κ1 is approximately optimal (by some measure) near
the origin. The basin of attraction under κ1 is an open
neighborhood of the origin, but far from the origin, nonlinear
dynamics dominate, so the linearization is inaccurate and κ1

will generally not produce global stability. Our switching
logic lets us use κ1—without knowledge of the actual
basin of attraction—in conjunction with a Lyapunov-certified
controller to achieve global convergence to the origin and
minimize costs locally. A detailed consideration of this ex-
ample is given in Example 2. We envision that our switching
logic could be particularly useful for reinforcement learning
control, which often demonstrates good results empirically,
but for which it is often difficult to produce Lyapunov
certificates [14].

The remainder of the paper proceeds as follows. Section II
introduces notation and preliminary concepts. Section III
describes our proposed switching logic and the resulting
closed-loop system. Section III-C contains theoretical results.
Several examples, throughout, illustrate the behavior of the
closed-loop system.



II. PRELIMINARIES

We denote the nonnegative real numbers by R≥0, and
the natural numbers (0 inclusive) by N. For x, y ∈ Rn,
⟨x, y⟩ denotes the inner product between x and y. We
write [x⊤ y⊤]⊤ as (x, y). For a set S, the interior of S
is denoted intS. For a continuously differentiable function
f : Rn → R, the gradient of f at x is denoted ∇f(x). Given
x ∈ Rn and a nonempty set A ⊂ Rn, the distance from
x to A is |x|A := infy∈A|y − x|. A continuous function
α : R≥0 → R≥0 is said to be in class K∞ if α(0) = 0,
α is strictly increasing, and limr→∞ α(r) = ∞. Given a
nonempty set A ⊂ Rn, a function V : Rn → R≥0 is said
to be positive definite with respect to A if V (x) > 0 for all
x ∈ Rn \ A and V (x) = 0 for all x ∈ A.

A. Hybrid Systems

We consider hybrid systems modeled in the form [15], [9]

H

{
ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D
(1)

with state variable x ∈ Rn, flow map f : C → Rn, jump
map g : D → Rn, flow set C ⊂ Rn, and jump set D ⊂
Rn. A solution x to H is defined on a hybrid time domain
domx ⊂ R≥0 × N, which parameterizes the solution by
ordinary time t ∈ R≥0 and discrete time j ∈ N. A hybrid
time domain is a subset of R≥0 × N such that for every
(T, J) ∈ domx, there exists a sequence {tj}J+1

j=0 such that
t0 = 0, tj+1 ≥ tj for each j ∈ {0, 1, . . . , J}, and domx ∩
([0, T ] × {0, 1, . . . , J}) = ∪J

j=0([tj , tj+1], j); see [15]. A
solution x is said to be complete if domx is unbounded,
and is said to be Zeno if it is complete and the t component
of domx is bounded (implying j → ∞ in finite ordinary
time). A solution x is said to be maximal if there does not
exist a solution y to H such that x is a truncation of y to a
strict subset of dom y.

B. Stability Properties

Given a differential equation ż = f(z) with f : Rn → Rn

continuous and z evolving in Rn, and a nonempty compact
set A ⊂ Rn, then a continuously differentiable function V :
Rn → R is called a Lyapunov function if there exist α1, α2 ∈
K∞ and a continuous positive definite function ρ such that

α1(|z|A) ≤ V (z) ≤ α2(|z|A) ∀z ∈ Rn,

⟨∇V (z), f(z)⟩ ≤ −ρ(|z|A) ∀z ∈ Rn.

Definition 1 ([9, Definition 3.7]): For a hybrid system H
as in (1), a nonempty set A ⊂ Rn is said to be uniformly
globally stable for H if there exists a class-K∞ function
α such that every solution x to H satisfies |x(t, j)|A ≤
α(|x(0, 0)|A) for each (t, j) ∈ domx; and uniformly glob-
ally attractive for H if every maximal solution is complete
and for all ε > 0 and r > 0, there exists T > 0 such
that every solution x to H with |x(0, 0)|A ≤ r satisfies
|x(t, j)|A ≤ ε for all (t, j) ∈ domx such that t+ j ≥ T . If
A is both uniformly globally stable and uniformly globally

attractive for H, then it is said to be uniformly globally
asymptotically stable (UGAS) for H.

