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Abstract— This paper studies the security of a class of
constrained nonlinear systems under attacks. Our goal is to
design initial conditions, a control action and input bounds,
so that the systems is secure by design. To this end, we
propose novel sufficient conditions to guarantee the safety
of a system under adversarial actuator attacks. Using these
conditions, we propose a computationally efficient sampling-
based method to verify whether a set is a viability domain. In
particular, we devise a method of checking a modified barrier
function condition on a finite set of points to assess whether
a set can be rendered forward invariant. Then, we propose
an iterative algorithm to compute the set of initial conditions
and input constraint set to limit what an adversary can do
if it compromises the vulnerable inputs. Finally, we utilize a
Quadratic Program approach for online control synthesis.

I. INTRODUCTION

Security has become one of the most critical problems
in Cyber-Physical Systems (CPS), as illustrated by several
attacks that happened in the past few years [1]. There are
two types of security mechanisms for protecting CPS [2] i)
proactive, which considers design choices deployed in the
CPS before attacks, and ii) reactive, which take effect after
an attack is detected.

While reactive methods are less conservative than proac-
tive mechanisms, they heavily rely on fast and accurate attack
detection strategies. Although there is a plethora of work
on attack detection for CPS [3], [4], it is generally possible
to design a stealthy attack such that the system behavior
remains close to its expected behavior, thus evading attack-
detection solutions [5]. Intrusion detection systems also
produce a large number of false positives, which can lead to
a large operational overhead of security analysts dealing with
irrelevant alerts [6]. On the other hand, a proactive method
can be more effective in practice, particularly against stealthy
attacks. Attacks on a CPS can disrupt the natural operation
of the system. One of the most desirable system properties is
safety, i.e., the system does not go out of a safe zone. Safety
is an essential requirement, violation of which can result in
failure of the system, loss of money, or even loss of human
life, particularly when a system is under attack [7].

In most practical problems, safety can be realized as
guaranteeing forward-invariance of a safe set. Control barrier
function (CBF) based approaches [8] to guarantee forward
invariance of the safe region have become very popular in
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the last few years since a safe control input can be efficiently
computed using a Quadratic Program (QP) with a CBF
condition as the constraint. Most of the prior work on safety
using CBFs, e.g., [8], assumes that the viability domain, i.e.,
the set of initial conditions from which forward invariance
of the safe set can be guaranteed, is known. In practice, it
is not an easy task to compute the viability domain for a
nonlinear control system. Optimization-based methods, such
as Sum-of-Squares (SOS) techniques, have been used in the
past to compute this domain (see [9]). However, SOS-based
approaches are only applicable to systems whose dynamics
is given by polynomial functions, thus limiting their ap-
plications. Another method popularly used in the literature
for computing the viability domain is Hamilton-Jacobi (HJ)
based reachability analysis, see, e.g., [10]. However, such an
analysis is computationally expensive, particularly for higher
dimensional systems. We propose a novel sampling-based
method to compute the viability domain for a general class
of nonlinear control systems to overcome these limitations.

In this work, we consider a general class of nonlinear
systems under actuator attacks and propose a method of com-
puting a set of initial conditions and an input constraint set
such that the system remains secure by design. In particular,
we consider actuator manipulation, where an attacker can
assign arbitrary values to the input signals for a subset of
the actuators in a given bound. We consider the property of
safety with respect to an unsafe set and propose sufficient
conditions using sampling of the boundary of a set to verify
whether the set is a viability domain under attacks. Using
these conditions, we propose a computationally tractable
algorithm to compute the set of initial conditions and the
input constraint set such that the system’s safety can be
guaranteed under attacks. In effect, our proposed method
results in a secure-by-design system that is resilient against
actuator attacks. Finally, we leverage these sets in a QP-
based approach with provable feasibility for real-time online
feedback synthesis. Prior work such as [11] sample the
state space and the input space for propagating the system
trajectories in forward time, amounting to the computation
of the reachability set. In contrast to reachability-based
methods, our method uses a function approximation method
and thus, is computationally efficient. In the interest of space,
the proofs of the main results in the paper are omitted here
and are made available elsewhere.
Notation: Throughout the paper, R denotes the set of real
numbers and R+ denotes the set of non-negative real num-
bers. We use |x| to denote the Euclidean norm of a vector
x ∈ Rn. We use ∂S to denote the boundary of a closed



set S ⊂ Rn and int(S) to denote its interior and |x|S =
infy∈S |x − y|, to denote the distance of x ∈ Rn from the
set S. The Lie derivative of a continuously differentiable
function h : Rn → R along a vector field f : Rn → Rm at
a point x ∈ Rn is denoted as Lfh(x) := ∂h

