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Abstract—Control barrier functions are a popular method
for encoding safety specifications for dynamical systems. In
this paper, a notion of control barrier function is defined that
permits vector-valued barrier functions and flow constraints
involving both the state and the control input. Control barrier
functions induce constraints on the control input that, when
satisfied, guarantee forward invariance of a safe set of states.
The constraints are enforced using a pointwise-optimal feedback
controller, and sufficient conditions for the continuity of the
controller are given. The existence of a control barrier function
is defined to be equivalent to the feasibility of the optimal
feedback controller. Polynomial optimization problems based
on sums of squares are formulated that can be used to certify
that a given function is a control barrier function.

I. INTRODUCTION

The use of control barrier functions (CBF) to synthesize
feedback controllers that render sets of states forward invari-
ant, analogous to attaining asymptotic stability via control
Lyapunov functions (CLF), has recently gained significant
interest because of the tight relationship between forward
invariance and safety [1], [2]. Forward invariance is a
property indicating that trajectories of a dynamical system
starting within a given set stay in the set for all time. In
many applications, such as [2] and [3, Sec. V], multiple
CBFs are used to describe the control objective, whereas the
majority of theoretical results are developed for scalar barrier
functions. While it is possible to combine multiple barrier
functions using max and min operations, as in works like
[2] and [4], the resulting functions are generally nonsmooth,
in which case the resulting controllers are discontinuous.
A framework for studying forward invariance with multiple
barrier functions was developed in [5] in the context of
uncontrolled systems. For controlled systems, the conditions
therein can be interpreted as constraints on the control input
that can be enforced using optimization-based controllers;
see [6, Ch. 11]. Enforcing multiple input constraints defined
by multiple continuously differentiable CBF candidates is a
promising way to obtain control laws that are continuous
functions of the state.
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Traditionally, a CBF is defined to guarantee that a safety-
ensuring controller exists [1], yet tools for verifying that a
given function has this property are not fully developed.
While analytical conditions exist to determine whether a
scalar-valued function is a CBF (cf. [7], [8, Prop. 1]), the
problem is significantly more challenging when multiple
constraints must be satisfied simultaneously. In general, there
exists a set of constraints in the decision variable (control
input) that vary with an external parameter (the state of
the dynamic system), and it must be verified that feasible
solutions to the constraints exist for all states in a given set.
The authors of [9] leverage a tool for checking that multiple
constraints have at least one feasible solution at a particular
point in the state space, but it is not clear how to verify
this property on a given (uncountable) subset of the state
space. To address the feasibility problem, we use sum of
squares programming, which requires the more restrictive
assumptions that the constraints defining the feasible set
are polynomials and affine in the control input [10], [11].
Our technique verifies feasibility on level-sets of a given
function (typically the CBF candidate), which is useful for
safe synthesis and computationally simpler than techniques
that search simultaneously for a controller and CLF/CBF as
in [12] and [13]. In [13], an iterative procedure is developed
to search for a scalar CBF describing a safe set that avoids
given unsafe regions. The safe set was rendered forward
invariant by a feasible controller. This technique is valuable
when a CBF candidate is unavailable, whereas our approach
is targeted towards verification that a given candidate is a
CBF.

The goal of this paper is to synthesize forward invariance-
ensuring controllers for continuous-time differential inclu-
sions with flow constraints on the state and the control input.
A special case of the flow constraints are state-dependent
input constraints. In Section III, we define a notion of
vector-valued CBF that is equivalent to the feasibility of the
CBF-induced pointwise optimal control law. We show that
forward (pre-)invariance of the safe set defined by a CBF
is guaranteed using any continuous selection of the feasible
set mapping. In Section IV, we provide sufficient conditions
under which the CBF-induced pointwise optimal control
law is continuous. These conditions generalize available
results by allowing broader classes of cost functions and not
necessarily requiring the set-valued mapping describing the
feasible control inputs to be locally bounded. In Section V,
we develop sum of squares optimization tools that can be
used to verify that a CBF candidate is a CBF.



