Sampling-based Computation of Viability Domain to Prevent Safety Violations by Attackers

Kunal Garg

Alvaro A. Cardenas

Ricardo G. Sanfelice

Abstract—This paper studies the security of a class of constrained nonlinear systems under attacks. Our goal is to design initial conditions, a control action and input bounds, so that the systems is secure by design. To this end, we propose novel sufficient conditions to guarantee the safety of a system under adversarial actuator attacks. Using these conditions, we propose a computationally efficient samplingbased method to verify whether a set is a viability domain. In particular, we devise a method of checking a modified barrier function condition on a finite set of points to assess whether a set can be rendered forward invariant. Then, we propose an iterative algorithm to compute the set of initial conditions and input constraint set to limit what an adversary can do if it compromises the vulnerable inputs. Finally, we utilize a Quadratic Program approach for online control synthesis.

I. INTRODUCTION

Security has become one of the most critical problems in Cyber-Physical Systems (CPS), as illustrated by several attacks that happened in the past few years [1]. There are two types of security mechanisms for protecting CPS [2] i) proactive, which considers design choices deployed in the CPS *before* attacks, and ii) reactive, which take effect after an attack is detected.

While reactive methods are less conservative than proactive mechanisms, they heavily rely on fast and accurate attack detection strategies. Although there is a plethora of work on attack detection for CPS [3], [4], it is generally possible to design a stealthy attack such that the system behavior remains close to its expected behavior, thus evading attackdetection solutions [5]. Intrusion detection systems also produce a large number of false positives, which can lead to a large operational overhead of security analysts dealing with irrelevant alerts [6]. On the other hand, a proactive method can be more effective in practice, particularly against stealthy attacks. Attacks on a CPS can disrupt the natural operation of the system. One of the most desirable system properties is safety, i.e., the system does not go out of a safe zone. Safety is an essential requirement, violation of which can result in failure of the system, loss of money, or even loss of human life, particularly when a system is under attack [7].

In most practical problems, safety can be realized as guaranteeing forward-invariance of a safe set. Control barrier function (CBF) based approaches [8] to guarantee forward invariance of the safe region have become very popular in the last few years since a safe control input can be efficiently computed using a Quadratic Program (QP) with a CBF condition as the constraint. Most of the prior work on safety using CBFs, e.g., [8], assumes that the viability domain, i.e., the set of initial conditions from which forward invariance of the safe set can be guaranteed, is known. In practice, it is not an easy task to compute the viability domain for a nonlinear control system. Optimization-based methods, such as Sum-of-Squares (SOS) techniques, have been used in the past to compute this domain (see [9]). However, SOS-based approaches are only applicable to systems whose dynamics is given by polynomial functions, thus limiting their applications. Another method popularly used in the literature for computing the viability domain is Hamilton-Jacobi (HJ) based reachability analysis, see, e.g., [10]. However, such an analysis is computationally expensive, particularly for higher dimensional systems. We propose a novel sampling-based method to compute the viability domain for a general class of nonlinear control systems to overcome these limitations.

In this work, we consider a general class of nonlinear systems under actuator attacks and propose a method of computing a set of initial conditions and an input constraint set such that the system remains secure by design. In particular, we consider actuator manipulation, where an attacker can assign arbitrary values to the input signals for a subset of the actuators in a given bound. We consider the property of safety with respect to an unsafe set and propose sufficient conditions using sampling of the boundary of a set to verify whether the set is a viability domain under attacks. Using these conditions, we propose a computationally tractable algorithm to compute the set of initial conditions and the input constraint set such that the system's safety can be guaranteed under attacks. In effect, our proposed method results in a secure-by-design system that is resilient against actuator attacks. Finally, we leverage these sets in a QPbased approach with provable feasibility for real-time online feedback synthesis. Prior work such as [11] sample the state space and the input space for propagating the system trajectories in forward time, amounting to the computation of the reachability set. In contrast to reachability-based methods, our method uses a function approximation method and thus, is computationally efficient. In the interest of space, the proofs of the main results in the paper are omitted here and are made available elsewhere.

Notation: Throughout the paper, \mathbb{R} denotes the set of real numbers and \mathbb{R}_+ denotes the set of non-negative real numbers. We use |x| to denote the Euclidean norm of a vector $x \in \mathbb{R}^n$. We use ∂S to denote the boundary of a closed

Research by R. G. Sanfelice has been partially supported by the National Science Foundation under Grant no. ECS-1710621, Grant no. CNS-2039054, and Grant no. CNS-2111688, by the Air Force Office of Scientific Research under Grant no. FA9550-19-1-0053, Grant no. FA9550-19-1-0169, and Grant no. FA9550-20-1-0238, and by the Army Research Office under Grant no. W911NF-20-1-0253.