∂x (x)f(x).

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a nonlinear control system S given as

S :

{
ẋ = F (x, u) + d(t, x),

x ∈ D, u ∈ U ,
(1)

where F : D × U → Rn is a known function continuous on
D × U , with D ⊂ Rn and U ⊂ Rm, d : R+ × Rn → Rn is
unknown and represents the unmodeled dynamics, x ∈ D is
the system state, and u ∈ U is the control input. We consider
attacks on the control input of (1). In particular, we consider
an attack where a subset of the components of the control
input is compromised. Under such an attack, the system input
takes the form:

u = (uv, us), (2)

where uv ∈ Uv ⊂ Rmv represents the vulnerable compo-
nents of the control input that might be compromised or
attacked, and us ∈ Us ⊂ Rms the secure part that cannot be
attacked, with mv +ms = m and U := Uv ×Us. Under this
class of attack, we assume that we know which components
of the control input are vulnerable. For example, if the system
has four inputs so that u =

[
u1 u2 u3 u4

]T
, and u1, u3

can be attacked, then we assume that this information is
known, and uv is comprised of u1 and u3.1

Now, we present the control design objectives. Consider
a nonempty, compact set S ⊂ Rn, referred to as safe set,
to be rendered forward invariant. We make the following
assumption on the unmodeled dynamics d in (1):

Assumption 1. There exists δ > 0 such that |d(t, x)| ≤ δ
for all t ≥ 0 and x ∈ D.

We consider two properties when designing the control law,
an essential property (safety), imposed while designing a
secure feedback law, and a desirable property (performance),
imposed while designing both us and uv . The problem we
study in this paper is as follows.

Problem 1. Given the system in (1) with unmodeled dynam-
ics d that satisfies Assumption 1, a set S and the attack model
in (2), design a feedback law ks : Rn → Us, and find a set
of initial conditions X0 ⊂ S and the input constraint set
Ũv ⊂ Uv , such that for all x(0) ∈ X0 and uv : R+ → Ũv ,
the closed-loop trajectories x : R+ → Rn of (1) resulting
from using us = ks(x) satisfy x(t) ∈ S for all t ≥ 0.

In plain words, we consider the problem of designing
a feedback law ks and compute a set of initial conditions
X0 and input constraint set Ũv , such that even under an
attack as per the attack model (2), the system trajectories

1We discuss how to address the assumption of which components of the
control input are vulnerable in Remark 1 in Section III.

Fig. 1. Approach for safe feedback design under attacks.

do not leave the safe set S. Additionally, the performance is
captured through the goal set G ⊂ Rn such that G∩ S 6= ∅,
where the performance requirement is limt→∞ x(t) ∈ G,
i.e., the system trajectories of (1) should reach the set G as
t → ∞. In this work, we assume that the safe set is given
as S := {x | B(x) ≤ 0} where B : Rn → R is a sufficiently
smooth user-defined function. Next, we present preliminaries
on forward invariance.

Definition 1. A set S ⊂ Rn is termed as forward invariant
for system (1) if every solution x : R+ → Rn of (1) satisfies
x(t) ∈ S for all t ≥ 0 and for all initial conditions x(0) ∈ S.

We present a sufficient condition for guaranteeing forward
invariance of a set in the absence of an attack. For the sake
of simplicity, in what follows, we assume that every solution
of (1) exists and is unique in forward time for all t ≥ 0,
whether or not there is an attack on the system. Following
the notion of robust CBF in [12], we use the following
result guaranteeing forward invariance in the presence of
disturbance d.