II. PRELIMINARIES

For vectors x ∈ Rn, y ∈ Rm, (x, y) ,
[
x>, y>

]>
.

The shorthand [d] , {1, 2, . . . , d} is used. Given a function
B : Rn → Rd, the components are indexed as B (x) ,
(B1 (x) , B2 (x) , . . . , Bd (x)) and the inequality B (x) ≤ 0
means that Bi (x) ≤ 0 for all i ∈ [d]. For a set A ⊂ Rn, the
notation ∂A denotes its boundary, A its closure, Int (A) its
interior, and U (A) denotes an open neighborhood around A.

Given a set X ⊂ Rn, a set-valued mapping M : X ⇒
Rm associates every point x ∈ X with a set M (x) ⊂ Rm.
The mapping M is called locally bounded if, for every x ∈
X , there exists a neighborhood UX (x) , U (x) ∩ X such
that M (UX (x)) is bounded, M is outer semicontinuous if
GraphX (M) , {(x, u) ∈ X×Rm : u ∈M (x)} is relatively
closed in X × Rm, and M is lower semicontinuous if, for
any open set G ⊂ Rm, the inverse image M−1 (G) , {x ∈
X : M (x) ∩ G 6= ∅} is open.

III. CONTROL BARRIER FUNCTIONS

Consider an open-loop constrained differential inclusion
(F,Cu) with state x ∈ Rn and input u ∈ Rm modeled by

ẋ ∈ F (x, u) (x, u) ∈ Cu (1)

where F : Rn × Rm ⇒ Rn is the set-valued
flow map and Cu ⊂ Rn × Rm is the flow set.
To facilitate the subsequent development, let Π (Cu) ,
{x ∈ Rn : ∃u ∈ Rm s.t. (x, u) ∈ Cu} denote the set of all
states for which flowing is possible, and let

Ψ (x) , {u ∈ Rm : (x, u) ∈ Cu} (2)

denote the set of admissible control inputs at each state.
CBFs are defined to guarantee the existence of control

inputs that ensure forward invariance (i.e., safety) of a given
set of states S ⊂ Π (Cu). Compared to works such as [1], we
use a notion of CBF that accommodates safe sets defined by
multiple scalar functions. For notational convenience, we use
vector-valued functions B : Rn → Rd to represent multiple
CBFs. Defining a CBF in this case requires special care
because there are multiple constraints on the control input
that must be satisfied simultaneously. Our development is
based on the work for closed-loop hybrid systems in [5] and
for hybrid systems with inputs in [6], which we specialize
to the continuous-time dynamics in (1).

Definition 1. A vector-valued function B : Rn → Rd is
called a CBF candidate defining the safe set S ⊂ Π (Cu) if

S = {x ∈ Π (Cu) : B (x) ≤ 0} .

Also define Si , {x ∈ Rn : Bi (x) ≤ 0} for every i ∈ [d].

We restrict our attention to continuously differentiable
CBF candidates because of advantages they offer towards
synthesizing continuous controllers. Given a continuously
differentiable CBF candidate, define a function Γ : Cu → Rd

such that the i-th component is

Γi (x, u) , sup
f∈F (x,u)

〈∇Bi (x) , f〉 ∀ (x, u) ∈ Cu. (3)

The value of Γi (x, u) represents the worst-case growth of
Bi (x) for any possible direction of flow in the set-valued
map F (x, u). When F (x, u) is nonempty and bounded,
the supremum in (3) is finite. Thus, the following mild
assumption will be needed to ensure that Γ is well-defined.

Assumption 1. The set F (x, u) is nonempty and bounded
for every (x, u) ∈ Cu.

We also introduce the primary design parameter in the
form of a function γ, which is used to define a set of
control inputs that constrain the worst-case growth function
Γ according to conditions derived from [5] that guarantee
forward invariance of the safe set S. We impose the following
assumption.

Assumption 2. The function γ : Π (Cu)→ Rd is such that,
for each i ∈ [d], γi (x) ≥ 0 for all x ∈ (U (Mi) \Si) ∩
Π (Cu), where Mi , {x ∈ ∂S : Bi (x) = 0}.