Given a hybrid system H as in (1), a nonempty set K ⊂
Rn is said to be forward invariant for H if each maximal
solution x to H from K is complete and satisfies x(t, j) ∈ K
for all (t, j) ∈ domx [9, Definition 3.13].

III. HYBRID CONTROL STRATEGY

We consider a nonlinear continuous-time plant

ż = fP (z, u) (2)

with state space Rn. Let A ⊂ Rn be a given nonempty
compact set to asymptotically stabilize. Suppose κ0 is a
continuous Lyapunov-certified controller that renders A to be
UGAS for ż = fP (z, κ0(z)) and has an associated Lyapunov
function V , and suppose κ1 is a continuous uncertified
controller for (2). We write the pair of feedback control laws
as u = κq(z) with q ∈ Q := {0, 1}. The problem to solve
consists of designing a switching logic for q such that A is
UGAS for the resulting closed-loop system, Zeno behavior
does not occur, and the controller κ1 is preferred over κ0. To
solve this problem, we design a hybrid control strategy that
determines when to switch between κ0 and κ1, as shown in
Figure 1. The resulting closed-loop system is hybrid, which
we model as in (1).
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Fig. 1: The switching logic passes q as an output to a switch,
which determines whether κ0 or κ1 is applied to the plant.

A. Outline of Hybrid Control Strategy

Our hybrid control strategy uses the plant state variable z,
the logic variable q described above, and a memory variable
v ∈ R≥0. The purpose of each variable is summarized here:

• z ∈ Rn is the state of the plant. Our goal is to steer z
asymptotically to A.

• q ∈ Q determines the current feedback controller. When
q = 0, controller κ0 is used and when q = 1, κ1 is used.

• v ∈ R≥0 records the value of V (z) at each switch,
and then decreases along flows, converging to zero (the
dynamics of v are designed in Section III-B). When
using the κ1 controller, V (z) can increase because κ1

is uncertified, so v is used as an upper bound for V (z),
restricting how much V (z) can grow before triggering
a switch to q = 0. Because v converges to zero, V (z)
will be squeezed to zero as well.



Hence, the state of the closed-loop system is

x := (z, v, q) ∈ X := Rn × R≥0 ×Q,

and we aim to uniformly globally asymptotically stabilize
the compact set

AX := {x ∈ X | z ∈ A, v = 0} = A× {0} ×Q. (3)

The rate of change of V (z) is central to our discussion, so
for each z ∈ Rn and each q ∈ Q, we define

V̇q(z) := ⟨∇V (z), fP (z, κq(z))⟩.

Because V is a Lyapunov function for ż = fP (z, κ0(z)),
there exists a continuous positive definite function ρ such
that V̇0(z) ≤ −ρ(|z|A) for all z ∈ Rn.

The basic idea of our hybrid control strategy is as follows.
Our strategy implements a switching logic that uses two
continuous functions σ0, σ1 : R≥0 → R≥0 chosen such that
σ1 is positive definite and σ0(s) > σ1(s) for all s ≥ 0.1

These functions define thresholds on V̇1(z) for switching
between the feedback controllers κ0 and κ1.