set $S \subset \mathbb{R}^n$ and $\operatorname{int}(S)$ to denote its interior and $|x|_S = \inf_{y \in S} |x - y|$, to denote the distance of $x \in \mathbb{R}^n$ from the set S. The Lie derivative of a continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}$ along a vector field $f : \mathbb{R}^n \to \mathbb{R}^m$ at a point $x \in \mathbb{R}^n$ is denoted as $L_f h(x) := \frac{\partial h}{\partial x}(x) f(x)$.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a nonlinear control system S given as

$$\mathcal{S}: \begin{cases} \dot{x} = F(x, u) + d(t, x), \\ x \in \mathcal{D}, u \in \mathcal{U}, \end{cases}$$
(1)

where $F : \mathcal{D} \times \mathcal{U} \to \mathbb{R}^n$ is a known function continuous on $\mathcal{D} \times \mathcal{U}$, with $\mathcal{D} \subset \mathbb{R}^n$ and $\mathcal{U} \subset \mathbb{R}^m$, $d : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n$ is unknown and represents the unmodeled dynamics, $x \in \mathcal{D}$ is the system state, and $u \in \mathcal{U}$ is the control input. We consider attacks on the control input of (1). In particular, we consider an attack where a subset of the components of the control input is compromised. Under such an attack, the system input takes the form:

$$u = (u_v, u_s), \tag{2}$$

where $u_v \in \mathcal{U}_v \subset \mathbb{R}^{m_v}$ represents the *vulnerable* components of the control input that might be compromised or attacked, and $u_s \in \mathcal{U}_s \subset \mathbb{R}^{m_s}$ the *secure* part that cannot be attacked, with $m_v + m_s = m$ and $\mathcal{U} := \mathcal{U}_v \times \mathcal{U}_s$. Under this class of attack, we assume that we know which components of the control input are vulnerable. For example, if the system has four inputs so that $u = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix}^T$, and u_1, u_3 can be attacked, then we assume that this information is known, and u_v is comprised of u_1 and u_3 .¹

Now, we present the control design objectives. Consider a nonempty, compact set $S \subset \mathbb{R}^n$, referred to as safe set, to be rendered forward invariant. We make the following assumption on the unmodeled dynamics d in (1):

Assumption 1. There exists $\delta > 0$ such that $|d(t, x)| \leq \delta$ for all $t \geq 0$ and $x \in \mathcal{D}$.

We consider two properties when designing the control law, an *essential property (safety)*, imposed while designing a secure feedback law, and a *desirable property (performance)*, imposed while designing both u_s and u_v . The problem we study in this paper is as follows.

Problem 1. Given the system in (1) with unmodeled dynamics d that satisfies Assumption 1, a set S and the attack model in (2), design a feedback law $k_s : \mathbb{R}^n \to \mathcal{U}_s$, and find a set of initial conditions $X_0 \subset S$ and the input constraint set $\tilde{\mathcal{U}}_v \subset \mathcal{U}_v$, such that for all $x(0) \in X_0$ and $u_v : \mathbb{R}_+ \to \tilde{\mathcal{U}}_v$, the closed-loop trajectories $x : \mathbb{R}_+ \to \mathbb{R}^n$ of (1) resulting from using $u_s = k_s(x)$ satisfy $x(t) \in S$ for all $t \ge 0$.

In plain words, we consider the problem of designing a feedback law k_s and compute a set of initial conditions X_0 and input constraint set \tilde{U}_v , such that even under an attack as per the attack model (2), the system trajectories

Fig. 1. Approach for safe feedback design under attacks.

do not leave the safe set S. Additionally, the performance is captured through the goal set $G \subset \mathbb{R}^n$ such that $G \cap S \neq \emptyset$, where the performance requirement is $\lim_{t\to\infty} x(t) \in G$, i.e., the system trajectories of (1) should reach the set G as $t \to \infty$. In this work, we assume that the safe set is given as $S := \{x \mid B(x) \leq 0\}$ where $B : \mathbb{R}^n \to \mathbb{R}$ is a sufficiently smooth user-defined function. Next, we present preliminaries on forward invariance.

Definition 1. A set $S \subset \mathbb{R}^n$ is termed as forward invariant for system (1) if every solution $x : \mathbb{R}_+ \to \mathbb{R}^n$ of (1) satisfies $x(t) \in S$ for all $t \ge 0$ and for all initial conditions $x(0) \in S$.

We present a sufficient condition for guaranteeing forward invariance of a set in the absence of an attack. For the sake of simplicity, in what follows, we assume that every solution of (1) exists and is unique in forward time for all $t \ge 0$, whether or not there is an attack on the system. Following the notion of robust CBF in [12], we use the following result guaranteeing forward invariance in the presence of disturbance d.