Definition 2. Let (F,Cu) satisfy Assumption 1. A continu-
ously differentiable CBF candidate B : Rn → Rd defining
the set S ⊂ Π (Cu) is a CBF for (F,Cu) and S on a set
O ⊂ Π (Cu) with respect to a function γ : Π (Cu)→ Rd if
there exists a neighborhood of the boundary of S such that
U (∂S)∩Π (Cu) ⊂ O, γ satisfies Assumption 2, and the set

Kc (x) , {u ∈ Ψ (x) : Γ (x, u) ≤ −γ (x)} (4)

is nonempty for every x ∈ O.

Remark 1. Assumption 2 imposes conditions on the function
γ that must hold on a region outside the set S. In contrast
to conditions based on Nagumo’s theorem such as those in
[1], the conditions here are valid even if the gradients of the
component CBF candidates are degenerate (i.e.,∇Bi (x) = 0
for some x ∈Mi). See [5, Thm. 2] for alternative conditions
applicable to multiple barrier functions that do not require
checking points outside of S . Adapting the conditions in [5]
to the setting of controlled systems is the subject of future
work.

A. Forward pre-Invariance Using Selections of Kc

We next relate the notion of CBF in Definition 2 to
forward pre-invariance of the safe set S = {x ∈ Π (Cu) :
B (x) ≤ 0}. The result in this section is comparable to [14,
Thm. 4]. While our result applies to a more general class
of dynamics, the result in [14] does not require the control
law to be continuous. We require continuity to ensure outer
semicontinuity of the closed-loop dynamics as required by
the results in [5].

Consider a closed-loop system (Fcl, C) defined by (F,Cu)
in (1) and a control law κ : Π (Cu)→ Rm as

ẋ ∈ F (x, κ (x)) , Fcl (x) x ∈ C (5)

where C , {x ∈ Rn : (x, κ (x)) ∈ Cu}. A solution
to (Fcl, C) starting from x0 ∈ C is a locally absolutely
continuous function φ : domφ → Rn such that φ (t) ∈ C
for all t ∈ Int(domφ) and φ̇ (t) ∈ Fcl (φ (t)) for almost



all t ∈ domφ, where domφ ⊂ [0,∞) is an interval
containing zero. A solution is said to be complete if domφ
is unbounded, and it is maximal if there is no solution φ′

such that φ (t) = φ′ (t) for all t ∈ domφ with domφ a
proper subset of domφ′. The following notions of forward
invariance are adapted from [5] for the case of constrained
differential inclusions.

Definition 3. A set S ⊂ C is forward pre-invariant for
(Fcl, C) if, for each x0 ∈ S and each maximal solution
φ starting from x0, φ (t) ∈ S for all t ∈ domφ. The set
S is forward invariant if it is forward pre-invariant and, for
each x0 ∈ S , each maximal solution φ starting from x0 is
complete.

The following assumption and lemma relate regularity
conditions imposed on the open-loop system (F,Cu) in (1) to
common regularity conditions for the closed-loop dynamics
that will be used in the next two theorems.

Assumption 3. A) The flow map F : Rn × Rm ⇒ Rn is
locally bounded, outer semicontinuous, and has nonempty
and convex images on Cu.
B) The flow set Cu is a closed subset of Rn × Rm.

Lemma 1. Suppose κ : Π (Cu)→ Rm is continuous. If As-
sumption 3A) holds, then Fcl : Rn → Rn is locally bounded,
outer semicontinuous, and has nonempty and convex images
on C. If Assumption 3B) holds, then C is a closed subset of
Rn.

The following result provides conditions under which
continuous controllers selected from the mapping Kc in (4)
render the set S forward pre-invariant for the closed-loop
dynamics in (5). In Section IV we provide a constructive
strategy for designing continuous safety-ensuring controllers
using optimization.