Lemma 1. Given a continuously differentiable function B,
the set S = {x | B(x) ≤ 0} is forward invariant for (1)
under d satisfying Assumption 1 if

inf
u∈U

LFB(x, u) ≤ −lBδ ∀x ∈ ∂S, (3)

where lB is the Lipschitz constant of the function B.

Given a control system (1), and an attack model (2), we
first identify a safe set S ⊂ Rn and the vulnerable input
uv . Then, our approach to solving Problem 1 involves the
following steps (see Figure 1):

1) Establish the existence of X0 and Uv: leverage CBFs to
find sufficient conditions to check whether there exist a
set of initial conditions X0, input constraint set Ũv ⊂ Uv
and a feedback law ks that can solve Problem 1;

2) Numerical method for computation of X0 and Uv: use
conditions in step 1) to formulate a numerical method
for computing sets X0 and Ũv;

3) Feedback law synthesis: use the sets X0 and Ũv from
step 2) to design a feedback control law us = ks(x)
that solves Problem 1.

Next, we present sufficient conditions that guarantee the
security of the system model (1) against attacks on the input.



We say that the system (1) is secure with respect to the safety
property for a set S if for each initial condition x(0) ∈ S,
x(t) ∈ S for all t ≥ 0, uv ∈ Uv and d satisfying Assumption
1. Given B and F , define H : Rn × Rmv → R:

H(x, uv) := inf
us∈Us

LFB(x, (uv, us)). (4)

It is not necessary that the zero sublevel set S of the function
B is a viability domain for system (1). Any nonempty
sublevel set Sc := {x | B(x) ≤ −c}, where c ≥ 0, being a
viability domain is sufficient for safety of the system. Note
that the set Sc is nonempty for 0 ≤ c ≤ −min

x∈S
B(x). Define

cM := −min
x∈S

B(x), (5)

so that the set of feasible values for c is given as [0, cM ]. The
following result provides sufficient conditions for a system
to be secured with respect to the safety property.

Proposition 1. Suppose there exist c ∈ [0, cM ] and nonempty
Ũv ⊂ Uv such that

sup
uv∈Ũv

H(x, uv) ≤ −lBδ ∀x ∈ ∂Sc, (6)

and the system solutions are uniquely defined in forward time
for all x(0) ∈ Sc. Then, for each d satisfying Assumption 1,
system (1) is secured with respect to the safety property for
the set Sc.

Note that satisfaction of the conditions in Proposition 1
implies that for all x ∈ ∂Sc and uv ∈ Ūv , there exists an
input us ∈ Us such that the inequality LFB(x, (uv, us)) ≤
−lBδ holds. This, in turn, implies that the set Sc is a viability
domain for system (1). Condition (6) requires checking the
inequality sup

uv∈Ũv
H(x, uv) ≤ −lBδ for all points on the

boundary of the set Sc. Such conditions are commonly
used in the literature for control synthesis, assuming that
the viability domain is known. However, it is not an easy
task to compute a viability domain in practice for a general
class of nonlinear systems a priori. In the next section, we
present a computationally tractable method where we show
that checking a modification of the inequality in (6) on a set
of sampling points on the boundary is sufficient.

III. VIABILITY DOMAIN UNDER BOUNDED INPUTS

In this section, we present a numerical algorithm to assess
whether for a given system (1) and function B, there exist c
and an input constraint set Ũv such that condition (6) holds.
First, we present a sampling-based method for evaluating
whether the condition (6) holds by checking a modified
inequality at a finite set of sampling points. Then, we propose
an iterative method to compute c and the set Ũv .

We start by making the following assumption on the
regularity of the function H defined in (4).

Assumption 2. The function supuv∈Ũv H(·, uv) is Lipschitz
continuous on S with constant lH > 0.

Fig. 2. 3-D case: Triangulating sampling of the boundary ∂Sc.