Lemma 1. Given a continuously differentiable function B, the set $S = \{x \mid B(x) \le 0\}$ is forward invariant for (1) under d satisfying Assumption 1 if

$$\inf_{u \in \mathcal{U}} L_F B(x, u) \le -l_B \delta \quad \forall x \in \partial S, \tag{3}$$

where l_B is the Lipschitz constant of the function B.

Given a control system (1), and an attack model (2), we first identify a safe set $S \subset \mathbb{R}^n$ and the vulnerable input u_v . Then, our approach to solving Problem 1 involves the following steps (see Figure 1):

- Establish the existence of X₀ and U_v: leverage CBFs to find sufficient conditions to check whether there exist a set of initial conditions X₀, input constraint set U
 _v ⊂ U_v and a feedback law k_s that can solve Problem 1;
- Numerical method for computation of X₀ and U_v: use conditions in step 1) to formulate a numerical method for computing sets X₀ and U

 v;
- 3) Feedback law synthesis: use the sets X_0 and $\tilde{\mathcal{U}}_v$ from step 2) to design a feedback control law $u_s = k_s(x)$ that solves Problem 1.

Next, we present sufficient conditions that guarantee the security of the system model (1) against attacks on the input.

¹We discuss how to address the assumption of which components of the control input are vulnerable in Remark 1 in Section III.

We say that the system (1) is secure with respect to the safety property for a set S if for each initial condition $x(0) \in S$, $x(t) \in S$ for all $t \ge 0$, $u_v \in U_v$ and d satisfying Assumption 1. Given B and F, define $H : \mathbb{R}^n \times \mathbb{R}^{m_v} \to \mathbb{R}$:

$$H(x, u_v) \coloneqq \inf_{u_s \in \mathcal{U}_s} L_F B(x, (u_v, u_s)).$$
(4)

It is not necessary that the zero sublevel set S of the function B is a viability domain for system (1). Any nonempty sublevel set $S_c := \{x \mid B(x) \leq -c\}$, where $c \geq 0$, being a viability domain is sufficient for safety of the system. Note that the set S_c is nonempty for $0 \leq c \leq -\min_{x \in S} B(x)$. Define

$$c_M \coloneqq -\min_{x \in S} B(x), \tag{5}$$

so that the set of feasible values for c is given as $[0, c_M]$. The following result provides sufficient conditions for a system to be secured with respect to the safety property.

Proposition 1. Suppose there exist $c \in [0, c_M]$ and nonempty $\tilde{\mathcal{U}}_v \subset \mathcal{U}_v$ such that

$$\sup_{u_v \in \tilde{\mathcal{U}}_v} H(x, u_v) \le -l_B \delta \quad \forall x \in \partial S_c, \tag{6}$$

and the system solutions are uniquely defined in forward time for all $x(0) \in S_c$. Then, for each d satisfying Assumption 1, system (1) is secured with respect to the safety property for the set S_c .

Note that satisfaction of the conditions in Proposition 1 implies that for all $x \in \partial S_c$ and $u_v \in \overline{U}_v$, there exists an input $u_s \in \mathcal{U}_s$ such that the inequality $L_F B(x, (u_v, u_s)) \leq -l_B \delta$ holds. This, in turn, implies that the set S_c is a viability domain for system (1). Condition (6) requires checking the inequality $\sup_{u_v \in \overline{\mathcal{U}}_v} H(x, u_v) \leq -l_B \delta$ for all points on the boundary of the set S_c . Such conditions are commonly used in the literature for control synthesis, assuming that the viability domain is known. However, it is not an easy task to compute a viability domain in practice for a general class of nonlinear systems *a priori*. In the next section, we present a computationally tractable method where we show that checking a modification of the inequality in (6) on a set of sampling points on the boundary is sufficient.

III. VIABILITY DOMAIN UNDER BOUNDED INPUTS

In this section, we present a numerical algorithm to assess whether for a given system (1) and function B, there exist cand an input constraint set \tilde{U}_v such that condition (6) holds. First, we present a sampling-based method for evaluating whether the condition (6) holds by checking a modified inequality at a finite set of sampling points. Then, we propose an iterative method to compute c and the set \tilde{U}_v .

We start by making the following assumption on the regularity of the function H defined in (4).

Assumption 2. The function $\sup_{u_v \in \tilde{\mathcal{U}}_v} H(\cdot, u_v)$ is Lipschitz continuous on S with constant $l_H > 0$.

Fig. 2. 3-D case: Triangulating sampling of the boundary ∂S_c .