Theorem 1. (Forward pre-Invariance) Let Assumption 3A)
hold for the open-loop dynamics (F,Cu). Suppose B : Rn →
Rd is a CBF for (F,Cu) and S ⊂ Π (Cu) on O ⊂ Π(Cu)
with respect to γ : Π(Cu) → Rd. Let the control law κ :
O → Rm be continuous with κ (x) ∈ Kc (x) for all x ∈ O.
If S = {x ∈ Π(Cu) : B (x) ≤ 0} is closed1 in Rn, then S is
forward pre-invariant for the closed-loop dynamics defined
in (5) by (F,Cu) and κ.

When the performance function γ satisfies stronger con-
ditions than those imposed in Assumption 2, selections of
Kc, designed to enforce all of the barrier function-induced
constraints, not only render S forward pre-invariant, but also
some larger sets defined by a subset of the barrier functions.
This situation is different from redefining Kc by removing
some of the constraints.

Corollary 1. Under the assumptions of Theorem 1, assume
additionally that O = Π (Cu) and γi (x) ≥ 0 for all x ∈

1Since B is assumed to be continuous, a sufficient condition for S to be
closed is that Π (Cu) is closed.

O\Si, for each i ∈ [d]. For any index set I ⊂ {1, 2, . . . , d},
if the set SI , {x ∈ Π (Cu) : Bi (x) ≤ 0, ∀i ∈ I} is closed
in Rn, then SI is forward pre-invariant for the closed-loop
dynamics defined in (5) by (F,Cu) and κ.

The corollary follows by applying Theorem 1 to the CBF
candidate BI : Rn → R|I| defined by only the components
of B in I. The result in Corollary 1 can also be specialized
to a particular index set SI under weaker assumptions.

B. Forward Invariance Using Selections of Kc

The forward pre-invariance property does not guarantee
that maximal solutions to the closed-loop dynamics are com-
plete. In particular, solutions may escape in finite time inside
of S or may be unable to continue flowing in Π (Cu). To
select control inputs that prevent solutions from terminating
on the boundary of Π (Cu), we define a map

Θ (x) ,


{u ∈ Ψ (x) : F (x, u) ∩ TΠ(Cu) (x) 6= ∅}

if x ∈ ∂Π (Cu) ∩ S,
Ψ (x) otherwise,

where TΠ(Cu) (x) denotes the tangent cone to Π (Cu) at x
[15, Def. 5.12]. Relative to the assumptions of Theorem 1,
we will assume additionally that the flow set Cu is closed
and that the closed-loop controller is continuous on a set that
contains the entire safe set. Doing so allows us to satisfy
the hybrid basic conditions in Assumption 6.5 of [15] and
establish completeness of maximal solutions.

Theorem 2. (Forward Invariance) Let Assumption 3A)
and 3B) hold for the open-loop dynamics (F,Cu). Suppose
B : Rn → Rd is a CBF for (F,Cu) and S ⊂ Π (Cu) on
O with respect to γ when Kc (x) in (4) is replaced with
Kc (x) ∩Θ (x). Let D , O ∪ S , and suppose κ : D → Rm

is continuous with κ (x) ∈ Kc (x)∩Θ (x) for all x ∈ O and
κ (x) ∈ Ψ (x) for all x ∈ D\O. If S is closed in Rn and
one of the following conditions hold:
2.1) S is compact,
2.2) Fcl (x) , F (x, κ (x)) is bounded on S, or
2.3) Fcl has linear growth on S, namely, there exists c > 0
such that, for all x ∈ S, supv∈Fcl(x) |v| ≤ c (|x|+ 1),
then S is forward invariant for the closed-loop dynamics
defined in (5) by (F,Cu) and κ.

Remark 2. At times, it might be difficult to compute the
tangent cone TΠ(Cu), making it challenging to make a
selection from the mapping Kc∩Θ. When ∂Π (Cu)∩S = ∅,
Theorem 2 is simplified since Kc (x) ∩ Θ (x) = Kc (x) at
any point where Kc (x) is defined. There are a number of
situations where the safe set S can be either changed or
redefined, by adding components to a CBF candidate B, to
ensure that ∂Π (Cu)∩S = ∅. Under appropriate assumptions,
the problem could be handled more generally by using a CBF
candidate to define the set Π (Cu) (cf. Remark 1).

