A Set-based Motion Planning Algorithm for Aerial Vehicles in the Presence of Obstacles Exhibiting Hybrid Dynamics

Adam Ames, Nan Wang, Ricardo G. Sanfelice

Abstract—This paper proposes a set-based motion planning algorithm to drive a quadrotor to a target location while avoiding multiple moving obstacles that have hybrid dynamics. By exploiting a library of motion primitives, the proposed planner is capable of rapidly generating trajectories that avoid obstacles with unknown angular velocities that instantaneously change at unknown impact times. The planner employs the reachable sets of the vehicle and of the obstacles to generate a set of safe trajectories from which a trajectory with lowest cost is selected. Simulations and experimental validation of the motion planner are presented.

I. INTRODUCTION

Small-scale aerial vehicles keep gaining popularity due to their versatility and wide range of applications. Nowadays, these vehicles are used for search and rescue, fire monitoring, product delivery to just list a few. Their broad applicability has propelled research focusing on solving the motion planning problem with obstacle avoidance, leading to different continuous-time models depending on the type of obstacle. While the collision avoidance problem has been widely studied, the case when obstacles exhibit hybrid dynamics, namely, continuous evolution and at times instantaneous changes, has been largely neglected. Obstacles with hybrid dynamics emerge in situations when the obstacles exhibit collisions with the environment, as shown in Figure 2, where a quadrotor is flying near the ground and must avoid the obstacle bouncing toward it. To the best of the authors’ knowledge, the only article that allows the obstacle to bounce on the ground is [8]. However, the effect of spin at bounces is not modeled in [8], which negatively affects the fidelity of the predicted obstacle trajectories and may lead to collisions. Moreover, as we argue in this article, the planner may fail at finding a solution due to topological obstructions.

In this paper, we propose a motion planning algorithm that uses a receding horizon approach introducing reachable sets that are computed on the fly and that are used to define a safe motion plan. We define a set called the mobility set, that captures where the vehicle can reach over a finite time horizon and a set called the unsafe set, that characterizes where the obstacles can reach, based on current estimates. Using these two sets the safe mobility set is constructed. The cost for each trajectory in the safe mobility set is calculated and a trajectory with the lowest cost is selected. In comparison to [8], our approach differs as our solution...
includes the spin effect in the obstacle model, resulting in higher fidelity trajectory predictions, and does not suffer from the pathologies typically induced by topological obstructions.

The paper is organized as follows. Preliminaries on hybrid systems are in Section II. The problem statement and proposed solution are outlined in Section III. Models of the vehicle and obstacles are presented in Section IV. The mathematical form of the problem statement is presented in Section V. The motion planning algorithm is detailed in Section VI. Simulation results are presented in Section VII and experimental results are presented in Section VIII.

Notation: The 2 norm of a vector x is denoted as $|x|$, with the infinity norm denoted as $|x|_{\infty}$. The set of real numbers is represented by \mathbb{R}. The set of real numbers greater than or equal to 0 is represented by $\mathbb{R}_{\geq 0}$. The subset Y of X is given as $Y \subset X$. The unit ball in \mathbb{R}^3 is defined as $B := \{x \in \mathbb{R}^3 : |x| \leq 1\}$. The set of unit quaternions is defined as $S := \{q \in \mathbb{R}^4 : |q| = 1\}$. The closure of a set S is $cl(S)$. The vector e_i contains all zeros except the i^{th} position which is 1. The distance from a vector p to a set Q is defined as $dist(p, Q) := \{\min|p^Tq|_{\infty} : q \in Q\}$. The set of $m \times n$ matrices is denoted $\mathbb{R}^{m \times n}$. The derivative of a differentiable matrix function with arguments $F : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{k \times l}$ is given by $D_x(F(x)) = \frac{\partial vec(F(x))}{\partial vec(x)}$, for each $x \in \mathbb{R}^{m \times n}$, with $vec(x)$ denoting the matrix x reshaped as a column vector. The determinant of a matrix R is denoted $det(R)$. For a vector $q \in \mathbb{R}^n$ and a set $P \subset \mathbb{R}^n$, $\arg \max_{p \in P} \sum q$ is the largest value of p^Tq for all $p \in P$. A sequence of variables x indexed by k is denoted as $\{x_k\}_{k \in \mathbb{N}}$. The Minkowski sum is the addition of two sets such that $A + B := \{a + b : a \in A, b \in B\}$. The range of the set valued map M is the set $rge M = \{y \in \mathbb{R}^n : \exists x \in \mathbb{R}^m$ such that $y \in M(x)\}$. The skew-symmetric matrix form of some vector x is $S(x)$.