First, to illustrate the method, we consider the 3-D case, i.e., when $x \in \mathbb{R}^3$. If the compact set $S \subset \mathbb{R}^3$ is diffeomorphic to a unit sphere in \mathbb{R}^3 , then it follows that the set S_c is also diffeomorphic to a unit sphere in \mathbb{R}^n for any $c \in [0, c_M)$. In this case, the sampling points on the boundary of the unit sphere can be used to obtain the points on the boundary of S_c (see Remark 3 in Section III for more details). Thus, we study the case when $S \subset \mathbb{R}^3$ is a unit sphere with center $x_o \in \mathbb{R}^3$. Let $\{x_i\}_{\mathcal{I}}$, with each $x_i \in \partial S_c$, denote the set of N_p sampling data points on the boundary of the sublevel set S_c for a given $c \in [0, c_M]$ with c_M defined in (5) and $\mathcal{I} \coloneqq \{1, 2, \dots, N_p\}$. The sampling points $\{x_i\}_{\mathcal{I}}$ are such that they constitute a polyhedron $P_{\mathcal{I}}$ with $N_f > 0$ triangular faces, $T_1, T_2, \ldots, T_{N_f}$, such that $P_{\mathcal{I}}$ triangulates the boundary ∂S_c , i.e., the intersection of any two distinct triangles is either empty, a single vertex, or a single edge. Figure 2 shows an example of triangulation of a unit sphere in \mathbb{R}^3 . Interested readers on algorithms and details on triangulation are referred to [13], and the references therein.

To ensure that there are enough sampling points, the following conditions are imposed on $\{x_i\}_{\mathcal{I}}$ for a given $c \in [0, c_M]$ and $d_a \in [0, d_M]$, where d_M is the minimum of the maximum inter-vertex distance:

- **C1** For each $x \in \partial S_c$, there exists a triangular face T_j with vertices $x_{j_1}, x_{j_2}, x_{j_3} \in \{x_i\}_{\mathcal{I}}$, of the polyhedron $P_{\mathcal{I}}$ generated by $\{x_i\}_{\mathcal{I}}$, such that $x_o + \theta(x x_o) \in T_j$ for some $0 \le \theta \le 1$; and
- **C2** The following holds $\max_{\substack{l\neq m\\l,m=1,2,3}} d_{S_c}(x_{j_l}, x_{j_m}) \leq d_a$ where $d_{S_c}(x, y)$ denotes the shortest arc-length between the points $x, y \in \partial S_c$.

In plain words, the above conditions require for each point $x \in \partial S_c$, the line joining the center x_o and x intersects a triangular face of the polyhedron such that the distance along the boundary ∂S_c between the vertices of this face is bounded by d_a . Note that smaller d_a requires larger number of sampling points N_p . It can be readily shown that if

$$\sup_{u_{v}\in\tilde{\mathcal{U}}_{v}}H(x_{i},u_{v})\leq -l_{H}d_{a}-l_{B}\delta\quad\forall i\in\mathcal{I},$$
(7)

where l_B is the Lipschitz constant for B and δ , l_H are as defined in Assumptions 1 and 2, respectively, then, (6) holds. Thus, checking the inequality (7) at a finite number of points is a computationally tractable method for assessing whether (6) holds for a given c and \tilde{U}_v . Note that for a given F, B, \tilde{U}_v and δ , a smaller value of d_a implies that the right-hand side of (7) is less negative, thus, making it easier to satisfy the inequality. At the same time, a smaller value of d_a requires more sampling points N_p , and hence, checking the inequality at more points. Thus, there is a trade-off between the ease of satisfaction of (7) and the number of points at which the inequality should be checked.

The above arguments can be generalized to the n-dimensional case. Using the sampling approach in [14] for a unit sphere in n-dimension, combined with Delaunay Triangulation of the sampling points (see e.g., [15]), an (n-1)-dimensional *simplex* can be obtained. If the compact set $S \subset \mathbb{R}^n$ is diffeomorphic to a unit (n-1)-sphere, then sampling points on the boundary of S can be obtained using the sampling points for the (n-1)-unit sphere. Thus, we study the case when the set S is an (n-1)-unit sphere.

Let $\{x_i\}_{\mathcal{I}}$, with each $x_i \in \partial S_c$, denote the set of N_p sampling data points on the boundary of the sublevel set S_c for a given $c \in [0, c_M]$ with c_M defined in (5) and $\mathcal{I} := \{1, 2, \ldots, N_p\}$. The sampling poins $\{x_i\}_{\mathcal{I}}$ constitute a simplex $\mathcal{S}_{\mathcal{I}}$ with $N_f > 0$ faces, $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_{N_f}$. For a unit sphere in \mathbb{R}^n , the minimum number of points in the simplex is (n+1), and the minimum possible value of the maximum of the lengths of its edges is $\sqrt{\frac{2(n+1)}{n}}$. The arc-length, denoted as d_a , of the corresponding arc on the boundary ∂S_c is $2r_c \sin^{-1} \sqrt{\frac{(n+1)}{2n}}$, where $0 \le r_c \le 1$ is the radius of the sphere S_c . Thus, with $d_a \le d_{M,n} := 2r_c \sin^{-1} \sqrt{\frac{(n+1)}{2n}}$, there must be at least (n+1) points in the simplex. We make the following assumption on the sampling points $\{x_i\}_{\mathcal{I}}$.