IV. DESIGN OF OPTIMAL SAFETY-ENSURING FEEDBACK

Theorems 1 and 2 show that continuous selections of the
mapping Kc in (4) render the safe set forward (pre-)invariant.



In this section, we develop a constructive method for making
such selections using optimization, and provide a result on
when the optimal selection is a continuous function of the
state. To obtain an implementable form for the controller, we
impose the following condition on the set-valued map Ψ of
admissible controls.

Assumption 4. There exists ψ : Π (Cu) × Rm → Rk such
that Ψ (x) = {u ∈ Rm : ψ (x, u) ≤ 0} for all x ∈ Π (Cu).

Assumption 4 is common when input constraints are
present [9], [14]. If B is a CBF for (F,Cu) and S on O
with respect to γ, define the controller κ∗ : O → Rm as2

κ∗ (x) , arg min
u∈Rm

Q (x, u) (6)

s.t. Γ (x, u) ≤ −γ (x) , ψ (x, u) ≤ 0,

where Q : O × Rm → R is a cost function and Γ is
defined in (3). Because Kc in (4) is the feasible set for
(6), κ∗ is a selection of Kc– we write (6) equivalently as
κ∗ (x) = arg minu∈Kc(x) Q (x, u). When Kc is nonempty
on O as required in the definition of CBF in Definition 2,
the optimization in (6) is feasible.

Remark 3. The optimization in (6) is generally a nonlinear
program. It is a quadratic program if the cost function Q is
quadratic and the constraints are affine in the control input.
For the case of a quadratic program, κ∗ (x) can often be
computed at the current state in real time, as characterized
in works like [3].

Although κ∗ (x) is feasible at x ∈ O if Kc (x) 6= ∅, it is
not necessarily continuous. The following lemma, applicable
to an optimal selection from a generic set-valued map, is used
in proving the next theorem. Lemma 2 is a specialization of
the more general results in [16]. Our result generalizes the
min-norm control result of [17, Prop. 2.19] by allowing a
broader class of cost function and not necessarily requiring
the feasible set mapping to be locally bounded. We relax the
boundedness requirement on the feasible set by imposing the
following property on the cost function.

Definition 4. [18, Def. 1.16] Given a set X ⊂ Rn, a function
Q : X × Rm → [−∞,∞] with values Q (x, u) is level-
bounded in u, locally uniformly in x, if for each x̄ ∈ X and
λ ∈ R there is a neighborhood UX (x̄) ⊂ X such that the
set {(x, u) ∈ UX (x̄)× Rm : Q (x, u) ≤ λ} is bounded.

Lemma 2. Let O ⊂ Rn. Suppose K : O ⇒ Rm is lower and
outer semicontinuous with nonempty, convex values, and the
function Q : O×Rm → R is continuous with u 7→ Q (x, u)
strictly convex for every x ∈ O. Suppose that either 1) K
is locally bounded, or 2) (x, u) 7→ Q (x, u) is level-bounded
in u, locally uniformly in x. Then, κ∗ : O → Rm defined
as κ∗ (x) , arg minu∈K(x) Q (x, u) is single valued and
continuous.

2For κ∗ to be well-defined, the function Γ should be extended to points
(x, u) ∈ Π (Cu) × Rm where u /∈ Ψ (x). This extension can be done
arbitrarily since such points are infeasible.

Next, we provide one of our main results establishing the
continuity of the controller in (6). We impose the following
assumptions on the constraints, which lead to the continuity
properties of the feasible set required by Lemma 2.

Assumption 5. For each i ∈ [d] and j ∈ [k],
A) For each x ∈ O, the functions u 7→ Γi (x, u) and u 7→
ψj (x, u) are convex on Ψ (x);
B) The functions (x, u) 7→ Γi (x, u) + γi (x) and (x, u) 7→
ψj (x, u) are continuous on Cu ∩ (O × Rm) and O × Rm,
respectively.