II. Preliminaries on Hybrid Systems

A hybrid dynamical system is a system with both continuous and discrete dynamics. A hybrid system \mathcal{H} with state $x \in \mathbb{R}^n$ can be modeled as, following [9],

$$\mathcal{H} := \left\{ \begin{array}{ll} \dot{x} \in F(x) & x \in C \\ x^+ \in G(x) & x \in D \end{array} \right.$$ \hspace{1cm} (1)

The data (C, D, F, G) describes how the system state evolves over time. The flow map F describes the continuous evolution of x while the state is in the flow set C. The jump map G describes the discrete evolution while the state is in the jump set D.

A hybrid time domain $E \subset \mathbb{R}_{\geq 0} \times \mathbb{N}$ is defined as the union of intervals $E \cap ([0, T] \times \{0, 1, \ldots, J\}) = \bigcup_{j=0}^{J-1} ([t_j, t_{j+1}], j)$ for each $(T, J) \in E$, with $t_0 = 0 \leq t_1 \leq t_2 \leq \ldots \leq t_J = T$. A hybrid arc ϕ is a function defined on a hybrid time domain, $dom \phi \subset \mathbb{R}_{\geq 0} \times \mathbb{N}$. A hybrid arc ϕ is a solution to the hybrid system \mathcal{H} if the following conditions are met:

- $\phi(0, 0) \in cl(C) \cup D$
- For all $j \in \mathbb{N}$ such that $I^j := \{t : (t, j) \in dom \phi\}$ has nonempty interior, $\phi(t, j) \in C$ for all $t \in int I^j$ and $\phi(t, j) \in F(\phi(t, j))$ for almost all $t \in I^j$;
- For all $(t, j) \in dom \phi$ such that $(t, j + 1) \in dom \phi$, $(\phi(t, j)) \in D$ and $\phi(t, j + 1) \in G(\phi(t, j))$.

An input can be easily added to \mathcal{H}. For more details, see [9] and [10].

The finite-horizon reachability map for a hybrid system \mathcal{H} collects states the system can reach from some initial state ξ over a given time interval $[0, T]$ with at most J jumps. This reachability map is defined in [11] as

$$\mathcal{R}_\mathcal{H}(T, J, \xi) := \{\phi(t, j) : \phi \in \hat{\mathcal{S}}_{\mathcal{H}}(\xi), (t, j) \in dom \phi \cap \mathcal{Z}(T, J)\}$$ \hspace{1cm} (2)

with $\hat{\mathcal{S}}_{\mathcal{H}}(\xi)$ denoting the set of all solutions to the hybrid system \mathcal{H} from initial state ξ and $\mathcal{Z}(T, J)$ denoting the hybrid time horizon $[0, T] \times \{0, 1, 2, \ldots, J\}$.

III. Problem Statement and Proposed Solution

The goal of this paper is to solve the following problem: **Problem:** Design an algorithm that generates a reference trajectory that steers a quadrotor to a desired hovering location while evading dynamic obstacles that exhibit hybrid dynamics.