Assumption 3. Given $c \in [0, c_M)$, the sampling points $\{x_i\}_{\mathcal{I}}$ and $d_a \in [0, d_{M,n}]$, for each $x \in \partial S_c$, there exists a face \mathcal{X}_j with vertices $\{x_{j_1}, x_{j_2}, \ldots, x_{j_n}\} \in \{x_i\}_{\mathcal{I}}$, where $j \in \{1, 2, \ldots, N_f\}$, of the simplex $\mathcal{S}_{\mathcal{I}}$ generated by $\{x_i\}_{\mathcal{I}}$, such that $x_o + \theta(x - x_o) \in \mathcal{X}_j$ for some $0 \le \theta \le 1$, and the following holds:

$$\max_{\substack{l\neq m \\ l,m=1,2,\dots,n}} d_{S_c}(x_{j_l}, x_{j_m}) \le d_a, \tag{8}$$

where $d_{S_c}(x, y)$ denotes the shortest arc-length between the points $x, y \in \partial S_c$.

The following result holds when S is an (n-1)-unit sphere.

Theorem 1. Suppose that the function H defined in (4) satisfies Assumption 2. Given $c \in [0, c_M)$, $d_a \in [0, d_{M,n}]$, and the sampling points $\{x_i\}_{\mathcal{I}}$, if Assumption 3 and (7) hold, then, (6) holds.

An iterative algorithm can be formulated to check whether there exists a feasible c and a nonempty set $\tilde{\mathcal{U}}_v$, such that (7) holds. We propose Algorithm 1 which returns a feasible c and a set $\tilde{\mathcal{U}}_v$ such that safety is guaranteed for all $x \in S_c$ and $u_v \in \tilde{\mathcal{U}}_v$. In other words, this algorithm can compute the set of initial conditions S_c , and the set of *tolerable* attacked inputs via $\tilde{\mathcal{U}}_v$ such that the system can satisfy the safety property under attacks.

Remark 1. If it is unknown which components of the input are vulnerable, then all possible combinations of u_v and u_s can be considered, and Algorithm 1 can be used to compute

Algorithm 1: Iterative method for computing $\hat{\mathcal{U}}_v, c$

Data: $f, g_v, g_s, \mathcal{U}_v, \mathcal{U}_s, B, d_a, \varepsilon_1, \varepsilon_2, \delta, N_{max}, N_{c0}$ 1 Initialize: $\mathcal{U}_v = \mathcal{U}_v, c = 0, N_p = N_{c0};$ 2 while $c < c_M$ do 3 while $N_p < N_{max}$ do Sample $\{x_i\}_{\mathcal{I}}$ from $\{B(x) \leq -c\};$ 4 while $\hat{\mathcal{U}}_v \neq \emptyset$ do 5 if $\{i \in \mathcal{I} \mid H(x_i, u_v) > -l_H d_a + l_B \delta\} \neq \emptyset$ then 6 $\tilde{\mathcal{U}}_v = \tilde{\mathcal{U}}_v \ominus \varepsilon_1 ;$ 7 if $\tilde{\mathcal{U}}_v = \emptyset$ then 8 $\begin{vmatrix} N_p = 2 N_p; & \tilde{\mathcal{U}}_v = \mathcal{U}_v; \\ c = c + \varepsilon_2; & N = N_{c_0}; \end{vmatrix}$ 9 10 11 **Return:** $\overline{\mathcal{U}}_v, c$;

c for each such combination. Then, the maximum of all such values can be used to define the set S_c , guaranteeing the system's security against attack on any control inputs.

Remark 2. The computational complexity of Algorithm 1 is only a function of the number of sampling points N_p (which, in principle, is a user-defined parameter) and is independent of the non-linearity of the function F or function B. Note that the minimum number of samples required to generate a simplex on an (n - 1)-sphere in \mathbb{R}^n is (n + 1), and hence, the initial sampling number N_{c0} in Algorithm 1 is linear in the dimension n. Thus, unlike reachability based tools in [10] where the computational complexity grows exponentially with the system dimension n, or SOS based tools [9] that are only applicable to a specific class of systems with linear or polynomial dynamics, Algorithm 1 can be used for general nonlinear system with high dimension.