(S0) While the feedback controller κ0 is applied to the plant,
due to q being equal to 0, we monitor V̇1(z). We say that
V̇1 is “small enough to switch to q = 1” at z0 ∈ Rn if

z0 ∈ Z0 7→1 := {z ∈ Rn | V̇1(z) ≤ −σ0(|z|A)}. (4)

If V̇1(z) is small enough to switch to q = 1, then κ1

will produce convergence toward A, so the switching
logic updates q from 0 to 1 and records the value of
V (z) in v. Conversely, we say that V̇1 is “large enough
to hold q = 0” at z0 ∈ Rn if

z0 ∈ Z0 := {z ∈ Rn | V̇1(z) ≥ −σ0(|z|A)}. (5)

The system is allowed to flow if q = 0 and z ∈ Z0.
(S1) While the feedback controller κ1 is applied, due to q

being equal to 1, the values of v, V (z), and V̇1(z) are
monitored. We say that V̇1 is “large enough to switch
to q = 0” at z1 ∈ Rn if

z1 ∈ Z1 7→0 := {z ∈ Rn | V̇1(z) ≥ −σ1(|z|A)}, (6)

and “small enough to hold q = 1” if

z1 ∈ Z1 := {z ∈ Rn | V̇1(z) ≤ −σ1(|z|A)}. (7)

If V̇1(z) is large enough to switch to q = 0, then κ1 is
performing poorly. Rather than switching immediately,
however, we wait to switch until V (z) ≥ v. This pro-
vides leeway in case κ1 briefly causes a small increase
to V (z). (The dynamics of v are designed, below, such
that if z remains in Z17→0 long enough, then V (z) will
eventually equal v.) While q = 1 and either z ∈ Z1 or
V (z) < v, the system flows and we continue to use κ1.

Figure 2 shows a representative plot of −σ0, −σ1, Z07→1,
and Z17→0. Note that Z07→1 ⊂ intZ1, which ensures that if
V̇1(z0) is small enough to switch to q = 1, then there is a

1The function σ0 is strictly positive—not positive definite—because
σ0(0) > σ1(0) = 0.

neighborhood of z0 where V̇1 is small enough to hold q = 1.
Similarly, Z17→0 ⊂ intZ0, so if V̇1(z1) is large enough to
switch to q = 0, then there is a neighborhood of z1 where V̇1

is large enough to hold q = 0. Furthermore, Z0 ∪Z1 = Rn,
so either holding 0 or holding 1 is possible everywhere. The
sets Z17→0 and Z0 7→1 are closed and disjoint, precluding Zeno
solutions (see Proposition 1).
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Fig. 2: A plot of −σ0(|z|A),−σ1(|z|A),Z0 7→1, and Z17→0.

Before we formulate the hybrid closed-loop system, we
demonstrate the switching logic with an example.

Example 1 (Switching Logic): Consider the plant ż = u
with z, u ∈ R, controllers κ0(z) := −z, κ1(z) := −z3, and
pick σ1(s) := s2 and σ0(s) := 1.5s2 + 10−3 for all s ≥ 0.
Figure 3 shows plots of solutions to ż = κ0(z), ż = κ1(z),
and ż = κq(z) with q switching according to our hybrid
control strategy.2 Initially, the solution with the feedback
κ1 converges quickly but slows as z approaches zero. On
the other hand, the solution with the feedback κ0 converges
slowly far from the origin, but accelerates relative to the
solution with the feedback κ1, becoming smaller than it at
t = 1.7 s. The switched solution uses κ1 far from the origin
and κ0 near the origin, producing overall faster convergence.
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Fig. 3: Solutions from Example 1 using κ0 only, κ1 only,
and opportunistic switching between κ0 and κ1.

Plots of V , v, −σ0, −σ1, V̇1, and q for a solution from
initial values (z0, v0, q0) = (2, 0, 0) are shown in Figure 4.
At t = 0 s, V̇1(z0) < −σ0(|z0|A), so, per (S0), the system

2Simulations are computed in MATLAB with the HyEQ Toolbox [16].



immediately switches to q = 1. As time progresses, V̇1(z)
increases until it surpasses −σ1(|z|A) at t = 0.4 s. This
indicates V (z) is not decreasing fast enough to hold q = 1,
but because V (z) is less than v, the switch to q = 0 is
delayed until v equals V (z) at t ≈ 0.9 s, as required in (S1).
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Fig. 4: In Example 1, the controller κ1 initially has good
performance, causing V (z) to decrease quickly, but after
V̇1(z) moves above −σ1(|z|A), v starts to catch up with V (z)
and a switch is triggered when V (z) = v. While q = 0, v
does not affect switching, so it is hidden from plots.