To solve this problem, we propose a feedback motion-planning algorithm that generates a reference trajectory by computing and manipulating two sets. The first set is the mobility set, denoted $M(\tau, \xi_a, \xi_r)$, containing all trajectories the quadrotor can execute from initial state ξ_a and initial reference state ξ_r over the continuous time interval $[0, \tau]$, as shown by $M(\tau, x_a, r_{k-1}(\tau))$ in Figure 1. The second set is the unsafe set, denoted $U_i(\tau, \xi_a)$, containing all points the i^{th} obstacle can reach from initial state ξ_a over the time interval $[0, \tau]$. In Figure 1 the unsafe set for obstacles O_1 and O_2 are $U_1(\tau, x_{a_1})$ and $U_2(\tau, x_{a_2})$. With $M(\tau, \xi_a, \xi_r)$ and $U_i(\tau, \xi_a)$ for each i, the proposed algorithm generates a reference trajectory that drives the quadrotor to the target set using the reference tracking controller without colliding with any obstacle.
IV. Modeling the Obstacles and the Quadrotor

A. Modeling the Obstacles

Each obstacle has the hybrid dynamics of a bouncing ball moving in \(\mathbb{R}^3 \), with the state of the \(i \)-th obstacle given by

\[
x_{o_i} := (p_{o_i}, v_{o_i}) \in \mathbb{R}^6 =: \mathcal{X}_{o_i},
\]

where \(p_{o_i} = (p_{x_{o_i}}, p_{y_{o_i}}, p_{z_{o_i}}) \in \mathbb{R}^3 \) is position and \(v_{o_i} = (v_{x_{o_i}}, v_{y_{o_i}}, v_{z_{o_i}}) \in \mathbb{R}^3 \) is velocity. When moving in free air, the motion of a bouncing ball is modeled using the equations of projectile motion without air resistance, namely

\[
(\dot{p}_{o_i}, \dot{v}_{o_i}) = (v_{o_i}, (0, 0, -\gamma)) =: F_{o_i}(x_{o_i})
\]

where \(\gamma > 0 \) is the gravity acceleration.

The impact between the obstacle and the ground is modeled as an instantaneous velocity change, leading to the definition of the jump map \(G_{o_i} \). The restitution coefficient \(\lambda \in (0, 1) \) models the energy loss at impacts. Accelerations in the \(x \) and \(y \) directions are generated by the spin of the ball. Since the angular velocities are not known, the exact trajectory cannot be predicted. Instead of a single velocity value after a jump, we define the set of possible velocities to capture the effect of all values within the expected angular velocity range. The set \(\Sigma \subset \mathbb{R} \) contains all possible changes in linear velocity from the expected angular velocities of the ball. The impact is then modeled as

\[
x_{o_i}^+ \in G_{o_i}(x_{o_i}) := \{p_{x_{o_i}}\} \times \{p_{y_{o_i}}\} \times \{0\} \times \{v_{x_{o_i}} + \Sigma\} \times \{v_{y_{o_i}}\} \times \{v_{z_{o_i}}\} \times \{-\lambda v_{z_{o_i}}\}
\]

where \(+ \) is the Minkowski sum. Each obstacle is assumed to be a point mass which impacts the ground at \(p_{z_{o_i}} = 0 \).

The combination of the continuous and discrete dynamics of the bouncing ball leads to the following hybrid model for each obstacle \(O_i \):

\[
\mathcal{H}_{o_i} = (C_{o_i}, F_{o_i}, D_{o_i}, G_{o_i}),
\]

where \(C_{o_i} := \{x_{o_i} \in \mathbb{R}^6 : p_{z_{o_i}} \geq 0\} \), \(F_{o_i} \) is given in \(4 \), \(D_{o_i} := \{x_{o_i} \in \mathbb{R}^6 : p_{z_{o_i}} = 0, v_{z_{o_i}} \leq 0\} \), and \(G_{o_i} \) is given in \(5 \).