First, to illustrate the method, we consider the 3-D case,
i.e., when x ∈ R3. If the compact set S ⊂ R3 is diffeo-
morphic to a unit sphere in R3, then it follows that the
set Sc is also diffeomorphic to a unit sphere in Rn for
any c ∈ [0, cM ). In this case, the sampling points on the
boundary of the unit sphere can be used to obtain the points
on the boundary of Sc (see Remark 3 in Section III for
more details). Thus, we study the case when S ⊂ R3 is
a unit sphere with center xo ∈ R3. Let {xi}I , with each
xi ∈ ∂Sc, denote the set of Np sampling data points on the
boundary of the sublevel set Sc for a given c ∈ [0, cM ] with
cM defined in (5) and I := {1, 2, . . . , Np}. The sampling
points {xi}I are such that they constitute a polyhedron PI
with Nf > 0 triangular faces, T1, T2, . . . , TNf

, such that
PI triangulates the boundary ∂Sc, i.e., the intersection of
any two distinct triangles is either empty, a single vertex, or
a single edge. Figure 2 shows an example of triangulation
of a unit sphere in R3. Interested readers on algorithms
and details on triangulation are referred to [13], and the
references therein.

To ensure that there are enough sampling points, the
following conditions are imposed on {xi}I for a given
c ∈ [0, cM ] and da ∈

[
0, dM

]
, where dM is the minimum

of the maximum inter-vertex distance:
C1 For each x ∈ ∂Sc, there exists a triangular face Tj with

vertices xj1 , xj2 , xj3 ∈ {xi}I , of the polyhedron PI
generated by {xi}I , such that xo + θ(x− xo) ∈ Tj for
some 0 ≤ θ ≤ 1; and

C2 The following holds max l6=m
l,m=1,2,3

dSc(xjl , xjm) ≤ da

where dSc
(x, y) denotes the shortest arc-length between

the points x, y ∈ ∂Sc.
In plain words, the above conditions require for each point

x ∈ ∂Sc, the line joining the center xo and x intersects
a triangular face of the polyhedron such that the distance
along the boundary ∂Sc between the vertices of this face is
bounded by da. Note that smaller da requires larger number
of sampling points Np. It can be readily shown that if

sup
uv∈Ũv

H(xi, uv) ≤ −lHda − lBδ ∀i ∈ I, (7)

where lB is the Lipschitz constant for B and δ, lH are as
defined in Assumptions 1 and 2, respectively, then, (6) holds.
Thus, checking the inequality (7) at a finite number of points
is a computationally tractable method for assessing whether
(6) holds for a given c and Ũv . Note that for a given F,B, Ũv
and δ, a smaller value of da implies that the right-hand side
of (7) is less negative, thus, making it easier to satisfy the



inequality. At the same time, a smaller value of da requires
more sampling points Np, and hence, checking the inequality
at more points. Thus, there is a trade-off between the ease
of satisfaction of (7) and the number of points at which the
inequality should be checked.

The above arguments can be generalized to the
n−dimensional case. Using the sampling approach in [14]
for a unit sphere in n−dimension, combined with Delaunay
Triangulation of the sampling points (see e.g., [15]), an
(n−1)−dimensional simplex can be obtained. If the compact
set S ⊂ Rn is diffeomorphic to a unit (n− 1)−sphere, then
sampling points on the boundary of S can be obtained using
the sampling points for the (n − 1)−unit sphere. Thus, we
study the case when the set S is an (n− 1)−unit sphere.

Let {xi}I , with each xi ∈ ∂Sc, denote the set of Np

sampling data points on the boundary of the sublevel set
Sc for a given c ∈ [0, cM ] with cM defined in (5) and
I := {1, 2, . . . , Np}. The sampling poins {xi}I constitute a
simplex SI with Nf > 0 faces, X1,X2, . . . ,XNf

. For a unit
sphere in Rn, the minimum number of points in the simplex
is (n+1), and the minimum possible value of the maximum

of the lengths of its edges is
√

2(n+1)
n . The arc-length,

denoted as da, of the corresponding arc on the boundary

∂Sc is 2rc sin−1
√

(n+1)
2n , where 0 ≤ rc ≤ 1 is the radius of

the sphere Sc. Thus, with da ≤ dM,n := 2rc sin−1
√

(n+1)
2n ,

there must be at least (n+1) points in the simplex. We make
the following assumption on the sampling points {xi}I .