B. Construction of the Closed-Loop System

We are now equipped to define the hybrid closed-loop
system. Following (S0), if q = 0, then the system flows
while z is in Z0 and jumps when z enters Z0 7→1. Thus, if
q = 0, jumps occur when x = (z, v, q) belongs to

D0 := Z07→1 × R≥0 × {0} (8)

and flows occur when x belongs to

C0 := X0 \D0 = Z0 × R≥0 × {0} (9)

where X0 := Rn × R≥0 × {0}. Similarly, following (S1),
when q = 1, jumps occur only when z ∈ Z17→0, and V (z) ≥
v, and flows occur if either z ∈ Z1 or V (z) ≤ v. Hence, if
q = 1, then the system jumps when x is in

D1 := {x ∈ X1 | V (z) ≥ v} ∩ (Z17→0 × R≥0 × {1}) (10)

and flows when x is in

C1 :=X1\D1={x∈X1 |V (z)≤v}∪(Z1×R≥0×{1}) (11)

where X1 := Rn × R≥0 × {1}. Then, the jump set is D :=
D0∪D1 and the flow set is C := C0∪C1. Note that the flow
set is the closed complement of the jump set: C = X \D.

Next, we define the discrete and continuous dynamics of
the hybrid closed-loop system. At each jump, z is constant,
since the plant state is continuous in time; v is set equal

to V (z) to record its value; and q is toggled to the oppo-
site value in {0, 1}. During flows, z evolves according to
fP (z, κq(z)) and the logic variable q is held constant. The
continuous dynamics of v are designed next.

We write the continuous dynamics for v as v̇ = fv(z, v, q).
When q = 0, the value of v does not affect the switching
scheme; we simply pick fv(z, v, 0) = −v so that v exponen-
tially converges to zero. When q = 1, however, the behavior
of v is crucial to ensuring that solutions to the closed-loop
system converge to AX . We design fv(z, v, 1) to satisfy the
following rules:
(R1) If V (z) = v = 0, then fv(z, v, 1) = 0 because x ∈ AX

has already been achieved.
(R2) If V (z) ≤ v ̸= 0, then fv(z, v, 1) < 0 is such that

v converges to zero. The motivation for this choice is
that V (z) is allowed to increase while V (z) < v, so
by making v converge to zero, V (z) is squeezed from
above, forcing either convergence or a switch to q = 0.

If V (z) > v, then v is allowed to increase because,
eventually, one of the following must occur:

• z enters Z17→0 prompting a switch to q = 0;
• V (z) = v, in which case (R1) or (R2) applies; or
• z ∈ Z1 and V (z) > v hold for the rest of time, so V (z)

converges to 0 and v is squeezed to 0 as well.
The behavior of v while V (z) ≤ v ̸= 0 is crucial to

the performance of the closed-loop system. We prescribe the
following cases:
(R3) If z ∈ Z1 and V (z) < v, then v remains greater than

V (z) as long as z remains in Z1. This guarantees that
the leeway above V (z) is maintained while V (z) is
decreasing fast enough to hold q = 1.

(R4) If z ∈ Z17→0 and V (z) < v, then V̇1(z) > fv(z, v, 1)
holds and, furthermore, if z remains in Z1 7→0, then v
decreases until it reaches V (z) in finite time, causing a
switch to q = 0. This acts as a fail-safe in case V (z)
otherwise fails to converge to zero.

(R5) If z ∈ Z07→1 and V (z) = v (as is the case immediately
after every switch to q = 1), then V̇1(z) < fv(z, v, 1)
must hold. This condition, in combination with (R3),
ensures that z ∈ Z07→1 and V (z) = v only occur simul-
taneously immediately after a switch to q = 1, and the
switch is immediately followed by an open interval I
of ordinary time such that V (z) < v for all t ∈ I.
During I, a switch to q = 0 is impossible, due to the
design of D1.