B. Modeling the Quadrotor and Tracking Controller

The quadrotor \(V \) under the effect of a reference tracking feedback controller is modeled as in [12]. The quadrotor state is given as

\[
x_a := (p_a, v_a, R_a, \omega_a) \in \mathbb{R}^3 \times \mathbb{R}^3 \times SO(3) \times \mathbb{R}^3 =: \mathcal{X}_a
\]

where \(p_a \in \mathbb{R}^3 \) is position, \(v_a \in \mathbb{R}^3 \) is linear velocity, \(R_a \in SO(3) := \{R \in \mathbb{R}^{3 \times 3} : R^T R = I_3, \det(R) = 1\} \) is orientation, and \(\omega_a \in \mathbb{R}^3 \) is angular velocity, all of them with respect to the world inertial frame. The dynamics of the quadrotor are

\[
\begin{align*}
\dot{p}_{a} &= v_{a}, \\
\dot{v}_{a} &= -R_a e_3 \frac{f}{m} + g e_3 \\
\dot{R}_a &= R_a S(\omega_a), \\
\dot{\omega}_a &= -J^{-1} S(\omega_a) J \omega_a + J^{-1} \mathcal{M}
\end{align*}
\]

with quadrotor mass \(m \), thrust input \(f \in \mathbb{R} \), torque input \(\mathcal{M} \in \mathbb{R}^3 \), and inertia tensor \(J \in \mathbb{R}^{3 \times 3} \).

The hybrid tracking controller is comprised of two parts. The first part is a saturation controller which reduces the translational error between the state and the reference. The second part uses the output of the saturation controller with the current state and a memory variable to drive the quadrotor rotation to the reference. The controller is modeled by the hybrid system \(\mathcal{H}_c = (C_c, F_c, D_c, G_c) \) with state \(x_c \in \mathbb{R}^3 \times \{-1, 1\} \times \mathbb{R}^3 =: \mathcal{X}_c \) and input reference trajectory \(r \). Definitions of \(C_c, F_c, D_c, \) and \(G_c \) can be found in [12]. The combined quadrotor and tracking controller is modeled by the hybrid system \(\mathcal{H}_a = (C_a, F_a, D_a, G_a) \) with state

\[
x_a := (x_b, x_c) \in \mathcal{X}_b \times \mathcal{X}_c =: \mathcal{X}_a
\]

for a reference trajectory \(r : \mathbb{R} \rightarrow \mathbb{R}^{12} \times SO(3) \times \mathbb{R}^3 \) with

\[
r(t) := (p_r(t), p_r^{(1)}(t), p_r^{(2)}(t), p_r^{(3)}(t), R_r(t), \omega_r(t)),
\]

satisfying the following assumption.

Assumption 1: Given the vehicle’s maximum snap \(M_p > 0 \) and angular acceleration \(M_\omega > 0 \), a reference trajectory is a solution \(t \mapsto r(t) \) to

\[
\dot{r} \in F_a(r) := (p_r^{(1)}, p_r^{(2)}, p_r^{(3)}, M_p B, R_r S(\omega_r), M_\omega B),
\]

such that \(r \in \Omega_r \) for some compact set \(\Omega_r \subset \mathbb{R}^{12} \times SO(3) \times \mathbb{R}^3 \), satisfying \(e_3^T R_r(t)e_3 \geq 0 \) for each \(t \geq 0 \).

The hybrid system \(\mathcal{H}_a = (C_a, F_a, D_a, G_a) \) modeling the closed-loop controller and quadrotor dynamics with state \(x_a \) and input reference trajectory \(t \mapsto r(t) \) is given by

\[
\begin{align*}
C_a &:= C_c, \\
D_a &:= D_c, \\
F_a(x_a, r(t)) &:= (v_a, -R_a e_3 \frac{f}{m} + g e_3, R_a S(\omega_a), \\
&- J^{-1} S(\omega_a) J \omega_a + J^{-1} \mathcal{M}, F_c(x_a, r(t))),
\end{align*}
\]

with the vehicle inputs thrust magnitude and torque \(\mathcal{M} \) assigned by the hybrid controller \(\mathcal{H}_c \). For more details on Assumption 1 and \(\mathcal{H}_a \), the reader is referred to [12].