Theorem 3. (Continuity of κ∗) Let Cu ⊂ Rn × Rm, O ⊂
Π (Cu), Γ : Cu → Rd, and γ : Π (Cu) → Rd be given.
Suppose Assumptions 4 and 5 hold, the cost function Q : O×
Rm → R is continuous and, for each x ∈ O, u 7→ Q (x, u)
is strictly convex, and the mapping

K◦c (x) ,

{
u ∈ Rm : Γ (x, u) < −γ (x)

ψ (x, u) < 0

}
(7)

is nonempty for every x ∈ O. Additionally, suppose that one
of the following conditions holds:
3.1) Ψ : Π (Cu)⇒ Rm in (2) is locally bounded,
3.2) (x, u) 7→ Q (x, u) is level-bounded in u, locally uni-
formly in x.
Then, κ∗ : O → Rm defined in (6) is continuous.

Remark 4. By invoking Proposition 2.9 of [19], the functions
Γi in (3) are continuous when the flow map F : Rn×Rm ⇒
Rn is locally bounded, outer semicontinuous, and lower
semicontinuous. When the needed regularity is not present
in the dynamics, one can replace Γ with a continuous upper
bound Γ̄ : Cu → Rd such that Γ̄i (x, u) ≥ Γi (x, u) for
every (x, u) ∈ Cu ∩ (O × Rm) and i ∈ [d]. It follows that
KS

c (x) , {u ∈ Ψ (x) : Γ̄ (x, u) ≤ −γ (x)} ⊂ Kc (x) for
all x ∈ Π (Cu) ∩ O, so that redefining κ∗ to be a selection
of the subset mapping KS

c still leads to a selection of Kc.
Similar replacements can be made for the functions γ and
ψ.
Theorem 3 shows that κ∗ is continuous even if the admissible
control mapping Ψ is unbounded, provided the cost function
Q has the level-bounded property in Definition 4. The next
result shows that a commonly-used class of cost functions has
this property. We plan to characterize more general classes
of functions with the level-bounded property in future work.

Proposition 1. If O ⊂ Rn and κnom : O → Rm is
continuous, then the cost function Q (x, u) , |u− κnom (x)|
is level-bounded in u, locally uniformly in x.

V. FEASIBILITY VERIFICATION WITH SUM OF SQUARES

A challenging aspect of verifying that a given CBF
candidate is a CBF is determining whether the set Kc (x)
is nonempty for every x ∈ O. Since Kc is the feasible
set for the control law κ∗ in (6), checking if a function
is a CBF is the same as checking if the optimization
defining κ∗ is feasible. Moreover, certifying that K◦c in
(7) has nonempty values guarantees continuity of κ∗ under



the assumptions of Theorem 3. In this section, we develop
polynomial optimization tools for certifying that Kc and K◦c
have nonempty values under more restrictive assumptions on
the constraints defining the mappings. Namely, we assume
that the constraints are polynomials and affine in the control
input. However, the tools can be used in the case of non-
polynomial constraints to obtain conservative estimates of the
feasible region by replacing the constraints with polynomial
upper bounds. This procedure is similar to Remark 4 except
the polynomial upper bounds are used only for verification
and we do not need to redefine κ∗.

Let P [x] be the set of all polynomials in the variables
x ∈ Rn. The set of sum of squares (SoS) polynomials is
Σ [x] , {p ∈ P [x] : p =

∑N
i=1 f

2
i , f1, . . . , fN ∈ P [x]},

where p ∈ Σ [x] implies that p (x) ≥ 0 for all x ∈ Rn. We
will also use Pm1×m2 [x] to denote the set of matrix-valued
functions p : Rn → Rm1×m2 with polynomial entries.

SoS programming involves a series of relaxations of origi-
nally NP-hard polynomial optimization problems that lead to
tractable semidefinite programs [10]. The class of problems
that can be solved involve optimizing the coefficients of
polynomials pi ∈ P [x] subject to constraints of the form
a0 +

∑N
i=1 piai ∈ Σ [x], where a0, a1, . . . , aN ∈ P [x]

are given, constant coefficient polynomials (see [11], SoS
Program 2). The aforementioned constraint is linear in the
coefficients of the polynomials pi.