To satisfy (R1)–(R5), we define fv at each (z, v, 1) as

fv(z, v, 1) = −σ1(|z|A) + µ(V (z)− v) (12)

with µ > 0. Clearly, (12) satisfies (R1) and (R2). Inspecting
Z1, Z17→0, and Z0 7→1, we see that (12) also satisfies (R3)–
(R5). The term µ(V (z)− v) pushes v toward V (z) at a rate
proportional to the difference V (z) − v, which helps v to
“catch up” if V (z) has dropped quickly.

Combining the cases for q = 0, 1, the dynamics of v are

v̇=fv(z,v,q):=

{
−v, if q=0,

−σ1(|z|A)+µ(V (z)−v), if q=1.
(13)



The system parameters σ1 and µ affect the rate at which v
converges toward zero while q = 1. Larger choices of σ1 and
µ cause v to decay faster, which reduces the amount V (z)
can increase before switching back to q = 0, whereas smaller
choices of σ1 and µ correspond with a stronger preference
for κ1 (see Example 3).

The construction above leads to the hybrid closed-loop
system H = (C, f,D, g) with state x = (z, v, q) ∈ X and
data given by{

f(x) :=(fP (z,κq(z)),fv(x),0) ∀x∈C :=C0∪C1

g(x) :=(z, V (z), 1−q) ∀x∈D :=D0∪D1

(14)

with fv given in (13) and D0, D1, C0, C1 in (8)–(11). The
parameters of our hybrid control strategy are µ > 0, and
continuous functions σ0, σ1 : R≥0 → R≥0 such that σ1 is
positive definite and σ1(s) < σ0(s) for all s ≥ 0.

Example 2 (LQR): Consider the nonlinear plant

ż = A1z + h(∥z∥)A2z + u (15)

with A1 :=
[

0 2
−2 0

]
, A2 := 4I , and h(s) = min{s, 1} for

s ≥ 0. This system behaves like ż = A1z near the origin
and like ż = (A1 + A2)z far from it. The origin of (15)
is UGAS for κ0(z) :=

[−5 0
0 −6

]
z. For κ1, we linearize (15)

about the origin and use the linear quadratic regulator (LQR)
feedback that solves the following infinite-horizon optimal
control problem:

minimize
u

∫ ∞

0

∥z(t)∥2 + ∥u(t)∥2 dt

subject to ż = A1z + u.

(16)

The LQR feedback is u = κ1(z) := −z. Figure 5 shows
a solution to the hybrid closed-loop system with µ = 1,
σ0(s) := 0.5s2, and σ1(s) := 0.8s2 + 10−3. The switching
logic uses κ1 near the origin, significantly reducing ∥u∥.
The leeway between v and V (z) allows V̇1(z) to be briefly
larger than −σ1(|z|A) without triggering a switch to q = 0.
In contrast, if µ = 4 (not shown), then v decreases faster,
causing v to reach V (z) and triggering a switch to q = 0. The
switch is followed by a spike in control effort, a period of
faster convergence, and a subsequent switch back to q = 1.

C. Uniform Global Asymptotic Stability of AX

Our results require the following assumption.
Assumption 1: The functions fP , κ0, κ1, and V satisfy the

following properties.

(B1) fP , κ0, and κ1 are continuous;
(B2) V is continuously differentiable.

For solutions to H, every jump is followed by an interval
of flow. The following proposition states that for every
solution to H, the lengths of all intervals of flow have a
strictly positive lower bound. As a consequence, H does not
have Zeno solutions.

Proposition 1: Suppose Assumption 1 holds. Then, for
each solution x to H in (14), there exists γ > 0 such that
tj+1 − tj > γ for all (tj , j), (tj+1, j + 1) ∈ domx.
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Fig. 5: In Example 2, the switching logic uses the LQR
controller κ1 near the origin, significantly reducing ∥u∥. The
leeway between v and V (z) allows V̇1(z) to be briefly greater
than −σ1(|z|A) without triggering a switch to q = 0.