V. Mathematical Problem Statement

With the constructions in Section IV the problem outlined in Problem in Section III is formulated mathematically as follows.

Problem 1: Given a quadrotor \(V \) with reference tracking controller whose dynamics are captured by \(\mathcal{H}_a \), initial
The quadrotor state ξ_a, obstacles O_1, O_2, \ldots, O_N whose dynamics are captured by $\mathcal{H}_{o_i}: i \in \{1, 2, \ldots, N\}$, initial obstacle states $\xi_{o_i}: i \in \{1, 2, \ldots, N\}$, minimum safe quadrotor obstacle distance $k_u > 0$, target closed set $T \subset \mathbb{R}^3$, and duration $\tau > 0$, compute a reference trajectory $t \mapsto r(t)$ given by the sequence of signals $\{r_k\}_{k \in \mathbb{N}}$ with elements $t \mapsto r_k(t)$ for each k, such that

1. $r_1(0) = \xi_a$
2. For each $k \in \mathbb{N}_{\geq 1}$, with x_a and x_{o_i} being the current quadrotor and obstacle states at time $t_c = (k-1)\tau$
 a. r_{k-1} has been executed by the quadrotor for τ time.
 b. $r_k(t_c) = r_{k-1}(t_c)$.
 c. $r_k: [t_c, t_c + \tau] \rightarrow \Omega_r$ satisfies Assumption 1
 d. The maximal solution ϕ_k to \mathcal{H}_a from x_a for input r_k evolves for at least τ seconds of flow and satisfies $\text{dist} (\phi_k(t, j), \mathcal{R}_{\mathcal{H}_a}(t, x_a)) \geq k_u$ for all $(t, j) \in \text{dom}\phi_k \cap ([t_c, t_c + \tau] \times \mathbb{N})$ so the distance between any possible obstacle trajectory and the quadrotor is never below the minimum safe distance.
3. The maximal solution ϕ to \mathcal{H}_a from ξ_a for input r, with r being the concatenation of all reference trajectories in $\{r_k\}_{k \in \mathbb{N}}$, satisfies
 a. ϕ is complete.
 b. There exists a finite time t_f such that the position component of the trajectory $p_\phi(t, j) \in \mathbb{T}$ for all $(t, j) \in \text{dom}\phi$ such that $t \geq t_f$.

Condition 2 ensures that the reference does not jump between r_{k-1} and r_k. Requirement 1 on each trajectory r_k ensures obstacle avoidance by enforcing a minimum distance obstacle quadrotor distance. Convergence to the target set within some finite time is included by requirement 3.

VI. THE MOTION-PLANNING ALGORITHM

To solve the Problem 1, we propose a set-based feedback motion planning algorithm. The algorithm operates over multiple iterations, with each iteration extending the executed reference trajectory by $\tau_e \in \mathbb{R}_{>0}$ seconds. To prevent the planner from selecting a trajectory from which there is no safe extension due to an obstacle outside of the τ_e horizon, each iteration plans for $\tau_p \in \mathbb{R}_{>0}$ seconds, where $\tau_p > \tau_e$.

The proposed algorithm is as follows:

Step 1: Compute quadrotor mobility set M for the closed-loop quadrotor model in (14)–(15).
Step 2: Compute the unsafe set U_i for each obstacle using \mathcal{H}_{o_i} in (6).
Step 3: Build the safe mobility set M_S by removing trajectories from the mobility set that violate safety constraints.
Step 4: Solve an optimization problem selecting the lowest cost reference trajectory from the safe mobility set.
Step 5: Execute τ_e seconds of the reference trajectory.
Step 6: Go to Step 1 to replan from the current state.