To describe how SoS optimization can be used to certify
whether a given function is a CBF, first consider a global
feasibility problem. Let K : Rn ⇒ Rm be a set-valued
mapping defined by a system of inequalities as

K (x) , {u ∈ Rm : A (x)u+ b (x) ≤ 0} , (8)

where A : Rn → Rnc×m and b : Rn → Rnc are polynomial,
i.e., A ∈ Pnc×m [x] and b ∈ Pnc [x]. The assumption that
the constraints are affine is needed to obtain a proper SoS
program, as discussed above. Given constraints of the form
in (8), the following SoS program will certify that K (x) 6= ∅
for all x ∈ Rn.

Problem 1. (Global Feasibility) Given x ∈ Rn and polyno-
mials A ∈ Pnc×m [x] and b ∈ Pnc [x], find a constant ε ≥ 0
and a polynomial u ∈ Pm [x] such that, for all i ∈ [nc],

−Ai∗ (x)u (x)− bi (x)− ε ∈ Σ [x] ,

where Ai∗ (x) denotes that i-th row of A (x). The parameter
ε could either be a fixed value or a decision variable. If ε > 0,
then K◦ (x) , {u ∈ Rm : A (x)u+b (x) < 0} is nonempty.

Although the polynomial controller u found in Problem
1 is a selection of K (i.e., u (x) ∈ K (x)), it is not an
optimal selection like κ∗ in Section IV. Thus, we use u
only for feasibility verification purposes, while κ∗ is used to
define a closed-loop system for control purposes. To apply
the techniques in this section to Kc in Section III, we will
need to assume the existence of a polynomial and affine
upper bound of the functions defining Kc.

Assumption 6. Given Γ : Cu → Rd, γ : Π (Cu)→ Rd, and
ψ : Π (Cu) × Rm → Rk, let nc , d + k and assume there
exists A ∈ Pnc×m [x] and b ∈ Pnc [x] such that A (x)u +
b (x) ≥ (Γ (x, u) + γ (x) , ψ (x, u)) for all (x, u) ∈ Cu.

For many practical control problems, especially those
involving constraints on the magnitude of the control input,
one will likely not find (or need) a CBF that exists on the
entire state space. More often, feasibility verification can be
restricted to a particular operating region. Thus, a method
is needed to verify that Kc (x) in (4) is nonempty on a
subset of Rn. Because the system is expected to operate
nearby the safe set, a natural way to define the operating
region is with sublevel sets of a CBF candidate B defining
S ⊂ Π (Cu). By certifying that Kc (x) is nonempty on a set
LB (β) , {x ∈ Rn : B (x) ≤ β}, with β > 0, we certify
that B is a CBF on LB (β), and that the controller κ∗ in (6)
exists on the entire safe set S ⊂ LB (β). Since working with
B in this context requires assuming that B is polynomial, we
subsequently consider a generic polynomial B̃ ∈ Pnb [x].

While being a SoS polynomial is a global property, there
exist hierarchies of relaxations that have close relationships
to the set of polynomials that are nonnegative only on a
particular subset of Rn [10]. The relaxation that will be most
useful for the feasibility verification problem is the following,
based on Putinar’s Positivstellensatz [20].

Lemma 3. Let B̃ ∈ Pnb [x] and define LB̃ (β) , {x ∈
Rn : B̃ (x) ≤ β} for some β ∈ R. A function p ∈ P [x] is
nonnegative on LB̃ (β) if there exists s0, s1, . . . , snb

∈ Σ [x]
such that, for all x ∈ Rn,

p (x) ≥ s0 (x) +

nb∑
j=1

sj (x)
(
β − B̃j (x)

)
. (9)

Proof: The result follows from the facts that sj (x) ≥ 0
for all x ∈ Rn and β − B̃j (x) ≥ 0 for all x ∈ LB̃ (β).