Assumption 3. Given c ∈ [0, cM ), the sampling points
{xi}I and da ∈

[
0, dM,n

]
, for each x ∈ ∂Sc, there exists

a face Xj with vertices {xj1 , xj2 , . . . , xjn} ∈ {xi}I , where
j ∈ {1, 2, . . . , Nf}, of the simplex SI generated by {xi}I ,
such that xo + θ(x− xo) ∈ Xj for some 0 ≤ θ ≤ 1, and the
following holds:

max
l6=m

l,m=1,2,...,n

dSc
(xjl , xjm) ≤ da, (8)

where dSc
(x, y) denotes the shortest arc-length between the

points x, y ∈ ∂Sc.

The following result holds when S is an (n−1)−unit sphere.

Theorem 1. Suppose that the function H defined in (4)
satisfies Assumption 2. Given c ∈ [0, cM ), da ∈

[
0, dM,n

]
,

and the sampling points {xi}I , if Assumption 3 and (7) hold,
then, (6) holds.

An iterative algorithm can be formulated to check whether
there exists a feasible c and a nonempty set Ũv , such that
(7) holds. We propose Algorithm 1 which returns a feasible
c and a set Ũv such that safety is guaranteed for all x ∈ Sc

and uv ∈ Ũv . In other words, this algorithm can compute the
set of initial conditions Sc, and the set of tolerable attacked
inputs via Ũv such that the system can satisfy the safety
property under attacks.

Remark 1. If it is unknown which components of the input
are vulnerable, then all possible combinations of uv and us
can be considered, and Algorithm 1 can be used to compute

Algorithm 1: Iterative method for computing Ũv, c
Data: f, gv, gs,Uv,Us, B, da, ε1, ε2, δ,Nmax, Nc0

1 Initialize: Ũv = Uv, c = 0, Np = Nc0;
2 while c < cM do
3 while Np < Nmax do
4 Sample {xi}I from {B(x) ≤ −c};
5 while Ũv 6= ∅ do
6 if {i ∈ I | H(xi, uv)>−lHda+lBδ} 6= ∅ then
7 Ũv = Ũv 	 ε1 ;
8 if Ũv = ∅ then
9 Np = 2 Np; Ũv = Uv;

10 c = c+ ε2; N = Nc0 ;
11 Return: Ūv, c;

c for each such combination. Then, the maximum of all such
values can be used to define the set Sc, guaranteeing the
system’s security against attack on any control inputs.

Remark 2. The computational complexity of Algorithm 1 is
only a function of the number of sampling points Np (which,
in principle, is a user-defined parameter) and is independent
of the non-linearity of the function F or function B. Note
that the minimum number of samples required to generate
a simplex on an (n − 1)−sphere in Rn is (n + 1), and
hence, the initial sampling number Nc0 in Algorithm 1 is
linear in the dimension n. Thus, unlike reachability based
tools in [10] where the computational complexity grows
exponentially with the system dimension n, or SOS based
tools [9] that are only applicable to a specific class of
systems with linear or polynomial dynamics, Algorithm 1 can
be used for general nonlinear system with high dimension.

Remark 3. When S (equivalently, set Sc for any c ∈
(0, cM )) is diffeomorphic to an (n−1)−unit sphere under a
known map φ : S → S1, where S1 ⊂ Rn is an (n− 1)−unit
sphere, the sampling points on the boundary of the set Sc

can be obtained as follows:

1) For a given da ∈ [0, dM,n] for sampling on Sc, define
the corresponding parameter d̄a for sampling on S1 as

d̄a := inf
x,y∈S1

{dS1(x, y) | dSc
(φ−1(x), φ−1(y)) ≥ da} (9)

2) Obtain sampling points {x̄i}I on S1 using d̄a;
3) Define sampling points {xi}I on Sc as xi := φ−1(x̄i).