Remark 3. When S (equivalently, set S_c for any $c \in (0, c_M)$) is diffeomorphic to an (n-1)-unit sphere under a known map $\phi: S \to S_1$, where $S_1 \subset \mathbb{R}^n$ is an (n-1)-unit sphere, the sampling points on the boundary of the set S_c can be obtained as follows:

1) For a given $d_a \in [0, d_{M,n}]$ for sampling on S_c , define the corresponding parameter \bar{d}_a for sampling on S_1 as

$$\bar{d}_a := \inf_{x,y \in \mathcal{S}_1} \{ d_{\mathcal{S}_1}(x,y) \mid d_{\mathcal{S}_c}(\phi^{-1}(x),\phi^{-1}(y)) \ge d_a \}$$
(9)

- 2) Obtain sampling points $\{\bar{x}_i\}_{\mathcal{I}}$ on S_1 using \bar{d}_a ;
- 3) Define sampling points $\{x_i\}_{\mathcal{I}}$ on S_c as $x_i \coloneqq \phi^{-1}(\bar{x}_i)$.

In brief, using the results in this section, we can compute the viability domain S_c and control input constraint set $\tilde{\mathcal{U}}_v \subset \mathcal{U}_v$, such that for all $x \in S_c$ and $u_v \in \tilde{\mathcal{U}}_v$, there exists a control input $u_s \in \mathcal{U}_s$ that can keep the system trajectories in the set S_c at all times. Next, we present a method for computing such a control input using a QP formulation. We use the sufficient conditions from the previous section to design a feedback law for the system (1) that guarantees security with respect to the safety property under Assumption 1. We assume that the control input constraint set is given as $\tilde{\mathcal{U}} \coloneqq \tilde{\mathcal{U}}_v \times \mathcal{U}_s = \{v \in \mathbb{R}^m \mid u_{j,min} \leq v_j \leq u_{j,max}\}$, i.e., as a box-constraint set where $u_{j,min} < u_{j,max}$ are the lower and upper bounds on the individual control inputs v_j for j = 1, 2, ..., m, respectively. We can write \mathcal{U} in a compact form as $\tilde{\mathcal{U}} = \{v \mid A_u v \leq b_u\}$ where $A_u \in \mathbb{R}^{2m \times m}, b_u \in \mathbb{R}^{2m}$. Furthermore, we assume that the system model (1) is control affine, and is of the form:

$$\dot{x} = f(x) + g_v(s)u_v + g_s(x)u_s + d(t, x), \qquad (10)$$

where $f: \mathbb{R}^n \to \mathbb{R}^n$, $g_v: \mathbb{R}^n \to \mathbb{R}^{n \times m_v}$ and $g_s: \mathbb{R}^n \to \mathbb{R}^{n \times (m-m_v)}$ are continuous functions. In addition to the safety requirement in Problem 1, we impose the requirement of convergence of the system trajectories of (10) to the origin. To this end, given a twice continuously differentiable, positive definite function $V: \mathbb{R}^n \to \mathbb{R}_+$ as a candidate Lyapunov function, the condition

$$L_f V(x) + L_{g_s} V(x) u_s + L_{g_v} V(x) u_v \le -\zeta V(x) - l_V \delta,$$
(11)

where $\zeta > 0$ and l_V is the Lipschitz constant of the function V, can be used to guarantee convergence of the system trajectories to the origin under d satisfying Assumption 1. We assume that the set S is an (n-1)-unit sphere, so that we can use the results from the previous section to compute a viability domain for it, and that $0 \in int(S)$, so that the convergence requirement is feasible. The linear constraints on the control input, and the system model being control affine, help us formulate a convex optimization problem that can be efficiently solved for real-time control synthesis [8]. We propose the following Quadratic Program (QP) to solve Problem 1. Define $z = (v_s, v_v, \eta, \zeta) \in \mathbb{R}^{m+2}$ and for a given $x \in \mathbb{R}^n$, consider the following QP:

$$\min_{z} \quad \frac{1}{2}|z|^2 + q\zeta \tag{12a}$$

s.t. $A_u v_{na} \le b_u$, (12b)

$$fB(x) + L_{g_s}B(x)v_s \le -\eta \ (B(x) + c) - \sup_{u_v \in \tilde{\mathcal{U}}_v} L_{g_v}B(x)u_v - l_B\delta, \qquad (12c)$$

L

$$L_f V(x) + L_{g_s} V(x) v_s + L_{g_v} V(x) v_v \le -\zeta V(x) - l_V \delta,$$
 (12d)

where q > 0 is a constant, l_B , l_v are the Lipschitz constants of the functions B and V, respectively, and c and \tilde{U}_v are the output of Algorithm 1. Here, η and ζ are slack variables used for guaranteeing feasibility of the QP (see [16, Lemma 6]). The first constraint (12b) is the input constraints, the second constraint is the CBF condition from Lemma 1 for forward invariance of the set S_c and the third constraint (12d) is CLF constraint for convergence of the system trajectories to the origin. Note that the secure input v_s is used in both (12c) and (12d), while the vulnerable input v_v is only used in (12d).