A. Supporting Sets and Constraints

The quadrotor mobility set is the set of all possible reference trajectory, quadrotor trajectory pairs (r, ϕ). To generate this set, all possible reference trajectories must be generated. Since this is difficult to implement for most systems in practice, we approximate the set using a motion primitive library Ω_p. The library is generated using the quadrotor dynamics in (8)–(9) by using inputs f and M satisfying

$$-\hat{\omega}_c \frac{f}{m} - 2 \left(RS(\omega)\frac{f}{m} - Re \omega \right) \in \mathbb{M}_p \mathbb{B}, M \in \mathbb{M}_o \mathbb{B}$$

The restrictions on f and M are to ensure all trajectories within Ω_r satisfy the conditions of Assumption 1. These reference trajectories are used as inputs to simulations of the closed-loop quadrotor model (10) from the current quadrotor state, with the resulting trajectories building the solution set $\mathcal{S}_{\mathcal{H}_a}(\xi_a, r)$. The quadrotor mobility set $M(\tau, \xi_a, \xi_r)$ containing all reference trajectory quadrotor trajectory pairs (r, ϕ) for the given initial vehicle state ξ_a, motion primitive library Ω_p, and initial reference state ξ_r over the time interval $[0, \tau]$ is defined as

$$M(\tau, \xi_a, \xi_r) := \{ (r, \phi) : \phi(t, j) = \phi_o(t, j) \forall (t, j) \in \text{dom}\phi \cap ([0, \tau] \times \mathbb{N}), \phi_o \in \mathcal{S}_{\mathcal{H}_a}(\xi_a, r), \forall r \in \mathcal{M}_p, r(0) = \xi_r \}$$

where the set $\mathcal{S}_{\mathcal{H}_a}(\xi_a, r)$ contains all solutions to the hybrid system \mathcal{H}_a from initial state ξ_a for reference trajectory r.

The set of all possible obstacles states is the unsafe set. For each obstacle, the unsafe set is denoted as $U_i(\tau, \xi_{o_i})$ for the given initial state ξ_{o_i} over the hybrid time horizon $[0, \tau] \times \mathbb{N}$ and is defined as

$$U_i(\tau, \xi_{o_i}) := \mathcal{R}_{\mathcal{H}_a}(\tau, \infty, \xi_{o_i}).$$

Then, given initial states for all obstacles $\xi_o := \{ \xi_{o_1}, \xi_{o_2}, \ldots, \xi_{o_n} \}$, the unsafe set $U(\tau, \xi_o)$ is defined as

$$U(\tau, \xi_o) := \bigcup_{i=1}^n U_i(\tau, \xi_{o_i}).$$

The safe mobility set, $M_S(\tau, \xi_a, \xi_r, \xi_o)$ is constructed by removing any trajectories in $M(\tau, \xi_a, \xi_r)$ that violate the minimum safe distance to the unsafe set $U(\tau, \xi_o)$. It is defined as follows:

$$M_S(\tau, \xi_a, \xi_r, \xi_o) = \{ (r, \phi_o) \in M(\tau, \xi_a, \xi_r) : \text{dist} (p_{\phi_o}(t, j), p_{\phi_o}(t, j_o)) \geq k_u \text{ for all } \phi_o \in U(\tau, \xi_o),$$

for all $(t, j_o) \in \text{dom}\phi_o, (t, j_o) \in \text{dom}\phi_o \}$$

where $p_{\phi_o}(t, j)$ is the positional component of $\phi_o(t, j)$ and $p_{\phi_o}(t, j)$ is the positional component of $\phi_o(t, j)$. The constraint k_u is the constraint on the minimum allowed distance between the quadrotor position and the unsafe set for a trajectory to be considered safe.

B. Problem Reformulation and Algorithm

Using the constructions above, Problem 1 can be reformulated with each r_k in the reference trajectory r solving the following.