In brief, using the results in this section, we can compute
the viability domain Sc and control input constraint set Ũv ⊂
Uv , such that for all x ∈ Sc and uv ∈ Ũv , there exists a
control input us ∈ Us that can keep the system trajectories
in the set Sc at all times. Next, we present a method for
computing such a control input using a QP formulation. We
use the sufficient conditions from the previous section to
design a feedback law for the system (1) that guarantees
security with respect to the safety property under Assumption
1. We assume that the control input constraint set is given
as Ũ := Ũv × Us = {v ∈ Rm | uj,min ≤ vj ≤ uj,max}, i.e.,



as a box-constraint set where uj,min < uj,max are the lower
and upper bounds on the individual control inputs vj for j =
1, 2, . . . ,m, respectively. We can write U in a compact form
as Ũ = {v | Auv ≤ bu} where Au ∈ R2m×m, bu ∈ R2m.
Furthermore, we assume that the system model (1) is control
affine, and is of the form:

ẋ = f(x) + gv(s)uv + gs(x)us + d(t, x), (10)

where f : Rn → Rn, gv : Rn → Rn×mv and gs : Rn →
Rn×(m−mv) are continuous functions. In addition to the
safety requirement in Problem 1, we impose the requirement
of convergence of the system trajectories of (10) to the
origin. To this end, given a twice continuously differentiable,
positive definite function V : Rn → R+ as a candidate
Lyapunov function, the condition

LfV (x) + LgsV (x)us + LgvV (x)uv ≤ −ζV (x)− lV δ,
(11)

where ζ > 0 and lV is the Lipschitz constant of the function
V , can be used to guarantee convergence of the system
trajectories to the origin under d satisfying Assumption 1.
We assume that the set S is an (n− 1)-unit sphere, so that
we can use the results from the previous section to compute
a viability domain for it, and that 0 ∈ int(S), so that the
convergence requirement is feasible. The linear constraints
on the control input, and the system model being control
affine, help us formulate a convex optimization problem that
can be efficiently solved for real-time control synthesis [8].
We propose the following Quadratic Program (QP) to solve
Problem 1. Define z = (vs, vv, η, ζ) ∈ Rm+2 and for a given
x ∈ Rn, consider the following QP:

min
z

1

2
|z|2 + qζ (12a)

s.t. Auvna ≤ bu, (12b)
LfB(x) + LgsB(x)vs ≤− η (B(x) + c)

− sup
uv∈Ũv

LgvB(x)uv − lBδ, (12c)

LfV (x) + LgsV (x)vs+LgvV (x)vv ≤ −ζ V (x)− lV δ, (12d)

where q > 0 is a constant, lB , lv are the Lipschitz constants
of the functions B and V , respectively, and c and Ũv are the
output of Algorithm 1. Here, η and ζ are slack variables used
for guaranteeing feasibility of the QP (see [16, Lemma 6]).
The first constraint (12b) is the input constraints, the second
constraint is the CBF condition from Lemma 1 for forward
invariance of the set Sc and the third constraint (12d) is CLF
constraint for convergence of the system trajectories to the
origin. Note that the secure input vs is used in both (12c) and
(12d), while the vulnerable input vv is only used in (12d).

Let the optimal solution of (12) at a given point x ∈ Rn be
denoted as z∗(x) = (v∗s (x), v∗v(x), η∗(x), ζ∗(x)). In order to
guarantee continuity of the solution z∗ with respect to x, we
need to impose the strict complementary slackness condition
on (12) ([16]). We are now ready to state the following result.

Theorem 2. Given the functions F, d,B, V and the attack
model (2), suppose Assumptions 1-3 hold. Let c and Ũv
be the output of the Algorithm 1. Assume that the strict
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Fig. 3. The vulnerable input uv and the function h under attacks 1 and 2.

Fig. 4. The closed-loop paths traced by the system under attacks 1 and 2.

complementary slackness holds for the QP (12) for all
x ∈ Sc. Then, the QP (12) is feasible for all x ∈ Sc, and
the control law defined as ks(x) = v∗s (x) is continuous on
int(Sc), and solves Problem 1 for all x(0) ∈ X0 := int(Sc).