Let the optimal solution of (12) at a given point $x \in \mathbb{R}^n$ be denoted as $z^*(x) = (v_s^*(x), v_v^*(x), \eta^*(x), \zeta^*(x))$. In order to guarantee continuity of the solution z^* with respect to x, we need to impose the strict complementary slackness condition on (12) ([16]). We are now ready to state the following result.

Theorem 2. Given the functions F, d, B, V and the attack model (2), suppose Assumptions 1-3 hold. Let c and \tilde{U}_v be the output of the Algorithm 1. Assume that the strict

Fig. 3. The vulnerable input u_v and the function h under attacks 1 and 2. —Attack 1—Attack 2 —Safe set *x(0)

Fig. 4. The closed-loop paths traced by the system under attacks 1 and 2. complementary slackness holds for the QP (12) for all $x \in S_c$. Then, the QP (12) is feasible for all $x \in S_c$, and the control law defined as $k_s(x) = v_s^*(x)$ is continuous on $\operatorname{int}(S_c)$, and solves Problem 1 for all $x(0) \in X_0 := \operatorname{int}(S_c)$.

IV. NUMERICAL EXPERIMENTS

We present a numerical example with the system given as

$$\dot{x} = f(x) + Ax + Bu + d(t, x),$$
 (13)

where $A \in \mathbb{R}^{3\times3}$ and $B \in \mathbb{R}^{3\times2}$. The input constraint sets are $\mathcal{U}_1 = \{u_1 \in \mathbb{R} \mid |u_1| \leq u_{M1}\}$ and $\mathcal{U}_2 = \{u_2 \in \mathbb{R} \mid |u_2| \leq u_{M2}\}$ for some $u_{M1}, u_{M2} > 0$. The safe set is $S = \{x \in \mathbb{R}^3 \mid |x|^2 - 1 \leq 0\}$ corresponding to the function $h(x) = |x|^2 - 1$, i.e., the safe set is the unit sphere. We use randomly generated matrices A and B such that the pairs (A, B_1) and (A, B_2) are controllable, where B_1 and B_2 are the first and the second columns of the matrix B, respectively. The matrices (A, B) and the function f are

$$A = \begin{bmatrix} 0.61 & 0.37 & 2.69 \\ -0.06 - 1.02 - 0.88 \\ 1.33 - 2.71 & 0.91 \end{bmatrix} B = \begin{bmatrix} -0.24 & 0.04 \\ 0.32 & -0.01 \\ -1.12 - 0.07 \end{bmatrix} f(x) = 0.01 \begin{bmatrix} x_1^3 + x_2^2 x_3 \\ x_2^3 + x_3^2 x_1 \\ x_3^3 + x_1^2 x_2 \end{bmatrix}.$$

We use MATLAB code from [17] to generate a uniform sampling on the boundary of the unit sphere. Sampling-based computation of the viability domain takes ≈ 0.43 seconds for $N_p = 3062$. This indicates the efficiency of our approach; notice how in contrast, reachable set computation for n = 3is in the order of minutes, as noted in [18, Section 4.1.2.3].

Without loss of generality, we assume that u_2 is vulnerable. We use Algorithm 1 to compute the set $\tilde{\mathcal{U}}_i$ and a value of c such that (7) holds for all the sampling points. With $u_{M1} = 20$ and $u_{M2} = 20$ (defining the sets $\mathcal{U}_s, \mathcal{U}_v$), Algorithm 1 gives c = 0 for the viability domain $\{x \mid h(x) \leq c\}$ and $\tilde{u}_{M2} = 7.5$ (defining the set $\tilde{\mathcal{U}}_v$) as the feasible bound on the attack signal u_2 . The attack happens at a randomly chosen $\tau = 0.436$ with $\delta = 0.1$ in Assumption 1.

Fig. 6. The closed-loop paths traced by the system under attacks 3-6.

First, we illustrate that the system violates safety when the attack signal u_2 does not satisfy the bounds computed by Algorithm 1. Figure 3 shows the vulnerable input u_v for the initial two attack scenarios (Attack 1 and 2) where $\bar{u}_{M2} = 20$ and $\bar{u}_{M2} = 15$, i.e., the set \tilde{U}_v is larger than the one computed using the proposed algorithm. Figure 3 also plots the evolution of the barrier function h with time for the two cases. It can be observed that the function h corresponding to this attack takes positive values, and thus, the safety property for the system is violated. Figure 4 plots the corresponding closed-loops paths for the two scenarios, and it can be seen that the system leaves the safe set, thus violating safety.