Problem 2: Given $T \subset \mathbb{R}^3$, planning window $\tau_p > 0$, execution window $\tau_e \in (0, \tau_p]$, previous reference trajectory
trajectory \hat{r} \in \Omega_p with domain \([0, \tau_p]\) that solves

\[
\begin{align*}
\text{minimize} & \quad \kappa(\hat{r}, \phi, r_{\text{prev}}, \kappa_{\text{prev}}) \\
\text{subject to} & \quad C1 \quad \hat{r}(0) = r_{\text{prev}}(\tau_e) \\
& \quad C2 \quad (\hat{r}, \phi) \in M_S(r_p, \pi, \hat{r}_{\text{prev}}, \hat{x}_a)
\end{align*}
\]

where \(\phi\) is the solution to \(H_a\) with state \(x_a\) and reference trajectory \(r\) over \([0, \tau_p] \times \mathbb{N}\).

The cost functional \(\kappa\) is defined as

\[
\kappa(\hat{r}, \phi, r_{\text{prev}}, \kappa_{\text{prev}}) := \text{dist}(p_\phi(\tau_e, j_r), T) + \kappa_p(\hat{r}, r_{\text{prev}}, \kappa_{\text{prev}})
\]

\[
\kappa_p(\hat{r}, r_{\text{prev}}, \kappa_{\text{prev}}) := \begin{cases} \\
0 & \text{if } \hat{r}(t) = r_{\text{prev}}(t + \tau_e) \\
-k_p & \text{for all } t \in [0, \tau_p - \tau_e] \\
k_p & \text{otherwise}
\end{cases}
\]

with \(j_r\) denoting the number of jumps at time \(\tau_e\) and \(p_\phi(t, j)\) denoting the position of the trajectory \(\phi\) at \((t, j)\). The hysteresis term \(\kappa_p\) is added to prevent chattering by penalizing references which do not extend the previous reference. The strength of the penalty is adjusted by the hysteresis tuning constant \(k_p \geq 0\).

Solving Problem 2 for each reference while the previous reference is followed by the quadrotor, results by Algorithm 1.

VII. SIMULATION RESULTS

Simulations have been performed using both a double integrator point mass model and the combined quadrotor controller model. The simulation in Figure uses the combined hybrid controller and quadrotor dynamical model. The set of possible reference trajectories is approximated using 128 different reference trajectories, generated from 12 increments of each pitch torque, roll torque, and thrust as inputs to (8). All reference trajectories have no yaw torque. The planning time is \(\tau_p = 0.3\) seconds and execution time of \(\tau_e = 0.05\) seconds. The mass, inertial tensor, and single motor maximum thrust are from the system identification of the Crazyflie quadrotor in [13]. The controller constants are the same as in the simulations of [12], except \(\alpha = 0.5, \delta = 0.5\), and \(\beta = k_u/4\).

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiment use a Windows 10 computer with a dual core 3.20GHz processor with 8GB of memory. Quadrotor and obstacle position data is captured using eight motion capture cameras running at 120Hz. Velocities are calculated using the difference in position and capture time between two frames. The experimental quadrotor was a Crazyflie 2.0 controlled over 2.4GHz radio though the Crazyflie client.

\[1\] Code available at https://github.com/HybridSystemsLab/CrazyFlieAvoidanceSimulation

\[2\] Code available at https://github.com/HybridSystemsLab/CrazyFlieAvoidanceExperiment

Algorithm 1: Motion planning algorithm with input \((T, \tau_p, \tau_e, \xi_a, \xi_o, \mathcal{H}_a, \mathcal{H}_o)\).