IV. NUMERICAL EXPERIMENTS

We present a numerical example with the system given as

ẋ = f(x) +Ax+Bu+ d(t, x), (13)

where A ∈ R3×3 and B ∈ R3×2. The input constraint sets
are U1 = {u1 ∈ R | |u1| ≤ uM1} and U2 = {u2 ∈
R | |u2| ≤ uM2} for some uM1, uM2 > 0. The safe set
is S = {x ∈ R3 | |x|2 − 1 ≤ 0} corresponding to the
function h(x) = |x|2− 1, i.e., the safe set is the unit sphere.
We use randomly generated matrices A and B such that the
pairs (A,B1) and (A,B2) are controllable, where B1 and
B2 are the first and the second columns of the matrix B,
respectively. The matrices (A,B) and the function f are

A=

 0.61 0.37 2.69
−0.06−1.02−0.88
1.33−2.71 0.91

B=

−0.24 0.04
0.32 −0.01
−1.12−0.07

f(x)=0.01

x31+x22x3x32+x
2
3x1

x33+x
2
1x2

 .
We use MATLAB code from [17] to generate a uniform

sampling on the boundary of the unit sphere. Sampling-based
computation of the viability domain takes ≈ 0.43 seconds for
Np = 3062. This indicates the efficiency of our approach;
notice how in contrast, reachable set computation for n = 3
is in the order of minutes, as noted in [18, Section 4.1.2.3].

Without loss of generality, we assume that u2 is vulnera-
ble. We use Algorithm 1 to compute the set Ũi and a value of
c such that (7) holds for all the sampling points. With uM1 =
20 and uM2 = 20 (defining the sets Us,Uv), Algorithm 1
gives c = 0 for the viability domain {x | h(x) ≤ c} and
ũM2 = 7.5 (defining the set Ũv) as the feasible bound on the
attack signal u2. The attack happens at a randomly chosen
τ = 0.436 with δ = 0.1 in Assumption 1.
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Fig. 5. The vulnerable input uv and the function h under attacks 3-6.

Fig. 6. The closed-loop paths traced by the system under attacks 3-6.

First, we illustrate that the system violates safety when the
attack signal u2 does not satisfy the bounds computed by
Algorithm 1. Figure 3 shows the vulnerable input uv for the
initial two attack scenarios (Attack 1 and 2) where ūM2 =
20 and ūM2 = 15, i.e., the set Ũv is larger than the one
computed using the proposed algorithm. Figure 3 also plots
the evolution of the barrier function h with time for the two
cases. It can be observed that the function h corresponding to
this attack takes positive values, and thus, the safety property
for the system is violated. Figure 4 plots the corresponding
closed-loops paths for the two scenarios, and it can be seen
that the system leaves the safe set, thus violating safety.

In the rest of the attack scenarios (Attack 3-6), the
bound |uv| ≤ 7.5 is imposed as computed by the proposed
algorithm. Figure 5 plots the different types of attack signals
used in these scenarios, namely, saturated signals with uv =
7.5 and uv = −7.5, square wave and sinusoidal signal,
both with amplitude 7.5. The corresponding evolution of
the barrier function h illustrates that the system maintains
safety in all four scenarios. Figure 6 plots the closed-loops
paths for these attack scenarios, and it can be seen that the
system trajectories evolve in the safe set at all times, thus
maintaining safety. Through this case study, we illustrate
that if the system parameters are not chosen according to
our proposed method, there might exist attacks that can lead
to violation of safety. On the other hand, when the system
parameters are designed according to the proposed algorithm,
no attack can violate safety, confirming that the system is
secure by design.

V. CONCLUSIONS

In this paper, we studied the problem of computing a
viability domain and input constraint set so that the safety
of a system can be guaranteed under attacks on the system
inputs. In contrast to prior work on the computation of

viability domain whose applicability is limited to linear or
polynomial dynamics or whose computational complexity
grows exponentially with system dimension, our method
is computationally efficient and applies to a general class
of nonlinear systems. We showed that when the system
parameters are chosen using our sampling-based iterative
algorithm, the resulting system is resilient to arbitrary attacks
and is thus secure by design.
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