In the rest of the attack scenarios (Attack 3-6), the bound $|u_v| \leq 7.5$ is imposed as computed by the proposed algorithm. Figure 5 plots the different types of attack signals used in these scenarios, namely, saturated signals with $u_v =$ 7.5 and $u_v = -7.5$, square wave and sinusoidal signal, both with amplitude 7.5. The corresponding evolution of the barrier function h illustrates that the system maintains safety in all four scenarios. Figure 6 plots the closed-loops paths for these attack scenarios, and it can be seen that the system trajectories evolve in the safe set at all times, thus maintaining safety. Through this case study, we illustrate that if the system parameters are not chosen according to our proposed method, there might exist attacks that can lead to violation of safety. On the other hand, when the system parameters are designed according to the proposed algorithm, no attack can violate safety, confirming that the system is secure by design.

V. CONCLUSIONS

In this paper, we studied the problem of computing a viability domain and input constraint set so that the safety of a system can be guaranteed under attacks on the system inputs. In contrast to prior work on the computation of viability domain whose applicability is limited to linear or polynomial dynamics or whose computational complexity grows exponentially with system dimension, our method is computationally efficient and applies to a general class of nonlinear systems. We showed that when the system parameters are chosen using our sampling-based iterative algorithm, the resulting system is resilient to arbitrary attacks and is thus secure by design.

REFERENCES

- [1] N. E. Oueslati, H. Mrabet, A. Jemai, and A. Alhomoud, "Comparative study of the common cyber-physical attacks in industry 4.0," in 2019 International Conference on Internet of Things, Embedded Systems and Communications. IEEE, 2019, pp. 1–7.
- [2] A. Cardenas, "Cyber-physical systems security knowledge area issue." The Cyber Security Body Of Knowledge. [Online]. Available: https://www.cybok.org/media/downloads/Cyber-Physical_ Systems_Security_issue_1.0.pdf
- [3] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and X. Deng, "Detecting attacks against robotic vehicles: A control invariant approach," in *Proceedings of the 2018 ACM SIGSAC Conference* on Computer and Communications Security, 2018, pp. 801–816.
- [4] V. Renganathan, N. Hashemi, J. Ruths, and T. H. Summers, "Distributionally robust tuning of anomaly detectors in cyber-physical systems with stealthy attacks," in 2020 American Control Conference (ACC). IEEE, 2020, pp. 1247–1252.
- [5] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, "Limiting the impact of stealthy attacks on industrial control systems," in *Proceedings of the 2016 ACM SIGSAC conference on computer and communications security*, 2016, pp. 1092–1105.
- [6] A. A. Cárdenas, J. S. Baras, and K. Seamon, "A framework for the evaluation of intrusion detection systems," in 2006 IEEE Symposium on Security and Privacy (S&P'06). IEEE, 2006, pp. 15–pp.
- [7] M. N. Al-Mhiqani, R. Ahmad, W. Yassin, A. Hassan, Z. Z. Abidin, N. S. Ali, and K. H. Abdulkareem, "Cyber-security incidents: a review cases in cyber-physical systems," *Int. J. Adv. Comput. Sci. Appl*, no. 1, pp. 499–508, 2018.
- [8] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier function based quadratic programs for safety critical systems," *IEEE Transactions on Automatic Control*, vol. 62, no. 8, pp. 3861–3876, 2017.
- [9] L. Wang, D. Han, and M. Egerstedt, "Permissive barrier certificates for safe stabilization using sum-of-squares," in 2018 Annual American Control Conference (ACC). IEEE, 2018, pp. 585–590.
- [10] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, "Robust control barrier-value functions for safety-critical control," arXiv preprint arXiv:2104.02808, 2021.
- [11] T. Lew and M. Pavone, "Sampling-based reachability analysis: A random set theory approach with adversarial sampling," in *Conference* on Robot Learning. PMLR, 2021, pp. 2055–2070.
- [12] K. Garg and D. Panagou, "Robust control barrier and control lyapunov functions with fixed-time convergence guarantees," in 2021 American Control Conference (ACC), 2021, pp. 2292–2297.
- [13] S. Oudot and J.-D. Boissonnat, "Provably good surface sampling and approximation." in *Symposium on Geometry Processing*, 2003, pp. 9– 18.
- [14] P. Leopardi, "Diameter bounds for equal area partitions of the unit sphere," *Electron. Trans. Numer. Anal*, vol. 35, pp. 1–16, 2009.
- [15] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf, "Computational geometry," in *Computational geometry*. Springer, 1997, pp. 1–17.
- [16] "Fixed-time control under spatiotemporal and input constraints: A quadratic programming based approach," *Automatica*, vol. 141, p. 110314, 2022.
- [17] A. Semechko, "Suite of functions to perform uniform sampling of a sphere," gitHub. Retrieved August 24, 2021. [Online]. Available: https://github.com/AntonSemechko/S2-Sampling-Toolbox
- [18] M. Chen, High dimensional reachability analysis: Addressing the curse of dimensionality in formal verification. University of California, Berkeley, 2017.