1. \(\kappa_0 \leftarrow 0, \tau_0 \leftarrow 0, x_a \leftarrow \xi_a, x_o \leftarrow \xi_o\)
2. for \(k = 1, 2, \ldots\) do
3. \(M \leftarrow \emptyset, U \leftarrow \emptyset, M_S \leftarrow \emptyset\)
4. for all \(\hat{r} \in \Omega_p, \hat{r}(0) = r_{k-1}(\tau_e)\) do
5. The solution \(\phi_a\) of \(H_a\) is simulated from \(x_a\) for reference \(\hat{r}\) for \([0, \tau_p]\) seconds of flow
6. \(M \leftarrow M \cup \{\hat{r}, \phi_a\}\)
7. end for
8. for \(i \in \{1, 2, \ldots, N\}\) do
9. The solution \(\phi_o\) of \(H_o\) is simulated from \(x_o\) for \([0, \tau_p]\) seconds of flow
10. \(U \leftarrow U \cup \{\phi_o(t, j) : \forall(t, j) \in \text{dom } \phi_o \cup ([0, \tau_p] \times \mathbb{N})\}\)
11. end for
12. for all \((\hat{r}, \phi) \in M\) do
13. for all \(\phi_o \in U\) do
14. if \(\text{dist}(p_{\phi_o}(t, j_o), p_{\phi}(t, j_o)) \geq k_u\), all \((t, j_o) \in \text{dom } \phi_o\) then
15. \(M_S \leftarrow M_S \cup \{(\hat{r}, \phi_o)\}\)
16. end if
17. end for
18. end for
19. \((r_k, \hat{r})\) is the solution to Problem 2 given \((T, \tau_p, \tau_e, \tau_{k-1}, \kappa_{k-1}, x_a, x_o)\)
20. \(k_k \leftarrow \kappa(r_k, \hat{r}, r_{k-1}, \kappa_{k-1})\)
21. Execute \(r_k\) for \(\tau_e\) seconds.
22. Update \(x_a\) and \(x_o\)
23. end for

The obstacles are 0.08m diameter wiffle balls wrapped in retro-reflective tape to allow tracking by the motion capture system. To recover the restitution constant and \(\Sigma\) factor, one obstacle was tossed 15 times with different spins from a height of approximately 1.5m. The restitution constant is calculated as the average change in vertical velocity from before to after the impact. The set \(\Sigma\) is constructed using the largest change in horizontal velocity from before to after the impact. The ball has a restitution constant of \(\lambda = 0.65\) and possible velocity change from spin of \(\Sigma = [-0.02, 0.02]\) m/s. The obstacles are thrown toward the quadrotor from a horizontal distance of 0.15m to 0.7m and a height between 0.7m and 0.85m with initial horizontal velocities between 0 m/s and 0.1m/s and vertical velocities between -0.2m/s and 0.6m/s. The motion planner and controller are implemented in Matlab. The experimental quadrotor controller are comprised of four PIDs which drove the quadrotor to the reference. The PID output desired thrust, yaw, pitch, and roll values were sent to the Crazyflie client over ZeroMQ at a rate of 50Hz. The motion planner is using a planning window of \(\tau_p = 0.3s\), execution window of \(\tau_e = 0.28s\), and a minimum safe distance of \(k_u = 0.2m\).
B. Experimental Results

The quadrotor is able to reliably avoid the two obstacles and converge to the target set in each test. The motion planner has low computational delay with planner updates having a mean computation time of 83ms, median of 84ms, and a maximum time of 138ms. In Figure 5, the distance between the quadrotor and the obstacle of multiple experiments are shown, with the minimum being 0.16m. The violations of the minimum unsafe distance were due to the communication delay between the Crazyflie and the controller, which were not accounted for by the controller.

IX. CONCLUSION

In this paper, we presented a set-based feedback motion planner for a quadrotor avoiding bouncing ball-like dynamic obstacles with limited obstacle state information. Simulations using the hybrid controller and quadrotor model shows the ability of the algorithm to avoid multiple obstacles while converging to the target. Experimental results show feasibility of the proposed solution in real-world scenarios with limited computing power and real-time constraints.

REFERENCES