Putinar’s Positivstellensatz shows that every polynomial
that is strictly positive on LB̃ (β) can be decomposed in the
form on the right-hand side of (9) under the assumption that
the functions defining LB̃ (β) have an Archimedean property
[10, Thm 3.20]. While results guaranteeing the existence of
SoS decompositions when the Archimedean property is not
present have been applied to controls problems in, e.g., [12],
these methods scale poorly with the number of components
in B̃. The multiplicative monoid in [12] is known to lead to
multiplicative combinations of decision variables that require
developing complex iterative procedures, thereby adding
conservativeness to the problem.

Recalling the definition of the mapping K in (8), the
following program certifies that the set K (x) is nonempty
for all x ∈ LB̃ (β) = {x ∈ Rn : B̃ (x) ≤ β}.

Problem 2. (Feasibility on Level Sets) Given x ∈ Rn,
A ∈ Pnc×m [x], b ∈ Pnc [x], B̃ ∈ Pnb [x], and β ∈ R,
find polynomials u ∈ Pm [x], s0, s1, . . . , snb

∈ Σ [x], and a



constant ε ≥ 0 such that, for all i ∈ [nc],

−Ai∗ (x)u (x)− bi (x)− ε

−s0 (x)−
nb∑
j=1

sj (x)
(
β − B̃j (x)

)
∈ Σ [x] . (10)

The main result of this section follows. It states that
a CBF candidate B can be certified as a CBF on a set
LB̃ (β) ⊃ U (∂S) ∩ Π (Cu) by finding a feasible solution
to Problem 2. Unfortunately, the inability to find a feasible
solution does not mean that no such feasible solution exists.
One major cause for conservativeness is that the degree of
the involved polynomials must be restricted in practice, and
feasible solutions may exist for higher degree polynomials.

Theorem 4. (Verification of CBF) Consider the dynamical
system (F,Cu) in (1) and a set S ⊂ Π (Cu). Suppose
Assumption 4 holds for a function ψ, B : Rn → Rd

is a CBF candidate defining S, and γ : Π (Cu) → Rd

satisfies Assumption 2. Given Γ defined in (3), let Assumption
6 hold for some A ∈ Pnc×m [x] and b ∈ Pnc [x]. If
Problem 2 has a solution for some B̃ and β for which
there exists a neighborhood of the boundary of S such that
U (∂S) ∩Π (Cu) ⊂ LB̃ (β), then Kc (x) in (4) is nonempty
for all x ∈ LB̃ (β) ∩ Π (Cu) and B is a CBF for (F,Cu)
and S on LB̃ (β) ∩ Π (Cu) with respect to γ. Moreover, if
the solution to Problem 2 is such that ε > 0, then K◦c (x) in
(7) is nonempty for all x ∈ LB̃ (β) ∩Π (Cu).

Proof: Using Definition 2 and the assumptions of the
theorem, we need only show that Kc in (4) is nonempty
on LB̃ (β) ∩ Π (Cu) to prove that B is a CBF. Problem
2 and Lemma 3 tell us that there exists u ∈ Pm [x] such
that A (x)u (x) + b (x) ≤ −ε for all x ∈ LB̃ (β). From
Assumption 6, (Γ (x, u (x)) + γ (x) , ψ (x, u (x))) ≤ −ε for
all x ∈ LB̃ (β) ∩Π (Cu). It follows by definition that Kc is
nonempty on LB̃ (β) ∩Π (Cu) and, if ε > 0, so is K◦c .

VI. CONCLUSION

This paper defined a notion of vector-valued CBF that is
amenable to problems where the mapping of safety-ensuring
control inputs is defined by multiple constraints. Selections of
the safety-ensuring map render the safe set of states forward
(pre-)invariant under mild conditions. Tools for certifying the
continuity and feasibility of optimal selections from the map
were developed.

Future work will investigate situations where convergence
to the safe set is also desired. To characterize broader
classes of cost function with the level bounded property, we
expect to generalize Proposition 1 significantly. Finally, we
will investigate adaptations of the developed framework to
accommodate tangent cone conditions.
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