The next result asserts that every maximal solution to H
is complete and converges to AX ; thus, the hybrid controller
successfully steers the plant state z to A.

Theorem 1: Suppose Assumption 1 holds. Then, the set
AX in (3) is UGAS for H given in (14).

Proof sketch. Consider the function

Ṽ (x) := max{V (z), v}. (17)

Outside AX , Ṽ (x) decreases along flows because if q = 0,
then both V (z) and v are decreasing; if q = 1 and V (z) ≥ v,
then V (z) is decreasing; and if q = 1 and V (z) ≤ v, then v is
decreasing. To show that Ṽ (x) is decreasing, let Ṽ ◦(x, f(x))
be the Clarke generalized directional derivative [17] of Ṽ at
x ∈ X in the direction of f(x) and let

B := {x ∈ X | q = 1, V (z) = v, V̇1(z) > −σ1(|z|A)}.

For all x∈C \ (B∪AX ), Ṽ ◦(x,f(x))< 0. For each x∈B,
the flow map f(x) points out of C, so flows are impossible.
Thus, Ṽ (x) decreases along flows in C \AX . Within AX , Ṽ
is zero. Furthermore, Ṽ (x) does not increase at jumps and
Zeno behavior does not occur (see Proposition 1). Therefore,
Ṽ is a (nonsmooth) Lyapunov function for H, and AX is
UGAS [18, Theorem 7.8], [9, Theorem 3.22]. ■

It can also be shown that H satisfies the hybrid basic
conditions [9, Definition 2.18], so the asymptotic stability
of AX is robust to small disturbances [9, Theorem 3.26].

The next example shows how µ affects performance.
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Fig. 6: In Example 3 with µ = 1, a slow decrease in v allows V (z) to return almost to its value at the start of each q = 1
interval. When µ = 26, however, v decreases faster, limiting the increase in V (z) after each drop.

Example 3 (MPC): Let ż = u with z,u∈R2, let κ0(z) :=
1
2

[−1 2
−2 −1

]
z, and let κ1 be a model predictive controller

(MPC) with periodic updates. Between updates, zero-order
hold (ZOH) is used to generate the control signal. The
switching logic for H preserves the stability properties of
AX regardless of the choice of κ1, so solutions to the hybrid
closed-loop system converge even if the MPC algorithm fails
to compute updated control values by the next ZOH sample
time. Suppose T = 1 s is the ZOH sample-time used in the
computation of the MPC feedback (that is, the duration that
each input value is designed to be applied for) and suppose
Tc = 2 s is the actual time required to compute the MPC
feedback. Because Tc > T, a new MPC feedback value is not
available at every sample time, in which case the feedback
values from the previous interval are reused.

Figure 6 shows solutions to H with κ1 computed using
the MATLAB MPC Toolbox and with σ1(s) := 0.3s2, and
σ0(s) := 0.36s2+0.5. For µ = 1, we see that V (z) decreases
quickly as t approaches 1 s (the end of the interval when the
MPC feedback value is designed to be applied), but since an
updated value is unavailable, κ1 holds the same value until
t = 2 s. After t = 1 s, V (z) rises quickly until it hits v,
causing a switch to q = 0. Consequently, despite κ1’s poor
performance, the closed-loop system achieves convergence.
Note, however, that V (z) increases significantly after t = 1 s
and again after t = 3 s. The increase is limited by v, but
a smaller increase may be desirable. To reduce the amount
that V (z) can increase, a larger value of µ should be chosen,
causing v to follow V (z) more closely as V (z) decreases.

IV. CONCLUSION

Future work includes analyzing our hybrid control strategy
when applied to systems with disturbances and noisy mea-
surements and inputs. We are also interested in integrating
our strategy with existing supervisory control strategies that
ensure constraint satisfaction by switching between a primary
controller that is not provably safe and a backup controller
with safety guarantees to create a hybrid closed-loop system
that is provably safe and convergent.
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